• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ergodicity and First Passage Probability of Regime-Switching Geometric Brownian Motions?

    2018-10-18 02:54:42JinghaiSHAO

    Jinghai SHAO

    Abstract A regime-switching geometric Brownian motion is used to model a geometric Brownian motion with its coefficients changing randomly according to a Markov chain.In this work,the author gives a complete characterization of the recurrent property of this process.The long time behavior of this process such as its p-th moment is also studied.Moreover,the quantitative properties of the regime-switching geometric Brownian motion with two-state switching are investigated to show the difference between geometric Brownian motion with switching and without switching.At last,some estimates of its first passage probability are established.

    Keywords Ergodicity,Regime-switching diffusions,Lyapunov functions,First passage probability

    1 Introduction

    In the study of mathematical finance,geometric Brownian motion(GBM for short)is used to model stock prices in the Black-Scholes model and is the most widely used model of stock price behavior.Let(Zt)be the solution of following stochastic differential equation(SDE for short):

    with Z0=a>0,whereμ,σ are constants,and(Bt)is a one-dimensional Brownian motion.But GBM is not a completely realistic model,and there are several kinds of modifications of(1.1)to make it more realistic.For instance,the local volatility model and the stochastic volatility model are well-studied models in place of GBM(see[3]).

    In this work,we shall study another type of modification.Consider the following regimeswitching diffusion process(Xt,Λt)t≥0,where Xtsatisfies the SDE:

    with X0=x0>0,μ :S → R,σ :S → (0,+∞),S={0,1,···,N}.Here(Λt)is a continuous time Markov chain on the finite state space S with Q-matrix(qij)i,j∈S.Throughout this work,we assume that(qij)i,j∈Sis irreducible and the process(Λt)is independent of the Brownian motion(Bt).We call(Xt)t≥0a regime-switching geometric Brownian motion(SGBM for short)in the state space S.The process(Xt)defined by(1.2)can be viewed as a geometric Brownian motion living in a random environment which is characterized by a continuous time Markov chain(Λt).When the process(Λt)takes different value in S,it means that the environment is in different state.For example,if one uses the process(1.2)to model a stock price process living in a market which is divided into two kinds of different periods: “bull” market and “bear”market,one can take S={0,1}and use the state 0 to represent the “bull” market,and the state 1 to represent the “bear” market.The stock market oscillates randomly between the bull market and the bear market,and it is conceivable that the driftμin(1.1)in a bull market takes different value from that in a bear market.Therefore,it is more practical to use(1.2)instead of(1.1)to model stock price.Refer to[5,8]for more background on this model.Refer to[6,9]and references therein for its application in option pricing.

    The existence,uniqueness and non-explosiveness of(Xt,Λt)are guaranteed by the general theory of regime-switching diffusion processes(see[19,28]).In particular,according to[28,Lemma 7.1],similar to the geometric Brownian motion without switching,it still holds that

    The process(Xt)can also be expressed explicitly in the following form:

    In this work,we shall first study the ergodic property and the long time behavior of the SGBM.Although the SGBM has been widely used in mathematical finance,its ergodic properties have not been well studied yet.The SGBM is a simple example of regime-switching diffusion processes.It has been known that the ergodic properties of regime-switching diffusion processes are more complicated than that of diffusion processes(see,for instance,[15]).Our present work presents quantitatively how the coefficients of diffusion process and the switching rate of environment work together to impact the recurrent property of(Xt,Λt).Moreover,we refer the readers to[2,4,13,15,17–22,27]and references therein for the recent study on the recurrence,ergodicity,strong ergodicity,stability,and numerical approximation of regime-switching diffusion processes in a more general framework.

    Let(πi)i∈Sbe the invariant probability measure of(Λt).Set

    where diag(ξ0,···,ξN)denotes the diagonal matrix generated by the vector(ξ0,···,ξN),and Spec(Ap)stands for the spectrum of Ap.Our main results on the long time behavior and recurrence of SGBM are as follows.

    (ii)For p>0,it holds

    where ηpis defined by(1.5).

    The argument of Theorem 1.2 relies heavily on the Fredholm alternative.We recall some basic facts on the Fredholm alternative.Recall that Q=(qij)denotes the Q-matrix of the Markov chain(Λt).The equation Qu=v is solvable if and only ifin which case u=Q?1v is unique up to the addition of a multiple of the vector 1.Moreoverfor all v satisfyingand equality holds if and only if v·≡ 0.

    Secondly,we provide some quantitative description on the SGBM.The aim of this part is twofold:One is due to the requirement of the application of the SGBM;the other is that we want to find the complexity of the regime-switching diffusion processes via this simple linear model.In this part,we focus on the case that S={0,1}.Indeed,the formulas obtained in this part show that although the model of SGBM is simple,its quantitative properties are rather complicated.Here,we calculate the moments of lnXtand estimate the first passage probability of Xt.We give out the first and second order moments of lnXt,and every n-th order moment of lnXtcan be calculated by our method.Then we provide an estimate of the first passage probability of the process(Xt).The first passage probability plays an important role in many research subjects such as in the option pricing and credit risk.Although the SGBM is rather simple from the point of view of stochastic differential equation,the calculation of its moments and its first passage probability is far from trivial.We need to overcome some new difficulties which do not occur in the study of the first passage probability of diffusion processes.Moreover,our results are analytic,and they are not expressed in terms of the Laplace transform.In[7,10]the distribution of the first passage time of SGBM in terms of its Laplace transform was studied;in[11]numerical approximation of the first passage probability for regime-switching processes was studied.

    This work is organized as follows.In Section 2,we first study the long time behavior and recurrent properties of(Xt,Λt)in a finite state space.The method depends on the criteria established in[18]and[14].The proofs of Theorems 1.1–1.2 are provided in this section.In Section 3,we calculate the moments of lnXtwhen(Λt)is a Markov chain on a two-state space S={0,1}.The reason to focus on two-state space is that more explicit formula could be derived in this case.There we provide explicit formula for the first and second moment of lnXt,and all its higher moments can be calculated using the same method.Then we provide some upper and lower bounds on the probability P(>T)when σ0= σ1,where=inf{t>0;Xt=a,X0=x}for 0T)when σ06σ1.

    2 Long Time Behavior and Recurrence of SGBM

    In this section,we shall study the long time behavior of(Xt,Λt)and provide a complete characterization of the recurrent property of(Xt,Λt)by the method of Lyapunov functions.

    Let us recall some basic definitions.For x∈(0,∞),i∈ S,define

    For every x,y ∈ (0,∞)and i,j ∈ S,if Px,i(τy,j< ∞)=1,then the process(Xt,Λt)is called recurrent;if Px,i(τy,j< ∞)<1,then it is called transient;if Ex,i[τy,j]< ∞,then it is called positive recurrent.If(Xt,Λt)is recurrent,but not positive recurrent,it is called null recurrent.The process(Xt,Λt)is called ergodic,if there exists a probability measure eπ on(0,∞)×S such that for every x∈(0,∞)and i∈S,

    Here k ·kvardenotes the total variation norm.Moreover,if there exist constants α,C(x,i)>0 such that for every(x,i)∈ (0,∞)×S,and t>0,

    then the process(Xt,Λt)is called exponentially ergodic.These are usual definitions of recurrence for regime-switching processes,and we refer the reader to[28,Chapter 3]for more related discussion.

    Let

    For every function g on S,define the operator

    Define

    for f∈C2(R×S).Then A is the infinitesimal generator of(Xt,Λt)(see[24,Chapter II]).

    Proof of Theorem 1.1(i)As Xt>0,t≥0 almost surely,we set Yt=lnXtand apply It?o’s formula to yield that

    where?iis given by(1.5).By the ergodic theorem of Markov chains,we obtain that

    which yields immediately the assertion(i)of Theorem 1.1.

    (ii)To make the idea clear,we provide a concise construction of the probability space.Let(?1,F1,P1)be a probability space such that(Bt)is a Brownian motion with respect to a given filtration(Ft)t≥0on(?1,F1,P1).Let(?2,F2,P2)be a probability space,and(Λt)be a Markov chain on it with the Q-matrix(qij)i,j∈S.Define

    Then in the following we let(Xt)be a solution of(1.2)with respect to(Bt)and(Λt)defined on the probability measure(?,F,P).Let EP1denote taking expectation with respect to P1and similarly define E=EP=EP1×P2.

    According to It?o’s formula,for p>0,

    For any 0≤s

    Hence

    Fix time t>0,and let τ1< τ2< ···,τMbe the jumping time of(Λt)during the period(0,t).Set τM+1=t,τ0=0.Then r 7→pμΛr+12p(p?1)σ2Λris continuous during(τk,τk+1)for k=0,···,M.Hence(2.3)implies that

    and further

    for k=0,···,M.Due to the continuity of r 7→ EP1Xpr,we obtain that

    and hence

    According to[1,Proposition 4.1],there exist constants 0

    Consequently,

    which is the desired conclusion.

    Now we proceed to study the recurrent property of(Xt,Λt).Due to(1.3),Yt=lnXtis well-defined for t≥0 a.s.and satisfies the SDE(2.2).It is obvious that the recurrent property of(Xt,Λt)is equivalent to that of(Yt,Λt).We shall use the Lyapunov method to justify the recurrent property of(Yt,Λt).

    Proof of Theorem 1.2(i)We shall use the method of[18,Section 3].Set h(x)=|x|?2and g(x)=|x|?3for|x|≥ 1.Define

    Then

    Let us first consider the casethere exist ε>0,r1>1 such thatand

    According to the Fredholm alternative,there exists a constant κ >0 and a vector(ξi)i∈Sso that

    Setting f(x,i)=h(x)+ξig(x)for x>0,we derive that

    Take Y0=y>r2and Λ0=i0so that f(y,i0)0;Yt=K},K>r2,τ=inf{t>0;Yt=r2}.By Dynkin’s formula,

    Letting t→+∞,we get

    which yields further that

    in the last step of which we have used the decreasing property of the function h(x)+ξming(x)on[r2,+∞).Invoking the fact τK→+∞ as K ↑+∞ a.s.,(2.5)yields that

    which implies that(Yt,Λt)is transient.

    Analogously,we can prove that(Yt,Λt)is also transient whenby using the same Lyapunov function f(x,i)but studying its behavior on x<0.

    (ii)Now we consider the caseWe shall apply the technique used in[14].Setand

    Then,Θ >0 due to the Fredholm alternative,and Θfor x0 by direct calculation.Define f1(x,i),f2(x,i)by

    which are well-defined due to the factand

    Take f(x,i)=f0(x)+f1(x,i)+f2(x,i)for|x|6=0,i∈S.Then

    Next,we shall show further that whenor equivalently(Yt,Λt),is null recurrent.To this aim,we take 1

    where ξiis determined by Qξ(i)= ??ifor each i∈ S satisfying further ξi>0,i∈ S.Direct calculation yields that

    for x>0,i∈S.As p,q∈(1,2),it is easy to obtain that there exist constants r1,K>0 such that

    Let

    where C>0 satisfying u(r1,i)=g(r1,i)?C<0 for all i∈S.Set

    Since h(m,i)?Rmu(m,i)≥ 0,and h(r1,i)?Rmu(r1,i)≥ 0 for every i∈ S and m large enough,we obtain

    Letting m→+∞,(2.6)yields that

    Hence,(Yt,Λt)is not positive recurrent.However,we have shown(Yt,Λt)is recurrent.In all,(Yt,Λt)is null recurrent.The proof of Theorem 1.2 is complete.

    3 Some Quantitative Properties of SGBM

    In this section,we shall exploit the quantitative properties of the process(Xt,Λt).Throughout this section,we only consider the case that(Λt)is a Markov chain on S={0,1}.To emphasize this fact,in this section we denote the Q-matrix of(Λt)by

    where λ0,λ1are two positive constants.We calculate the moments of lnXtin Subsection 3.1,and provide the estimate of the first passage probability of(Xt)in Subsection 3.2.

    3.1 Moments of lnXt

    Let us introduce some notations used in the sequel.Assume that Λ0=i for i=0 or 1.Set

    Let τk= ζk? ζk?1for k ≥ 1 with ζ0:=0,then(τk)k≥1are mutually independent random variables,and τ2kand τ2k?1are both exponentially distributed with parameters λ1?iand λi,respectively.Let α(t)and β(t)denote respectively the time spent by the process(Λt)at the states Λ0and 1?Λ0up to the time t.Let N(t)be the total number of transition between state 0 and 1 happened during(0,t).

    According to[16],the distribution of the sojourn time α(t)when Λ0=0 is

    Now we consider the geometric mean of the process(Xt).Let

    Recall that?0and?1are defined by(1.5).Due to the independent increasing property of Brownian motion,we can rewrite Ytin the form

    where ξ(u)and η(u)(for u>0)are mutually independent normally distributed random variables with mean 0 and variance u,and ξ(u),η(u)are independent of the process(Λt).

    Proposition 3.1 Assume Λ0=0.For t>0,it holds

    In particular,when λ0= λ1,

    ProofBy the distribution of α(t),ξ(u),η(u),we get(3.4)by direct calculation.By the formula(3.3),due to the independence of ξ(u)and η(u),we get

    Then we obtain(3.5)according to the distribution of α(t).Using the Taylor expansion of functions cosh(x)and sinh(x)the formulas of E[Yt]and E[Y2t]in the case λ0= λ1can be obtained.

    Using the same method,every n-th order moments of Ytcan be calculated.

    Proposition 3.2 Assume Λ0=0.Then

    Proof According to the results[25,Theorems 6–7],it holds that

    Hence we have

    Then by the formula(3.3),we can get the desired results by direct calculation.

    3.2 First passage probability of(Xt)

    For fixed x>a>0,let

    What we are interested in is the probability

    Although the first passage probability is very useful,the calculating of it is very difficult.Only for several simple cases,explicit formulas exist.For example,explicit formula exists for one-dimensional Brownian motion and piecewise monotone functionals of Brownian motion(see[26]).To deal with general diffusion processes,one has to rely on some numerical approximation schemes.The regime-switching geometric Brownian motion provides us a simple example to see the difference between the study of first passage probability for diffusion processes and the study of the first passage probability for regime-switching diffusion processes.Below,one can easily find that the switching of(Λt)causes new difficulty in calculating the first passage probability.

    In this subsection,we consider first the case σ0= σ1= σ >0,then the case σ06.When σ0= σ1= σ,one gets by(1.4)that

    For fixed T>0,let

    Then

    Indeed,by(3.9),we get,when t≤ β(T),

    and when β(T)

    Similarly,we can prove the first inequality of(3.10).

    and

    Theorem 3.1 Assume σ0= σ1= σ >0,?1≥ ?0.Suppose that the process(Λt)starts from 0,i.e.,Λ0=0 a.s.For every T>0,it holds

    Proof By(3.8)and(3.10),we get

    Due to the independence of(Λt)and(Bt),

    where FΛ=σ(Λt;t≤T).According to the well-known results on the first passage probability of Brownian motion(see for example,[23,p.375]),

    Consequently,if α(T)=T,then

    If 0<α(T)

    Under the assumption Λ0=0,one has P(α(T)>0)=1.Then,invoking the distribution of α(T)and the definition of Fu(t),we can get(3.11).By a similar argument,we can get(3.12),and the proof is completed.

    Now we consider the first passage probability of(Xt)when σ06= σ1.Note that σ0,σ1stand for the volatility,so it is not restrictable to assume that σ0,σ1>0.

    Proposition 3.3 Assume that σ0> σ1>0.For each 00,it holds

    where η0is a standard normally distributed random variable,and is independent of(Bt,Λt).

    Proof For clarity of the idea,let us introduce a probability space(?,P).Let ? = ?1×?2=C([0,∞);R × S).Then there exists a probability measure P=P1× P2on ? such that ω =(ω1(·),ω2(·))satisfying thatis a Brownian motion under P1on ?1and(ω2(t))is a Q-process with Q-matrixnder P2on ?2.Set Bt(ω)= ω1(t)and Λt(ω)= ω2(t).Then under P,(Bt)and(Λt)satisfy the condition used in the definition of the process(Xt,Λt).Moreover,

    Recall the definition of ζkin the beginning of Subsection 3.1.For t∈ (ζ2k,ζ2k+1],we have

    where B(1)(t)and B(2)(t)are independent normally distributed random variables for each t>0,which satisfies

    For N∈N and k∈N such thatkN≤T,set

    Then(Yk)kare Gaussian random variables satisfying

    Moreover,for every k

    Hence

    Then(Zk)kare Gaussian random variables with

    Therefore,according to Slepian’s lemma(see[12,p.74]),we have

    Then applying the symmetry of the Brownian motion,we get the desired conclusion.

    Remark 3.1 According to this proposition,we can transform the situation σ06= σ1to the situation σ0= σ1via Slepian’s lemma.Combining with Theorem 3.1,we can obtain an upper bound of P(τ(x)a>T)when σ06= σ1.

    AcknowledgementThe author is grateful to Professors Mu-Fa Chen and Yong-Hua Mao for their valuable discussion.

    色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 国产综合懂色| www日本在线高清视频| 日韩人妻高清精品专区| 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 美女 人体艺术 gogo| 99热精品在线国产| 亚洲国产高清在线一区二区三| 搡女人真爽免费视频火全软件 | 亚洲成av人片免费观看| www.熟女人妻精品国产| 欧美不卡视频在线免费观看| 亚洲美女黄片视频| 深爱激情五月婷婷| 色视频www国产| 精品久久久久久久人妻蜜臀av| 欧美三级亚洲精品| 美女黄网站色视频| 久久久久国内视频| 尤物成人国产欧美一区二区三区| av天堂中文字幕网| 日韩欧美一区二区三区在线观看| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 亚洲欧美日韩东京热| 午夜福利18| 嫩草影院精品99| 女警被强在线播放| 小蜜桃在线观看免费完整版高清| 日韩精品青青久久久久久| www.999成人在线观看| 国产成人影院久久av| 日本三级黄在线观看| 国产毛片a区久久久久| 五月伊人婷婷丁香| 亚洲欧美日韩卡通动漫| 国产v大片淫在线免费观看| 国产伦一二天堂av在线观看| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清| 欧美色欧美亚洲另类二区| 一区二区三区国产精品乱码| 午夜福利高清视频| 久久精品影院6| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 久久中文看片网| 成人无遮挡网站| 欧美国产日韩亚洲一区| 精品不卡国产一区二区三区| 高清日韩中文字幕在线| 青草久久国产| 脱女人内裤的视频| 午夜福利高清视频| 精品久久久久久久毛片微露脸| 亚洲人与动物交配视频| 色综合婷婷激情| 亚洲 国产 在线| 亚洲国产欧美人成| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 老司机福利观看| 日韩精品中文字幕看吧| 国产伦精品一区二区三区视频9 | 欧美乱色亚洲激情| 亚洲自拍偷在线| 18禁美女被吸乳视频| 久久久国产成人精品二区| 香蕉久久夜色| 啦啦啦免费观看视频1| 观看美女的网站| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 一夜夜www| 国产精品久久久久久久久免 | 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 18+在线观看网站| 神马国产精品三级电影在线观看| 国内毛片毛片毛片毛片毛片| 色av中文字幕| 手机成人av网站| 草草在线视频免费看| 中国美女看黄片| 一本精品99久久精品77| 一进一出抽搐gif免费好疼| 亚洲国产欧美人成| xxxwww97欧美| 欧美精品啪啪一区二区三区| 国产蜜桃级精品一区二区三区| 精品久久久久久久末码| 天堂网av新在线| 在线观看av片永久免费下载| 欧美一区二区亚洲| 99热这里只有精品一区| 熟女电影av网| 国产一区二区激情短视频| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 男女午夜视频在线观看| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 麻豆国产97在线/欧美| 51国产日韩欧美| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| 国产高潮美女av| 长腿黑丝高跟| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 男女那种视频在线观看| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 高清在线国产一区| 成人av一区二区三区在线看| 欧美性感艳星| 欧美成人免费av一区二区三区| 国产精品99久久99久久久不卡| 黄片小视频在线播放| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 精品国产三级普通话版| 精品一区二区三区视频在线 | 免费搜索国产男女视频| 日韩大尺度精品在线看网址| av中文乱码字幕在线| 日日干狠狠操夜夜爽| 成人18禁在线播放| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院精品99| 精品久久久久久成人av| 日本黄大片高清| 久久久国产精品麻豆| 欧美中文日本在线观看视频| 国产亚洲精品综合一区在线观看| 久久欧美精品欧美久久欧美| 两个人视频免费观看高清| av黄色大香蕉| 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 中文在线观看免费www的网站| 99久久久亚洲精品蜜臀av| 18禁在线播放成人免费| 国产又黄又爽又无遮挡在线| 亚洲av成人不卡在线观看播放网| 岛国在线免费视频观看| 亚洲在线观看片| 国产av在哪里看| 久久亚洲真实| 成人一区二区视频在线观看| 欧美av亚洲av综合av国产av| 男插女下体视频免费在线播放| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9 | 欧美日韩综合久久久久久 | 亚洲av成人不卡在线观看播放网| 亚洲精品影视一区二区三区av| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| av女优亚洲男人天堂| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 露出奶头的视频| 亚洲av不卡在线观看| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 亚洲国产中文字幕在线视频| 1000部很黄的大片| 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 美女大奶头视频| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| 免费高清视频大片| 一卡2卡三卡四卡精品乱码亚洲| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 欧美大码av| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添小说| 少妇丰满av| 国产精品嫩草影院av在线观看 | 亚洲第一欧美日韩一区二区三区| 国内精品美女久久久久久| 制服丝袜大香蕉在线| 两个人看的免费小视频| eeuss影院久久| 国产精品嫩草影院av在线观看 | 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产| 男女之事视频高清在线观看| 啦啦啦观看免费观看视频高清| 午夜福利18| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 精品国产超薄肉色丝袜足j| 欧美一区二区亚洲| 免费在线观看日本一区| avwww免费| 日韩有码中文字幕| av福利片在线观看| 观看美女的网站| 国产成人av激情在线播放| 97人妻精品一区二区三区麻豆| 青草久久国产| 天天一区二区日本电影三级| 天堂√8在线中文| 亚洲第一欧美日韩一区二区三区| 日韩人妻高清精品专区| 午夜免费激情av| 91九色精品人成在线观看| 黄片小视频在线播放| 性欧美人与动物交配| 亚洲 欧美 日韩 在线 免费| 亚洲黑人精品在线| 在线国产一区二区在线| 18禁国产床啪视频网站| 国产成人欧美在线观看| 成人国产一区最新在线观看| a在线观看视频网站| 国产精品亚洲美女久久久| 波多野结衣高清作品| 色综合欧美亚洲国产小说| 91久久精品电影网| 性色avwww在线观看| 国产亚洲精品一区二区www| 丰满的人妻完整版| 免费看日本二区| 亚洲成人久久性| 亚洲五月天丁香| 欧美乱码精品一区二区三区| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 波多野结衣高清无吗| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 亚洲国产精品999在线| 亚洲人成电影免费在线| 在线天堂最新版资源| 亚洲av一区综合| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 国产三级在线视频| 90打野战视频偷拍视频| 99久久成人亚洲精品观看| 亚洲乱码一区二区免费版| 欧美色视频一区免费| 国产精品国产高清国产av| 露出奶头的视频| 欧美一级a爱片免费观看看| 中文字幕人成人乱码亚洲影| 99久久精品国产亚洲精品| 久久精品91蜜桃| 日韩av在线大香蕉| 国产精品乱码一区二三区的特点| 有码 亚洲区| 日韩欧美国产在线观看| 久久这里只有精品中国| 91麻豆av在线| 久久人人精品亚洲av| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 久久亚洲真实| 色老头精品视频在线观看| 精品久久久久久久毛片微露脸| 国产成人a区在线观看| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 亚洲精品在线美女| 国模一区二区三区四区视频| 国产精品乱码一区二三区的特点| 亚洲av电影在线进入| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 亚洲av不卡在线观看| 国产三级在线视频| 亚洲人成伊人成综合网2020| 久久精品人妻少妇| 国产精品美女特级片免费视频播放器| 三级国产精品欧美在线观看| 国产亚洲精品久久久com| 国产精品99久久99久久久不卡| 一个人免费在线观看电影| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 美女被艹到高潮喷水动态| 国产91精品成人一区二区三区| 色av中文字幕| 3wmmmm亚洲av在线观看| 国产亚洲欧美98| 嫩草影视91久久| 1024手机看黄色片| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 欧美不卡视频在线免费观看| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 久久精品国产亚洲av涩爱 | 国产精品久久久久久久久免 | 国产精品一及| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 精品久久久久久久末码| 又紧又爽又黄一区二区| 免费看十八禁软件| av天堂中文字幕网| 一区二区三区免费毛片| 欧美区成人在线视频| 夜夜爽天天搞| av天堂中文字幕网| www.www免费av| 婷婷精品国产亚洲av| 久久久久久久精品吃奶| 国产精品99久久99久久久不卡| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | 婷婷丁香在线五月| 一a级毛片在线观看| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区| 91久久精品电影网| 三级毛片av免费| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 国产99白浆流出| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| a在线观看视频网站| 女同久久另类99精品国产91| 欧美成人a在线观看| 欧美日韩精品网址| 久久天躁狠狠躁夜夜2o2o| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 麻豆成人av在线观看| 免费看十八禁软件| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 真人一进一出gif抽搐免费| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 三级毛片av免费| 久久欧美精品欧美久久欧美| 国产精品亚洲av一区麻豆| 日韩欧美精品v在线| 两人在一起打扑克的视频| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 国产野战对白在线观看| aaaaa片日本免费| 网址你懂的国产日韩在线| 日韩 欧美 亚洲 中文字幕| 一个人看视频在线观看www免费 | 国产精品av视频在线免费观看| 欧美成人a在线观看| 成年免费大片在线观看| 少妇高潮的动态图| 国产精品免费一区二区三区在线| e午夜精品久久久久久久| 麻豆成人av在线观看| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 午夜a级毛片| 美女 人体艺术 gogo| 全区人妻精品视频| 深爱激情五月婷婷| 国产伦精品一区二区三区四那| 黄片小视频在线播放| 首页视频小说图片口味搜索| 国产三级中文精品| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 午夜激情欧美在线| 国产午夜福利久久久久久| 亚洲七黄色美女视频| 亚洲国产日韩欧美精品在线观看 | 免费人成在线观看视频色| 宅男免费午夜| 亚洲久久久久久中文字幕| 日韩人妻高清精品专区| 午夜精品在线福利| 免费无遮挡裸体视频| or卡值多少钱| 免费在线观看日本一区| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 久久国产精品影院| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 黄片大片在线免费观看| 成人国产综合亚洲| 舔av片在线| 成人欧美大片| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 最近在线观看免费完整版| 国产日本99.免费观看| av在线蜜桃| 国模一区二区三区四区视频| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 免费人成在线观看视频色| 美女黄网站色视频| 日本三级黄在线观看| av国产免费在线观看| 操出白浆在线播放| 12—13女人毛片做爰片一| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 亚洲av不卡在线观看| 香蕉av资源在线| 日韩大尺度精品在线看网址| 欧美性感艳星| av福利片在线观看| 99精品久久久久人妻精品| 此物有八面人人有两片| 欧美另类亚洲清纯唯美| 国产高清视频在线观看网站| 在线观看舔阴道视频| 亚洲aⅴ乱码一区二区在线播放| 国产视频一区二区在线看| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 国产单亲对白刺激| 国产精品,欧美在线| 脱女人内裤的视频| 一个人免费在线观看电影| 国产精品1区2区在线观看.| 精品久久久久久久人妻蜜臀av| 天天添夜夜摸| 波野结衣二区三区在线 | 婷婷亚洲欧美| 久久久色成人| 久久国产乱子伦精品免费另类| 婷婷丁香在线五月| 深夜精品福利| 好看av亚洲va欧美ⅴa在| 丝袜美腿在线中文| 免费在线观看影片大全网站| 两人在一起打扑克的视频| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久免费视频| 乱人视频在线观看| 麻豆成人av在线观看| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 国产高清videossex| 国产三级黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人a在线观看| 我的老师免费观看完整版| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久一区二区三区 | 免费看光身美女| 18美女黄网站色大片免费观看| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色| 久久久成人免费电影| 成人欧美大片| 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线观看免费完整高清在 | 老司机午夜福利在线观看视频| 香蕉av资源在线| 成人精品一区二区免费| 一个人观看的视频www高清免费观看| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 国产精品一及| 久久精品国产综合久久久| 亚洲精华国产精华精| 欧美一区二区精品小视频在线| 蜜桃亚洲精品一区二区三区| 男女床上黄色一级片免费看| 国产精品99久久久久久久久| 久久性视频一级片| 午夜福利18| 观看免费一级毛片| 国内毛片毛片毛片毛片毛片| 在线天堂最新版资源| 在线看三级毛片| 国产精品久久久久久精品电影| 小蜜桃在线观看免费完整版高清| 天天躁日日操中文字幕| 国产乱人视频| 色尼玛亚洲综合影院| 色综合站精品国产| 成年版毛片免费区| 成人性生交大片免费视频hd| 国产精品香港三级国产av潘金莲| 成人欧美大片| 久久亚洲真实| 欧美+亚洲+日韩+国产| 内地一区二区视频在线| 欧美一区二区国产精品久久精品| 一个人看的www免费观看视频| 欧美日韩福利视频一区二区| 国产不卡一卡二| 日日夜夜操网爽| 99国产精品一区二区蜜桃av| 国产一区二区三区视频了| www国产在线视频色| 国产成年人精品一区二区| 熟妇人妻久久中文字幕3abv| 国产精品嫩草影院av在线观看 | 免费无遮挡裸体视频| 精品熟女少妇八av免费久了| 热99在线观看视频| 午夜免费男女啪啪视频观看 | 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品国产超薄肉色丝袜足j| 国产淫片久久久久久久久 | 欧美在线黄色| 日日摸夜夜添夜夜添小说| 夜夜爽天天搞| 欧美又色又爽又黄视频| 高清在线国产一区| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久久毛片| 色视频www国产| 男女床上黄色一级片免费看| 757午夜福利合集在线观看| 成人av在线播放网站| 欧美bdsm另类| 午夜免费男女啪啪视频观看 | av天堂在线播放| 一本精品99久久精品77| 在线观看美女被高潮喷水网站 | 久久国产乱子伦精品免费另类| 亚洲av成人精品一区久久| 亚洲av一区综合| 国产免费一级a男人的天堂| 亚洲avbb在线观看| 一个人免费在线观看的高清视频| 国产精品久久久久久久电影 | 国产精品,欧美在线| 国产免费男女视频| 欧美日韩一级在线毛片| 久久久成人免费电影| 国产亚洲精品一区二区www| 一本一本综合久久| 一区福利在线观看| 亚洲中文日韩欧美视频| 国产成人影院久久av| 成人三级黄色视频| 脱女人内裤的视频| 亚洲五月天丁香| 国产三级在线视频| 免费在线观看日本一区| 最近最新免费中文字幕在线| 国产三级在线视频| 免费在线观看日本一区| 精品久久久久久久末码| 村上凉子中文字幕在线| 免费人成在线观看视频色| 久久天躁狠狠躁夜夜2o2o| 国产三级在线视频| 免费人成在线观看视频色| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 国产精品野战在线观看| 日韩欧美精品免费久久 | 久久久久久久精品吃奶| 亚洲av成人不卡在线观看播放网| 国产高清三级在线| 91久久精品国产一区二区成人 | 久久久国产成人免费| 国产精品久久久人人做人人爽| 国产午夜精品论理片| 成人性生交大片免费视频hd| 一进一出好大好爽视频| 亚洲va日本ⅴa欧美va伊人久久| 黄色片一级片一级黄色片| 国产私拍福利视频在线观看| www日本在线高清视频| 一级黄片播放器| 在线免费观看的www视频| 婷婷亚洲欧美| 成年免费大片在线观看| 有码 亚洲区|