• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients?

    2018-10-18 02:54:22QianLEIHanYANG

    Qian LEI Han YANG

    Abstract The authors consider the critical exponent problem for the variable coefficients wave equation with a space dependent potential and source term.For sufficiently small data with compact support,if the power of nonlinearity is larger than the expected exponent,it is proved that there exists a global solution.Furthermore,the precise decay estimates for the energy,L2and Lp+1norms of solutions are also established.In addition,the blow-up of the solutions is proved for arbitrary initial data with compact support when the power of nonlinearity is less than some constant.

    Keywords Semilinear wave equations,Global existence,Energy decay,L2and Lp+1 estimates,Blow up

    1 Introduction

    We consider the following Cauchy problem for the semilinear wave equation with variable coefficients:

    where ε>0,the coefficients a(x)∈ C0(Rn),b(x)∈ C1(Rn)are positive functions which will be specified later and the initial data u0∈H1(Rn),u1∈L2(Rn)have compact support

    where the exponent p of nonlinearity satisfies

    Such a system is generally accepted as models for travelling waves in a nonhomogeneous gas with damping changing with the position.The unknown u denotes the displacement,the coefficient b called the bulk modulus,accounts for changes of the temperature depending on the location,while a is referred as the friction coefficient or potential(see[5]).This problem has been studied intensively for the homogenous medium,but the result are scarce for the variable coefficient case.In[11]there is the authors find decay estimates for wave equations with variable coefficient,however,no nonlinearity is present.In addition,[1],looked at an equation with nonlinear internal damping but for bounded domains.To our knowledge,the results of this paper are the first to be obtained for semilinear wave equations which exhibit space dependent hyperbolic operators and space dependent potential on the entire space Rn.

    Our aim is to determine the critical exponent pc,which is a number defined by the following property:

    If pc

    It is of interest to compare the semilinear wave equations(1.1)–(1.2)for different coefficients.When a(x)=0 namely the damping term is missing and b(x)=1,that is

    for small data with compact support,there exists a critical exponent pw(n)such that the solutions of(1.3)–(1.4)are global if p>pw(n),and the solutions of(1.3)–(1.4)blow up if 1

    There are many results for the semilinear damped wave equation.Todorova and Yordanov[17–18]studied the constant coefficients case of(1.1)–(1.2),that is

    They developed a weighted energy method and determined that the critical exponent is pc(n)=1+more precisely,they proved small data global existence in the case p>pc(n)and blow-up for all solutions of(1.5)–(1.6)with positive on average data in the case 1

    On the other hand,Ikehata,Todorova and Yordanov[7]solved the critical exponent problem for the wave equation(1.1)–(1.2)when b(x)=1,

    They determined that the critical exponent isby using a refined multiplier method,where a(x)∈C1(Rn)is a radially symmetric function satisfying

    with a0>0 and α∈[0,1).They derived the global existence of the sufficiently small data for p>pc(n,α),also obtained precise decay estimates for the energy,L2and Lp+1norms of solutions.Moreover,they proved that the solutions blow up for 1

    where a(t)=a0(1+t)?β, β ∈ (?1,1).He proved that the critical exponent is pc(n)=1+2n.Wakasugi[20]considered the Cauchy problem for the semilinear wave equation with space-time dependent damping

    where a(x)=a0(1+|x|2)?α2,b(t)=(1+t)?β,with a0>0, α,β ≥ 0, α + β <1,and proved that the expected exponent is given by

    which is the critical exponent for the semilinear wave equations with space dependent potential.This shows that,roughly speaking,time-dependent coefficient of damping term does not influence the critical exponent.This is also why we consider wave equation with only space dependent potential.

    The main innovation in this paper is that we find the exponent pcr(n,α,β)such that for sufficiently small data and pcr(n,α,β)

    For the potential a(x)and the bulk modulus b(x),we assume that

    and

    where a0,a1,b0,b1>0 are constants,and α and β belong to the following range of exponents

    the exponent of focusing nonlinearity is given explicitly by

    In the case of variable coefficient wave equation we observe some new phenomena.The decay rates pinpoint the interaction between the coefficients a and b.It is worthwhile to mention that the energy decay rate goes to infinity(see Corollary 1.3)when β → 2?and α → 0+.This shows that the range of the exponent β in(1.9)is natural.On the other hand,in the case of β → 0+,α → 1?,the energy of global solutions decays polynomially like t?nas t→ ∞ (see Corollary 1.3).

    Before stating the main results,we need some preparations concerning the space dependent on factors a(x)and b(x).

    Hypothesis A(see[11])Under the above assumptions(1.7)and(1.8),there exists a subsolution A(x)which satisfies

    and has the following properties:

    Here we announce our main results for the existence of the global solutions for sufficiently small data.

    Let us denote X1(0,T):=C([0,T);H1(Rn))∩C1([0,T);L2(Rn)).

    Theorem 1.1 Let pcr(n,α,β)be defined in(1.10),a(x),b(x)satisfy(1.7),(1.8)respectively and the exponents α,β belong to(1.9).If pcrfor n ≥ 3 and pcr(n,α,β)0 such that for any 0< ε< ε0,the problems(1.1)–(1.2)has a solution u ∈ X1(0,∞)satisfying

    for large t?1,where and δ>0 is an arbitrarily small number.

    Remark 1.1 In the case of constant coefficients a(x)=1,b(x)=1,we have α =0,β =0.Thus pcr(n,α,β)becomes the Fujita’s critical exponent 1+Furthermore,in the case of constant bulk modulus b(x)=1,namely,β=0,then the exponent agrees with that of only the space dependent coefficient case in the literature[7].

    Proposition 1.1(see[11])Let a(x),b(x)satisfy(1.7),(1.8)respectively.

    (i)(1.11)admits a solution A(x)such that

    where A0and A1are positive constants.

    (ii)In the special case,

    with a2>0,b2>0,(1.11)has a solution with the following properties:

    Combining the above proposition with Theorem 1.1,we can give more explicit weighted estimates.

    Corollary 1.1 Under the assumptions in Theorem 1.1,the following estimates hold:

    for large t? 1,where ρ is defined as Theorem 1.1.

    Corollary 1.2 Assume that a(x),b(x)satisfy the condition(1.15).Then for every δ>0,the solution of(1.1)–(1.2)satisfies

    for large t? 1,where ρ is defined as Theorem 1.1.

    Corollary 1.3 Assume that a(x),b(x)satisfy the condition(1.15).Then for every δ>0,the solution of(1.1)–(1.2)satisfies

    for large t? 1,where ρ is defined as Theorem 1.1.

    Another important consequence of main conclusions is that the energy estimate under consideration,restricted to{x:A(x)≥ t1+κ}with κ >0,decays exponentially.

    Corollary 1.4 Under the assumptions in Theorem 1.1,for arbitrary fixed κ>0 and every δ>0,the solution of(1.1)–(1.2)satisfies

    for large t?1,where A(x)andμare given by Hypothesis A.

    Thus,the local energy in{x:A(x)≥ t1+κ}decays exponentially fast as t→ ∞.This observation confirms that for small data the global solutions of(1.1)–(1.2)have parabolic asymptotic profiles.

    The blow up result in the case when 1

    Theorem 1.2 Let a(x)and b(x)satisfy(1.7)and(1.8)respectively,and let the exponents α,β belong to

    When 1

    then the solution of problem(1.1)–(1.2)does not exist globally for any ε >0.

    Remark 1.2 In the case of constant a(x)=1,b(x)=1,we obtain α =0,β =0.Then the exponent p2(n,0,0)=1+becomes the Fujita’s critical exponent.In addition,when b(x)=1,namely,β =0,the exponent p2(n,α,0)=1+coincides with the blow up result in the literature[7].

    Remark 1.3 When p2(n,α,β)

    2 Small Data Global Solutions

    We first state a proposition about the support of the solutions for the wave equation with variable coefficients.Fortunately,the argument has presented in[11].

    Proposition 2.1(Finite Speed of Propagation)Assume that b(x)satisfies(1.8).If u0,u1are supported inside the ball|x|

    Moreover,one has that the radius Rtfor a general b(x)satisfies the following estimates:

    Proposition 2.2(see[19])Define γ :=,then γ ∈ [0,1]and

    Then

    where g0and G0are positive constants.

    To show the global existence of solutions of problem(1.1)–(1.2)for sufficiently small data,we rely on a modification of technique developed by Todorova and Yordanov[17–18].Indeed,for the solution u(x,t)of problem(1.1)–(1.2)we set v=uw?1,where w is an approximate solution of linear part of(1.1)–(1.2)and can be defined by

    where the parameters m:=μ?2δ,m1:=μ?δ and A(x)is determined in Hypothesis A,where δ∈ (0,μ)is a small number.

    We also set

    where

    We consider the semilinear wave equation of the form

    where the coefficients a(x)∈C0(Rn),b(x)∈C1(Rn).

    Our goal is to derive a weighted energy identity for u.Let v=w?1u and substitute u=wv into(2.5),we have

    where

    Multiplying both sides of(2.6)by wv+w1vtand integrating over Rn,we have the equality

    where the weighted energy

    and

    Different conditions are needed for the damping weights w1,w to ensure that F(vt,?v)+G(v)>0,and hence the weighted energy E(vt,?v,v)is bounded.

    Lemma 2.1 Let a(x)and b(x)satisfy conditions(1.7)and(1.8).There exists a large number t0>0 such that for t≥t0the following conditions hold:

    (i)Q≥0,Qt≤0,

    (ii)??tw1+w ≥0,

    (iii)(??tw1+2(a+2w?1wt)w1?2w)(??tw1+2w)≥ b(?w1?2w1w?1?w)2.

    If u is a solution of(1.1)–(1.2),where t∈ (t0,Tm),we have

    Proof The proof of conditions(i)–(iii)is similar to[19],so we omit it.Notice that conditions(i)and(ii)imply hence G(v)≥0.Condition(iii)and??tw1+2w ≥0,which follows from(ii),guarantee that the quadratic form F(vt,?v)≥ 0.Therefore,after integrating(2.7)over[t0,t],we can obtain the final inequality,where t0

    We need estimates(I)and(II)in the right side of(2.12).Now we introduce a new function:

    For(I)in the right side of(2.12),we have the following crucial estimate.

    Lemma 2.2 Let a(x)and b(x)satisfy conditions(1.7)–(1.8).If p>pcr(n,α,β),then there exists a number ρ >0,which depends on p,n,α,β and δ such that

    where

    Proof Using definitions of w(t,x)and w1(t,x),we have

    and

    We add the above two estimates and integrate it over Rn,then get

    By setting

    we can rewrite(2.14)in the form

    To estimate the weighted norm ke?ηψ(t,·)vkp+1,we use the Gagliardo-Nirenberg inequality

    where

    We estimate the first term(A)in the right side of inequality(2.16),beginning with following decomposition

    Furthermore,there exists a constant C>0,such that for any x>0,it is true that

    Thus,

    this inequality combined with(2.17)implies

    To estimate the second term(B)in the right of inequality(2.16),notice that

    Integrating(B2)by parts

    combining(B1)–(B3)and integrating over Rn,we obtain

    To estimate the first term(B4)in the right side of inequality(2.19),we use

    So,(B4)of inequality(2.19)will be

    Since the exponential term satisfies

    (B4)is estimated as follows

    To proceed,we estimate the second term(B5)in the right side of inequality(2.19).From the definition of w1and(2.20),we see that

    where 0 ≤ β <2,C>0,x 7→ (6+x)e?kx(k>0)is bounded above.Then the final estimate of(B5)is

    Therefore,by using(2.18)and(2.21)–(2.22),we rewrite inequality(2.16)as

    This inequality together with(2.15)gives

    where

    Finally,from the assumption pcr(n,α,β)

    0,which implies the desired estimate.

    Now using the result of Lemma 2.2,we are able to estimate the second term(II)to the right side of(2.12).

    Lemma 2.3 Under the assumptions in Lemma 2.2,we have

    with some constant C>0,where ρ>0 is the constant determined in Lemma 2.2.

    Proof It follows from the definitions of w1and w that

    It is easy to see that

    moreover,

    Hence,we obtain

    which implies

    Integrating over[t0,t],one has

    Thus,by using Lemma 2.2 and(2.24),we derive the estimate in Lemma 2.3.

    From Lemmas 2.2–2.3 and the weighted energy inequality(2.12),we get the following estimate

    Using w1>0 and Q≥0,which follows from Lemma 2.1(iii),we obtain Qw1≥0.Sincewe can rewrite(2.25)as follows

    We need one more preparation.

    Lemma 2.4 Let γ∈[0,1],c0>0,E0>0 be given real numbers,and let f∈C([t0,Tm))be a monotone increasing function.If a function h∈C1([t0,Tm))satisfies the inequality

    then the following estimate holds

    with some constant C>0.

    Proof The proof is similar to[7],so we omit it.

    Let

    Note that the function t 7→M(t)is monotone increasing.Under these preparations one can prove the following lemma.

    Lemma 2.5 Let γ∈[0,1],then the following bound holds

    for t∈[t0,Tm)with large t0>0.

    ProofSince a(x)≥ g(t)≥ g0t?γas it was presented in Proposition 2.2,it follows from(2.26)that

    Note that the function

    is monotone increasing.We can apply Lemma 2.4 with

    and obtain the desired estimate.

    Denote by

    where u ∈ X1[0,Tm)is the weak solutions of(1.1)–(1.2).We are in need of the following lemmas.

    Lemma 2.6 For each t∈[0,Tm),it is true that Z

    with some t-dependent constant CR(t)satisfying

    ProofThe proof is omitted since it elementary follows from the fact that v=w?1u,the compact support of the data and the Poincarinequality.

    The standard energy inequality associated with the problem(1.1)–(1.2)is

    Lemma 2.7 Let t0>0 be the time defined in Lemmas 2.1–2.6,then there exists T ∈(t0,Tm),which depends on ε >0,such that for all t∈ [0,T]

    Proof With a simple modification for[7],the lemma can be easily proved,so we omit it here.

    3 Global Existence

    In this section,we are going to prove the main theorem and corollaries.However,we need to state several lemmas in order to find the decay estimates for the energy,L2and Lp+1norms.

    Lemma 3.1 Assume that the a(x)and b(x)satisfy(1.7)–(1.8),and γif the weights w and w1satisfy conditions(i)–(iii)and

    then

    for all t≥t0.

    Proof For the proof of conditions(iv)–(v)(see[19]),Lemma 2.7 shows that we can consider the case t0

    For any ?∈ (0,1),since

    then

    Hence,(3.1)becomes

    That is,

    conditions(iv)and(v)yield

    Having this together with Lemma 2.5,we obtain

    where C>0 is a constant independent of ?.By taking ?>0 sufficiently small,one has

    for all t∈[t0,Tm).From this inequality and Lemma 2.6,we obtain the final estimate of W(t)

    Applying Lemma 2.7,we have

    for sufficiently small ε,then continuous non-decreasing function M(t)must remain bounded.

    that is

    which is false.Therefore

    This implies that Tm=∞,in other words,we have global solutions.

    Lemma 3.2 Let a(x)and b(x)satisfy(1.7)–(1.8),assume that the weights w and w1satisfy conditions(i)–(v)together with

    where C is a constant.Then,the solution u of(1.1)–(1.2)satisfies

    for all t≥t0.

    ProofFor the proof of condition(vi),see[19].To prove the first estimate,we use the second estimate of Lemma 3.1 with v=w?1u.It is left to prove.

    We have the second estimate

    and

    These equalities imply

    Integrating this inequality over Rnand using(vi),Lemma 3.1,we obtain

    Here we are in a position to proof the main theorem and corollaries.

    Proof of Theorem 1.1 Using the first estimate of Lemma 3.2,we have the following weighted estimates

    Further by using the bounds for A(x),namely,

    together with(1.7)we get the estimate

    where C>0 and t≥t0is sufficiently large.Substituting this lower bound for a(x)into inequality(3.3),we have the decay estimate for the L2-norm of solution

    To prove the decay estimate for the energy of solution u,we use the second estimate of Lemma 3.2,

    which is equivalent to

    To simplify the estimate,we notice that

    with some C0>0 depending on δ.Hence,

    Finally,we can show the decay estimate for the Lp+1norm of the solution u.From Lemma 2.2 and(3.2),we find that

    Applying v=w?1u and the weights w,w1,one obtains

    Using(3.4)again,we have

    These yield the estimates in Theorem 1.1 with a loss of decay δ.To obtain the final form we only replace 2δ by δ.

    Proof of Corollary 1.1 To obtain the weighted energy estimate,we combine Theorem 1.1 with the lower bound of A(x)from Proposition 1.1,namely,

    We complete the proof by substituting this lower bound of A(x)into the result of Theorem 1.1.

    Proof of Corollary 1.2 The result is similar to but more precise than the first corollary.Using properties(A3)and(A4)in Proposition 1.1,we write the main decay estimates as

    where

    Hence there exists a C>0,such that

    The remain part is a lower bound of A(x)which is similar to(3.5).

    Proof of Corollary 1.3 It can be concluded from Corollary 1.2 easily,and so we omit it.

    Proof of Corollary 1.4 For the energy estimate in Theorem 1.1,we restrict the integration to{x:A(x)≥ t1+κ}and complete the proof.

    4 Blow-up

    In this section,we prove the blow-up part of Theorem 1.2.We adopt on the method of test functions developed by Zhang[21].

    Proof of Theorem 1.2 First we find a non-negativesuch that

    The function φ also satisfies the addition condition

    where D=(?t,?)and C>0 is some constant,see[21]for the existence of such function.Then the test function φTis defined by

    where T is some large parameter.Let PTbe the subset of R × Rn,where φT=1 and

    that is,QTis the support of derivatives restricted to t≥0.It is easy to see that

    Assume that a global solution u exists.To obtain a contradiction,we multiply the equation(1.1)bywith q=First using integration by part over[0,+∞]× Rn,it is easy to see that

    Here we use φT(0,x)=1, ?φT(0,x)=1 and the initial conditions on u to evaluate boundary integral at t=0.

    Next,we estimate the integral on the left side of(4.2)and compare it with the integrals on the right side of(4.2).A straightforward calulation yields

    By Holder’s inequality,we have

    where I(T)=I1(T)+I2(T)+I3(T)+I4(T),Ii(T)(i=1,2,3,4)will be given as follows,and we will estimate Ii(T)(i=1,2,3,4)separately.

    where we use 2(2?α?β)≥2?β from the assumption 2α+β≤2.

    To proceed,we estimate the I3(T)and I4(T).

    Using 2?α?β<1,which follows from the assumption α+β>1,we obtain

    thus an upper bound is

    With the same reason of estimating I3(T),we have

    Therefore,by using(4.4)–(4.7),we derive the final estimate of I(T),

    Combing with(4.2)–(4.3)and the assumption of initial data,we have

    where C is indepent of T.Finally,we show that the above inequality cannot hold as T→∞.If p ≤ p2(n,α,β),then

    and(4.8)shows that

    Letting T→∞and using(4.1),we conclude that u∈Lp([0,+∞)×Rn).Hence(4.1)also implies that kukLp(QT)→ 0 as T → ∞.Passing to the limit in(4.8),we obtain kukLp([0,+∞)×Rn)≤ 0 for any 1

    AcknowledgementWe are grateful to the anonymous referees for a number of valuable comments and suggestions.

    亚洲一区中文字幕在线| 亚洲精品日本国产第一区| 国产91精品成人一区二区三区 | 国产男人的电影天堂91| 欧美亚洲 丝袜 人妻 在线| 1024视频免费在线观看| 一区二区三区精品91| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 免费在线观看日本一区| 久久国产精品人妻蜜桃| av一本久久久久| 人人妻人人添人人爽欧美一区卜| 国产免费一区二区三区四区乱码| 晚上一个人看的免费电影| 午夜免费男女啪啪视频观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲午夜精品一区二区久久| 秋霞在线观看毛片| 久久精品国产亚洲av涩爱| 亚洲av欧美aⅴ国产| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 少妇粗大呻吟视频| videosex国产| 日本vs欧美在线观看视频| 国产av国产精品国产| 久久人人爽人人片av| 国产免费又黄又爽又色| 交换朋友夫妻互换小说| svipshipincom国产片| 亚洲精品av麻豆狂野| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 亚洲人成电影观看| 成人三级做爰电影| 亚洲专区国产一区二区| 1024香蕉在线观看| 麻豆国产av国片精品| 人人澡人人妻人| 国产黄色视频一区二区在线观看| 一区二区日韩欧美中文字幕| 国产成人精品无人区| 中文字幕色久视频| 久久精品亚洲熟妇少妇任你| 精品一品国产午夜福利视频| 日韩大码丰满熟妇| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 看十八女毛片水多多多| 国产97色在线日韩免费| 欧美日韩av久久| 欧美在线黄色| 亚洲精品日韩在线中文字幕| 人人澡人人妻人| 啦啦啦啦在线视频资源| 国产一区二区激情短视频 | 99热网站在线观看| 久久精品亚洲熟妇少妇任你| 另类亚洲欧美激情| 免费观看a级毛片全部| 黄色怎么调成土黄色| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区久久| 国产亚洲精品第一综合不卡| 男的添女的下面高潮视频| 亚洲国产中文字幕在线视频| 秋霞在线观看毛片| 黄片小视频在线播放| 超色免费av| 天堂8中文在线网| 久久久久久免费高清国产稀缺| 人妻一区二区av| 欧美精品一区二区免费开放| 国产成人av激情在线播放| 亚洲精品国产区一区二| 国产在线免费精品| xxx大片免费视频| 国产老妇伦熟女老妇高清| 国产真人三级小视频在线观看| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 国产精品一二三区在线看| 国产成人一区二区在线| 极品人妻少妇av视频| 咕卡用的链子| 久久亚洲精品不卡| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 精品人妻1区二区| 狠狠婷婷综合久久久久久88av| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲高清精品| 亚洲成人国产一区在线观看 | 亚洲少妇的诱惑av| 欧美精品人与动牲交sv欧美| 国产高清videossex| 亚洲中文字幕日韩| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 国产真人三级小视频在线观看| 电影成人av| 搡老乐熟女国产| 免费看av在线观看网站| 黑丝袜美女国产一区| 国产成人欧美在线观看 | 中文欧美无线码| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版| 黄色a级毛片大全视频| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 宅男免费午夜| 亚洲国产av影院在线观看| 日本欧美国产在线视频| 一本一本久久a久久精品综合妖精| 日韩伦理黄色片| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 涩涩av久久男人的天堂| 欧美日韩av久久| 久久精品亚洲熟妇少妇任你| 国产高清视频在线播放一区 | 日韩中文字幕欧美一区二区 | 国产成人啪精品午夜网站| 日本欧美国产在线视频| 狠狠精品人妻久久久久久综合| 精品视频人人做人人爽| 国产成人一区二区在线| 黄频高清免费视频| 一区二区av电影网| 高潮久久久久久久久久久不卡| 精品福利观看| 精品亚洲成a人片在线观看| 91精品三级在线观看| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片| 久久精品久久精品一区二区三区| 欧美成人午夜精品| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 精品国产国语对白av| 成年动漫av网址| 国产一区二区三区av在线| 99国产精品99久久久久| 蜜桃在线观看..| 欧美日韩一级在线毛片| 国产片特级美女逼逼视频| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 国产一区二区在线观看av| 女性被躁到高潮视频| 国产一卡二卡三卡精品| 日本wwww免费看| 男人爽女人下面视频在线观看| 熟女av电影| 国产麻豆69| 丝袜脚勾引网站| 男女床上黄色一级片免费看| 日韩av免费高清视频| 免费看av在线观看网站| 久久99一区二区三区| 欧美大码av| 韩国精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 日本欧美视频一区| 国产极品粉嫩免费观看在线| 狂野欧美激情性bbbbbb| 成人亚洲欧美一区二区av| 夫妻午夜视频| www.自偷自拍.com| 91国产中文字幕| 精品国产国语对白av| 两个人免费观看高清视频| 欧美人与性动交α欧美精品济南到| 中文字幕精品免费在线观看视频| 国产在线视频一区二区| av一本久久久久| 嫩草影视91久久| 日韩人妻精品一区2区三区| 啦啦啦中文免费视频观看日本| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 国产片特级美女逼逼视频| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 午夜视频精品福利| 免费看十八禁软件| 99国产精品一区二区三区| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| videos熟女内射| 亚洲av欧美aⅴ国产| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 久久人人爽人人片av| 色网站视频免费| 久久国产精品人妻蜜桃| 日本欧美视频一区| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av高清一级| 久久久久久久精品精品| 午夜福利一区二区在线看| 国产一区二区在线观看av| 欧美成人午夜精品| 伊人亚洲综合成人网| 亚洲色图综合在线观看| kizo精华| 亚洲精品国产一区二区精华液| 18禁观看日本| 久久久亚洲精品成人影院| 日日夜夜操网爽| 国产主播在线观看一区二区 | 青春草视频在线免费观看| 操出白浆在线播放| 国产精品久久久久久精品古装| 在线看a的网站| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕| 国产一区亚洲一区在线观看| 日本五十路高清| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 国产亚洲欧美精品永久| 十八禁高潮呻吟视频| 国产精品成人在线| 下体分泌物呈黄色| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 成年动漫av网址| 亚洲国产av新网站| 黄色 视频免费看| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 国产不卡av网站在线观看| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 免费人妻精品一区二区三区视频| 一级a爱视频在线免费观看| 精品久久久久久久毛片微露脸 | 在线观看免费高清a一片| 国产av一区二区精品久久| 国产麻豆69| 啦啦啦啦在线视频资源| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品va在线观看不卡| 黄色一级大片看看| 免费在线观看日本一区| 国产精品二区激情视频| 久久国产精品人妻蜜桃| kizo精华| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 十八禁人妻一区二区| 久久精品亚洲熟妇少妇任你| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| 亚洲成人国产一区在线观看 | 日本黄色日本黄色录像| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 亚洲中文字幕日韩| 看十八女毛片水多多多| 麻豆乱淫一区二区| 精品国产一区二区三区四区第35| 免费高清在线观看日韩| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 涩涩av久久男人的天堂| 黄色一级大片看看| 亚洲天堂av无毛| xxxhd国产人妻xxx| 亚洲成人免费电影在线观看 | 视频在线观看一区二区三区| 少妇人妻 视频| 99久久99久久久精品蜜桃| www.自偷自拍.com| 香蕉丝袜av| 99热网站在线观看| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| tube8黄色片| 久久精品成人免费网站| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 男女之事视频高清在线观看 | 啦啦啦在线观看免费高清www| 热re99久久国产66热| 久久久精品区二区三区| 国产又色又爽无遮挡免| 日韩av在线免费看完整版不卡| 伦理电影免费视频| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 久久久久久免费高清国产稀缺| 夫妻性生交免费视频一级片| 国产精品三级大全| 婷婷色av中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 男女国产视频网站| 国产欧美日韩一区二区三区在线| 欧美xxⅹ黑人| 91老司机精品| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 美女福利国产在线| 久久久精品免费免费高清| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 高清视频免费观看一区二区| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 精品一品国产午夜福利视频| 久久人妻熟女aⅴ| 18禁裸乳无遮挡动漫免费视频| 午夜日韩欧美国产| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 777米奇影视久久| 手机成人av网站| 国产伦理片在线播放av一区| 亚洲伊人久久精品综合| 久热爱精品视频在线9| 色94色欧美一区二区| 夫妻午夜视频| 韩国精品一区二区三区| 日韩人妻精品一区2区三区| 99国产精品99久久久久| 久久久精品免费免费高清| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 男女午夜视频在线观看| 国产一区二区三区av在线| 在线 av 中文字幕| 国产精品.久久久| 激情五月婷婷亚洲| 韩国精品一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲国产欧美在线一区| 无限看片的www在线观看| 亚洲欧美激情在线| 蜜桃在线观看..| 午夜老司机福利片| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| 只有这里有精品99| 国产精品一二三区在线看| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 国产一区二区在线观看av| av天堂在线播放| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 一级黄色大片毛片| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 岛国毛片在线播放| 观看av在线不卡| 亚洲欧美一区二区三区国产| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| 黄片播放在线免费| 亚洲第一青青草原| 亚洲国产精品一区三区| 精品人妻熟女毛片av久久网站| 黄色a级毛片大全视频| 捣出白浆h1v1| 国产成人a∨麻豆精品| 国产男女超爽视频在线观看| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 久久人人爽人人片av| 亚洲欧美一区二区三区黑人| 日本av手机在线免费观看| 国产免费又黄又爽又色| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 久久久久久久国产电影| 赤兔流量卡办理| 91国产中文字幕| 无限看片的www在线观看| 久久精品国产a三级三级三级| 久久中文字幕一级| 91麻豆av在线| 日韩制服丝袜自拍偷拍| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 在线看a的网站| 人人妻人人澡人人看| 国产一区二区在线观看av| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 精品国产一区二区久久| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀 | 久久精品国产综合久久久| 国产精品久久久av美女十八| 久久九九热精品免费| 亚洲欧美清纯卡通| 国产在线免费精品| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 国产欧美日韩综合在线一区二区| 亚洲成人免费电影在线观看 | netflix在线观看网站| 欧美精品高潮呻吟av久久| 一区二区av电影网| 亚洲精品在线美女| 亚洲人成77777在线视频| 国产成人av激情在线播放| 国产主播在线观看一区二区 | videos熟女内射| 久久这里只有精品19| 啦啦啦啦在线视频资源| 国产成人精品久久二区二区91| 国产av国产精品国产| 男人添女人高潮全过程视频| 亚洲一卡2卡3卡4卡5卡精品中文| 在现免费观看毛片| 国产成人一区二区在线| 国产精品亚洲av一区麻豆| 亚洲图色成人| 99国产精品一区二区蜜桃av | 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 制服人妻中文乱码| 精品一品国产午夜福利视频| 亚洲精品乱久久久久久| 亚洲 国产 在线| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 搡老岳熟女国产| 日韩伦理黄色片| 国产亚洲一区二区精品| 国产成人精品久久久久久| 啦啦啦在线免费观看视频4| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 亚洲av美国av| 国产人伦9x9x在线观看| av视频免费观看在线观看| 男女边吃奶边做爰视频| 男女床上黄色一级片免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线进入| 一级毛片女人18水好多 | 男人操女人黄网站| 一本久久精品| 久久亚洲国产成人精品v| 国产成人欧美在线观看 | 午夜激情av网站| 少妇裸体淫交视频免费看高清 | 国精品久久久久久国模美| 巨乳人妻的诱惑在线观看| 亚洲天堂av无毛| 精品福利观看| 久久人妻福利社区极品人妻图片 | 日韩电影二区| 国产成人91sexporn| 一区二区日韩欧美中文字幕| 啦啦啦视频在线资源免费观看| 精品免费久久久久久久清纯 | 又大又黄又爽视频免费| www.自偷自拍.com| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 免费看十八禁软件| 国产在视频线精品| 捣出白浆h1v1| 日韩中文字幕视频在线看片| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| av不卡在线播放| 啦啦啦 在线观看视频| 又粗又硬又长又爽又黄的视频| 狠狠精品人妻久久久久久综合| 国产黄频视频在线观看| 亚洲成人免费电影在线观看 | 一级a爱视频在线免费观看| 日本午夜av视频| 国产在线观看jvid| 久久久久久久精品精品| 亚洲av日韩在线播放| 亚洲精品国产区一区二| 少妇的丰满在线观看| 国产xxxxx性猛交| 成人三级做爰电影| 欧美在线黄色| 久久这里只有精品19| 日韩 亚洲 欧美在线| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 久久女婷五月综合色啪小说| 国产一区二区 视频在线| 美女中出高潮动态图| 操美女的视频在线观看| 老熟女久久久| 视频区图区小说| 久久久久久久大尺度免费视频| 久久九九热精品免费| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 多毛熟女@视频| 国产精品一区二区在线观看99| 黄色视频在线播放观看不卡| 久久久精品国产亚洲av高清涩受| 国产精品国产av在线观看| 大片免费播放器 马上看| 丝袜人妻中文字幕| 婷婷成人精品国产| 别揉我奶头~嗯~啊~动态视频 | 日本欧美国产在线视频| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 久久久久久久大尺度免费视频| 成人手机av| 精品国产超薄肉色丝袜足j| 免费观看a级毛片全部| 婷婷成人精品国产| 99香蕉大伊视频| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区免费开放| 女人被躁到高潮嗷嗷叫费观| 可以免费在线观看a视频的电影网站| 十八禁网站网址无遮挡| 亚洲欧美中文字幕日韩二区| 99热国产这里只有精品6| av视频免费观看在线观看| 咕卡用的链子| 国产精品一国产av| 日韩精品免费视频一区二区三区| 热re99久久国产66热| 亚洲人成电影观看| 黄色 视频免费看| 99热网站在线观看| 男人添女人高潮全过程视频| 国产高清国产精品国产三级| 亚洲av美国av| 久久精品久久精品一区二区三区| 国产欧美日韩一区二区三 | 久久中文字幕一级| 久久久久网色| 视频在线观看一区二区三区| 婷婷成人精品国产| 国产欧美日韩综合在线一区二区| www.自偷自拍.com| 女人精品久久久久毛片| 午夜福利乱码中文字幕| 国精品久久久久久国模美| 色精品久久人妻99蜜桃| 国产日韩欧美亚洲二区| 久久青草综合色| 麻豆av在线久日| 亚洲国产毛片av蜜桃av| 亚洲,一卡二卡三卡| 电影成人av| 日本91视频免费播放| 日日夜夜操网爽| 婷婷色麻豆天堂久久| 天天影视国产精品| 男男h啪啪无遮挡| 中文欧美无线码| 国产主播在线观看一区二区 | 久久天躁狠狠躁夜夜2o2o | 青春草亚洲视频在线观看| 亚洲一码二码三码区别大吗| 亚洲av在线观看美女高潮| 久久ye,这里只有精品| 女人久久www免费人成看片|