• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hessian Comparison and Spectrum Lower Bound of Almost Hermitian Manifolds?

    2018-10-18 02:54:44ChengjieYU

    Chengjie YU

    Abstract The authors obtain a complex Hessian comparison for almost Hermitian manifolds,which generalizes the Laplacian comparison for almost Hermitian manifolds by Tossati,and a sharp spectrum lower bound for compact quasi K?hler manifolds and a sharp complex Hessian comparison on nearly K?hler manifolds that generalize previous results of Aubin,Li Wang and Tam-Yu.

    Keywords Almost-Hermitian manifolds,Quasi K?hler manifolds,Nearly K?hler manifolds

    1 Introduction

    A triple(M,J,g)is called an almost Hermitian manifold if J is an almost complex structure and g is a J-invariant Riemannian metric.There are two connections,one is the Levi-Civita connection and the other one is the canonical connection,on almost Hermitian manifolds,that play important roles on the geometry of almost Hermitian manifolds.The canonical connection is an extension of the Chern connection[6]on Hermitian manifolds.It was first introduced by Ehresmann-Libermann[9].

    Geometers were used to use the Levi-Civita connection for the study of the geometry of almost Hermitian manifolds,see for example[1,13–16].However,later researches show that canonical connection is useful for the study of the geometry of almost Hermitian manifolds.For example,canonical connection is crucial for the study of the structure of nearly K?hler manifolds in[3,24–25].In[30],Tossati,Weinkove and Yau used the canonical connection to solve the Calabi-Yau equation on almost K?hler manifolds.The problem that Tossati,Weinkove and Yau considered is part of a program proposed by Donaldson[7–8]on sympletic topology.In[29],Tossati obtained a Laplacian comparison result about the canonical connection on almost Hermitian manifolds using the second variation of arc length and obtained a Schwartz lemma on almost Hermitian manifolds which is a generalization of the Schwartz lemma by Yau[31].

    In this paper,by applying the same Bochner technique as in[22],we obtain a Hessian comparison on almost Hermitian manifolds which generalises Tossati’s Laplacian comparison(see[29]).More precisely,we obtain the following result.

    Theorem 1.1 Let(M,J,g)be a complete almost Hermitian manifold with holomorphic bisectional curvature bounded from below by?K with K ≥0,torsion bounded by A1and the(2,0)part of the curvature tensor bounded by A2.Let o be a fixed point in M and ρ be the distance function to o.Then

    within the cut-locus of o whereHere ρijmeans the complex Hessian of ρ with respect to the canonical connection.

    Moreover,with the same technique,we obtain the following sharp diameter estimate for almost Hermitian manifolds.

    Theorem 1.2 Let(M,J,g)be a complete almost Hermitian manifold with quasi holomorphic sectional curvature not less than K>0.Then

    For the definition of quasi holomorphic sectional curvature,see Definition 3.2.It extends the notion with the same name for Hermitian manifolds in[4]to almost Hermitian manifolds.In fact,the above diameter estimate was disguised with a seemingly different curvature assumption in[14].However,one can show that the two curvature assumptions are the same by using the curvature identities derived in[32].The same diameter estimate for Hermitian manifolds was also obtained in[4].

    Our method to prove Theorem 1.1 and Theorem 1.2 is different from those in[4,14,29]where the authors all used the second variation of arc length.Our method here is first to compute the evolution ordinary differential equation of the Hessian of ρ along a normal geodesic which turns out to be a matrix Riccati equation.Then the comparison theorems for matrix Riccati of Royden[27]gives us the conclusions directly.The technique was used in[22].

    Furthermore,by using a similar technique as in[2,11],we have the following sharp spectrum lower bound for compact quasi K?hler manifolds.

    Theorem 1.3 Let(M,J,g)be a compact quasi K?hler manifold with the quasi Ricci curvature bounded from below by a positive constant K.Then λ1≥ 2K,where λ1is the first eigenvalue for the Laplacian operator of(M,g).

    For the definition of quasi Ricci curvature,see Definition 4.1.In fact,this result generalizes the corresponding result of Aubin[2]on compact K?hler manifolds to compact quasi K?hler manifolds.Moreover,note that the equality in the result is not only achieved by CPnwith Fubini-Study metric but also be achieved by non-K?hler manifolds.For example,the six dimensional sphere with the standard complex structure and standard metric.Moreover,one should note that the quasi K?hler structure is crucial for the sharp spectrum lower bound above.By a classical result of Lichnerowicz[23],the specturm lower bound for n dimensional compact Riemannian manifolds with Ricci curvature not less than(n?1)K is nK.It was shown by Obata[26]that the equality holds if and only if the manifold is a round sphere.The sharp spectrum lower bound of Lichnerowicz is not sharp for quasi K?hler manifolds.

    Finally,we obtain a sharp Hessian comparison on nearly K?hler manifolds which generalizes some results in[22,28]on K?hler manifolds.

    Theorem 1.4 Let(M,J,g)be a complete nearly K?hler manifold and o be a fixed point in M.Let Bo(R)be a geodesic ball within the cut-locus of o.Suppose that the quasi holomorphic bisectional curvature on Bo(R)is not less than K,where K is a constant.Then

    in Bo(R)with equality holds all over Bo(R)if and only if Bo(R)is holomorphic and isometric equivalent to the geodesic ball with radius R in the K?hler space form of constant holomorphic bisectional curvature K,where ρ is the distance function to the fixed point o.

    For the definition of quasi holomorphic bisectional curvature,see Definition 5.1.By the application of the Hessian comparison above,we can obtain eigenvalue comparison and volume comparison on nearly K?hler manifolds by classical arguments.Please see Section 5 for details.

    Note that in[30],Tossati,Weinkove and Yau introduced a new notion of curvature that couples up the(1,1)-part of the curvature tensor and the torsion of the canonical connection on almost K?hler manifolds and is crucial for solving the Calabi-Yau equation on almost K?hler manifolds.In this paper,the new notions of curvature defined are different with that of Tossati,Weinkove and Yau.We hope that the new notions of curvature introduced here for almost Hermitian manifolds,quasi K?hler manifolds and nearly K?hler manifolds have some further applications.

    The outline of the paper is as follows.In Section 2,we recall some preliminaries in almost Hermitian geometry and generalized K?hler geometry.In Section 3,we prove Theorem 1.1 and Theorem 1.2.In Section 4,we prove Theorem 1.3.Finally,in Section 5,we prove Thereom 1.4 and present some of its corollaries.

    2 Preliminaries

    In this section,we recall some definitions and known results for almost Hermitian manifolds,quasi K?hler manifolds and nearly K?hler manifolds.

    Definition 2.1(see[12,19–20]) Let(M,J)be an almost complex manifold.A Riemannian metric g on M such that g(JX,JY)=g(X,Y)for any two tangent vectors X and Y is called an almost Hermitian metric.The triple(M,J,g)is called an almost Hermitian manifold.The two form ωg=g(JX,Y)is called the fundamental form of the almost Hermitian manifold.A connection? on an almost Hermitian manifold(M,J,g)such that?g=0 and?J=0 is called an almost Hermitian connection.

    Note that the torsion τ of the connection ? is a vector-valued two form defined as

    An almost Hermitian connection is uniquely determined by its(1,1)-part.In particular,there is a unique almost Hermitian connection with vanishing(1,1)-part.Such a connection is called the canonical connection which was first introduced by Ehresman and Libermann[9].

    Definition 2.2(see[19–20])The unique almost Hermitian connection ? on an almost Hermitian manifold(M,J,g)with vanishing(1,1)-part of the torsion is called the canonical connection of the almost Hermitian manifold.

    For sake of convenience,we adopt the following conventions in the remaining part of this paper:

    (1)Without further indications,the manifold is of real dimension 2n.

    (2)D denotes the Levi-Civita connection and RLdenotes its curvature tensor and “,” means taking covariant derivatives with respect to D.

    (3)? denotes the canonical connection,R denotes the curvature tensor of? and “;”means taking covariant derivatives with respect to?.

    (4)Without further indications,a,b,c,d denote indices in{1,1,···,n,n}.

    (5)Without further indications,i,j,k,l denote indices in{1,2,···,n}.

    (6)Without further indications, α,β,λ,μ,ν denote summation indices going through{1,2,···,n}.

    Recall the definition of curvature operator:

    The curvature tensor is defined as

    Fixed a unitary(1,0)-frame(e1,e2,···,en),since ?J=0,we have

    for all indices i,j and a,b.Moreover,similarly as in the Riemannian case,we have the following symmetries of the curvature tensor:

    for all indices a,b,c and d.Recall thatare called the first and the second Ricci curvature of the almost Hermitian metric g respectively.

    The following first Bianchi identities for almost Hermitian manifolds are frequently used in the computations of the remaining part of this paper.One can find them in[19,30,32].

    Proposition 2.1 Let(M,J,g)be an almost Hermitian manifold.Fixed a unitary frame,we have

    The following general Ricci identity for commuting indices of covariant derivatives is useful for computation.One can find it in[10].

    Lemma 2.1 Let Mnbe a smooth manifold,and E be a vector bundle on M.Let D be a connection on E and ? be a connection on M with torsion τ.Then

    for any cross section s of E,and tangent vector fields X and Y.

    Applying Lemma 2.1 to E= ?rT?M,we have the following corollary.

    Corollary 2.1 Let(Mn,g)be a Riemannian manifold and D be a connection on M compatible with g and with torsion τ.Let Ta1a2···arbe a tensor on M.Then

    Directly by the Corollary 2.1,we have

    and

    for any smooth function f on almost Hermitian manifolds since=0.

    Moreover,recall the following difference of Levi-Civita connection and another compatible connection on Riemannian manifolds.

    Lemma 2.2(see[10,12,30])Let(M,g)be a Riemannian manifold and D be the Levi-Civita connection.Let ? be another connection on M compatible with g and with torsion τ.Then

    By using Lemma 2.2 directly,we have the following relation of the Hessian and divergence operators with respect to the Levi-Civita connection and another compatible connection.

    Lemma 2.3 Let(M,g)be a Riemannian manifold and D be the Levi-Civita connection.Let ? be another connection on M compatible with g and with torsion τ.Let f be a smooth function.Then

    Proof By the definition of Hessian,we have

    Then,Lemma 2.2 gives us the conclusion directly.

    Applying Lemma 2.3 to almost Hermitian manifolds,we get the following corollaries.

    Corollary 2.2 On an almost Hermitian manifold, fixed a unitary frame,

    where “,” means taking covariant derivatives with respect to the Levi-Civita connection and ?Lis the Laplacian operator with respect to the Levi-Civita connection.

    Similarly,we have the following comparison of divergence operators.

    Lemma 2.4 Let X be a vector field on an almost Hermitian manifold M and fixed a unitary frame.Then

    Next,recall the definition of quasi K?hler manifolds.

    Definition 2.3 An almost Hermitian manifold(M,J,g)is called a quasi K?hler manifold

    The following criterion for quasi K?hlerity is well known.

    Proposition 2.2(see[19,30])Let(M,J,g)be an almost Hermitian manifold.Then,it is quasi K?hler if and only iffor any i,j and k.

    Applying Proposition 2.2 to Proposition 2.1,we have the following first Bianchi identities on quasi K?hler manifolds.

    Corollary 2.3 Let(M,J,g)be an quasi K?hler manifold.Fixed a unitary frame,we have

    Applying Proposition 2.2 to Corollary 2.2 and Lemma 2.4,we have the following corollary.

    Corollary 2.4 Let(M,g,J)be a quasi K?hler manifold.Thenand divX=divLX.

    Finally,recall the definition of nearly K?hler manifolds.

    Definition 2.4 Let(M,J,g)be an almost Hermitian manifold.It is called nearly K?hler if(DXJ)X=0 for any tangent vector X.

    For nearly K?hler manifolds,the difference between canonical connection and Levi-Civita connection becomes simpler.

    Lemma 2.5(see[16])Let(M,J,g)be a nearly K?hler manifold.Then

    for any tangent vector fields X and Y.In particular,

    for any tangent vector field X.

    The following criterion for nearly K?hler manifold is well known,see for example[24–25].

    Lemma 2.6 An almost Hermitian manifold(M,J,g)is nearly K?hler if and only iffor all i,j and k when we fix a(1,0)-frame.

    Nearly K?hler manifolds have an important property,that is,the torsion of the canonical connection is parallel.

    Theorem 2.1(see[18,32])Let(M,J,g)be a nearly K?hler manifold.Then ?τ=0.

    Applying Lemma 2.6 and Theorem 2.1 to Proposition 2.1,we have the following first Bianchi identities for nearly K?hler manifolds.

    Corollary 2.5 Let(M,J,g)be a nearly K?hler manifold and fixed a unitary frame.Then

    By(4)of the above corollary,the first Ricci curvature and second Ricci curvature for nearly K?hler manifolds coincides,so we simply denote them as Rij.

    3 Hessian Comparison and Diameter Estimate on Almost Hermitian Manifolds

    In this section,we generalize the results in[22,28–29]to almost Hermitian manifolds.The same as in Tosatti[29],we make the following definition about the bound-ness of the curvatures of an almost Hermitian manifold.

    Definition 3.1 Let(M,J,g)be an almost Hermitian manifold.We say that the holomorphic bisectional curvature of(M,J,g)is bounded from below by K if

    for any X,Y∈T1,0M.We say that the torsion of(M,J,g)is bounded by A1if

    for any X,Y∈T1,0M.We say that the(2,0)part of the curvature tensor of(M,J,g)is bounded by A2if

    for any X,Y∈T1,0M.

    Let(M,J,g)be an almost Hermitian manifold.We denote its distance function to a fixed point o as ρ.Similarly as in Li-Wang[22],we have the following.

    Lemma 3.1 Fixed a unitary frame(e1,e2,···,en),we have

    Proof Note that ρλρλ=.Hence

    Lemma 3.2 Fixed a unitary frame(e1,e2,···,en),we have

    Proof Note that ρνρν=.Hence

    where we have used Proposition 2.1 and Corollary 2.1.This completes the proof.

    Theorem 3.1 Let(M,J,g)be a complete almost Hermitian manifold with holomorphic bisectional curvature bounded from blow by?K with K ≥0,torsion bounded by A1and the(2,0)part of the curvature tensor bounded by A2.Then

    within the cut-locus of o,where

    Proof Let γ be a normal geodesic starting from o.Let(e1,e2,···,en)be a parallel unitary frame along γ.Let

    Then,by Lemma 3.2,we know that

    Moreover,for any column vector u,we have

    Furthermore,

    and,similar as in(3.12)

    Hence

    Combining(3.9)–(3.10),(3.13)and(3.16),we get

    where

    Moreover,by Corollary 2.2,and that

    as ρ → 0+(see for example[28]),we have

    as ρ → 0+.

    and(3.17).We have

    Moreover,

    as ρ → 0+by(3.20).By comparison of matrix Ricatti equations in[27],we have

    for all ρ within the cut-locus of o.This completes the proof of the theorem.

    In the following,we give a sharp diameter estimate for almost Hermitian manifolds.We first extend the notion of quasi-holomorphic sectional curvature in[4]for Hermitian manifolds to almost Hermitian manifolds.

    Definition 3.2 Let(M,J,g)be an almost Hermitian manifold.Let X be a real unit vector on M.Define the quasi holomorphic sectional curvature QH(X)as

    where we have fixed a unitary frame(e1,e2,···,en)with

    Remark 3.1 When the complex structure is integrable,the definition of quasi holomorphic sectional curvature is the same as that in[4].

    Theorem 3.2 Let(M,J,g)be a complete almost Hermitian manifold and the quasi holomorphic sectional curvature is not less than K>0.Then d(M)

    Proof Fixed a unitary frame(e1,e2,···,en),using Lemmas 3.1–3.2,noting that τ and R are both skew symmetric,we have

    Moreover,by Corollary 2.2,we have

    as ρ → 0.By comparison of Riccati equation in[27],we know that

    Hence,by a classical argument(see for example[21]),we get the conclusion.

    Remark 3.2 The diameter estimate above was disguised with a seemingly different curvature assumption in[14].Indeed,using the curvature identities in[32],one can find that the two curvature assumptions in[14]and in the above are the same.

    4 First Eigenvalue Estimate for Quasi K?hler Manifolds

    In this section,we give a sharp first eigenvalue estimate for compact quasi K?hler manifolds.

    By Corollary 2.4,we know that? coincides with ?Lfor quasi K?hler manifolds.By the same technique as in[2,11],we have the following sharp spectrum lower bound for compact quasi K?hler manifolds which generalizes a similar estimate on compact K?hler manifolds of Aubin[2].Before stating the result,we need the following definition of quasi Ricci curvature.

    Definition 4.1 Let(M,J,g)be a quasi K?hler manifold and let

    We call Rijthe quasi Ricci curvature.

    Theorem 4.1 Let(M,J,g)be a compact quasi K?hler manifold with quasi Ricci curvature bounded from below by a positive constant K.Then λ1≥ 2K,where λ1is the first eigenvalue for the Laplacian operator of(M,g).

    Proof Let f be an first eigenfunction for the Laplacian operator.Then

    Fixed a unitary frame(e1,e2,···,en),using the Corollaries 2.1 and 2.3–2.4,we know that

    Hence

    For the equality case,we come to show that the equality can also be achieved by non-K?hler manifolds.Let S6be equipped with the standard almost complex structure and standard Riemannian metric.Then,S6becomes a nearly K?hler manifold.For this nearly K?hler manifold,By the curvature identity

    in[32],we have

    Therefore,the quasi Ricci curvature

    where we have used Lemma 2.6.So,the constant K in the last theorem is 3.It is clear that the first eigenvalue of the standard metric on S6is 6.So,equality of the last theorem is achieved by the nearly K?hler manifold S6.

    5 Sharp Hessian Comparison on Nearly K?hler Manifolds

    In this section,by using the Bochner technique in[22],we obtain a sharp Hessian comparison on nearly K?hler manifolds generalizing the results of[22,28].

    Lemma 5.1 Let(M,J,g)be a complete nearly K?hler manifold,o be a fixed point and ρ(x)be the distance from x to o.Let γ be a normal geodesic starting from o.Let(e1,e2,···,en)be a unitary frame parallel along γ with respect to the canonical connection withfor all i>1 andin the cut-locus of o,for all i≥ 1.

    and

    for all i>1.By these and Lemma 3.1,we know that

    for all i≥1.

    Before stating the sharp Hessian comparison on nearly K?hler manifolds,we introduce the following notion of quasi holomorphic bisectional curvature.

    Definition 5.1 On a nearly K?hler manifold,define

    for any(1,0)vectors X and Y.We say that the quasi holomorphic bisectional curvature of M is not less than K if

    for any two nonzero(1,0)vectors X and Y.

    Theorem 5.1 Let(M,J,g)be a complete nearly K?hler manifold and o be a fixed point in M.Let Bo(R)be a geodesic ball within the cut-locus of o.Suppose that the quasi holomorphic bisectional curvature on Bo(R)is not less than K where K is a constant.Then

    in Bo(R)with equality holds all over Bo(R)if and only if Bo(R)is holomorphic and isometric equivalent to the geodesic ball with radius R in the K?hler space form of constant holomorphic bisectional curvature K,where ρ is the distance function to the fixed point o.

    Proof Let γ be a geodesic starting from o,and(e1,e2,···,en)be the same as in Lemma 5.1.Then,by Lemmas 2.6,3.2 and 5.1,and Corollary 2.5,we know that

    and X1be the first column of X.Then

    At this position,by the same argument as in[28],we have

    This is the inequality in the conclusion of the theorem.

    If the equality holds,we havefor k,l=2,3,···,n.By(2.8),we have

    for all k,l=2,3,···,n.Hence

    for all k,l=1,2,···,n.In particular,we have

    By Theorem 2.1,we know that τ=0 and hence(M,J,g)is K?hler.Then by the equality case of the sharp Hessian comparison for K?hler manifolds in[28],we obtain the conclusion when equality holds.

    By the Hessian comparison,we have the following direct corollary on Laplacian comparison.

    Corollary 5.1 Let(M,J,g)be a complete nearly K?hler manifold and o be a fixed point in M.Let Bo(R)be a geodesic ball within the cut-locus of o.Suppose that the quasi holomorphic bisectional curvature on Bo(R)is not less than K where K is a constant.Then

    in Bo(R)with equality holds all over Bo(R)if and only if Bo(R)is holomorphic and isometric equivalent to the geodesic ball with radius R in the K?hler space form of constant holomorphic bisectional curvature K,where ρ is the distance function to the fixed point o.

    By the same argument as in[5](see also[21]),we have the following comparison of first eigenvalue and volume comparison for nearly K?hler manifolds.

    Corollary 5.2 Let(M,J,g)be a complete nearly K?hler manifold and o be a fixed point in M.Let Bo(R)be a geodesic ball within the cut-locus of o.Suppose that the quasi holomorphic bisectional curvature on Bo(R)is not less than K where K is a constant.Then

    where BK(R)is the geodesic ball with radius R in the K?hler space form with constant holomorphic bisectional curvature K.Moreover,if the equality holds,then Bo(R)and BK(R)are holomorphically isometric to each other.

    Corollary 5.3 Let(M,J,g)be a complete nearly K?hler manifold and o be a fixed point in M.Let Bo(R)be a geodesic ball within the cut-locus of o.Suppose that the quasi holomorphic bisectional curvature on Bo(R)is not less than K where K is a constant.Then

    where VK(R)is the volume of BK(R).Moreover,if the equality holds,then Bo(R)and BK(R)are holomorphically isometric to each other.

    Corollary 5.4 Let(M,J,g)be a complete nearly K?hler manifold with quasi holomorphic bisectional curvature≥K with K>0.Then

    AcknowledgementThe author would like to thank the referees for helpful comments and suggestions.

    淫秽高清视频在线观看| 午夜亚洲福利在线播放| 五月伊人婷婷丁香| 国产av在哪里看| 中文字幕av成人在线电影| 成人国产综合亚洲| 国产色婷婷99| av在线老鸭窝| 国产精品久久电影中文字幕| 国产精品伦人一区二区| 99久久精品国产亚洲精品| 桃红色精品国产亚洲av| 搡老妇女老女人老熟妇| 欧美一区二区国产精品久久精品| 波多野结衣高清无吗| 欧美最新免费一区二区三区 | 观看免费一级毛片| 校园春色视频在线观看| 久久99热6这里只有精品| 久久6这里有精品| 一个人免费在线观看电影| 嫩草影院精品99| 国产精品爽爽va在线观看网站| 免费av毛片视频| 亚洲av成人av| 亚洲激情在线av| 97超视频在线观看视频| 亚洲18禁久久av| 亚州av有码| 高清日韩中文字幕在线| 五月玫瑰六月丁香| 一区福利在线观看| 国产一级毛片七仙女欲春2| 中文资源天堂在线| 精品久久久久久久人妻蜜臀av| 欧美最黄视频在线播放免费| 国产激情偷乱视频一区二区| 欧美乱色亚洲激情| 在线观看66精品国产| 中文字幕av成人在线电影| 此物有八面人人有两片| 国产免费一级a男人的天堂| 欧美+日韩+精品| 亚洲精品乱码久久久v下载方式| 最近在线观看免费完整版| 毛片一级片免费看久久久久 | 成人精品一区二区免费| 中出人妻视频一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲18禁久久av| 少妇被粗大猛烈的视频| 永久网站在线| 欧美+日韩+精品| 亚洲在线观看片| 亚洲在线观看片| x7x7x7水蜜桃| 90打野战视频偷拍视频| 久久精品久久久久久噜噜老黄 | 俄罗斯特黄特色一大片| 久久精品国产清高在天天线| 好男人电影高清在线观看| 国内精品一区二区在线观看| 亚洲人成网站高清观看| 亚洲成a人片在线一区二区| 日本 欧美在线| 国产三级黄色录像| 男人舔女人下体高潮全视频| 国产精品综合久久久久久久免费| 久久精品国产亚洲av涩爱 | 成人av在线播放网站| 热99在线观看视频| 欧美日韩黄片免| 中文在线观看免费www的网站| 日日干狠狠操夜夜爽| 亚洲第一区二区三区不卡| 久久久久久久久中文| 丰满人妻熟妇乱又伦精品不卡| 国产麻豆成人av免费视频| 亚洲精品影视一区二区三区av| 国产精品日韩av在线免费观看| 一区福利在线观看| 国产乱人视频| 欧美三级亚洲精品| 国产精品99久久久久久久久| 国产色爽女视频免费观看| 欧美丝袜亚洲另类 | 一进一出好大好爽视频| 久久国产乱子免费精品| 亚洲专区中文字幕在线| 国产精品亚洲一级av第二区| 国产三级中文精品| ponron亚洲| 亚洲精品亚洲一区二区| 波多野结衣高清无吗| 亚洲乱码一区二区免费版| 少妇人妻一区二区三区视频| 深夜a级毛片| 精华霜和精华液先用哪个| 日韩欧美在线乱码| 午夜视频国产福利| 国产激情偷乱视频一区二区| 亚洲av中文字字幕乱码综合| 久久久久免费精品人妻一区二区| 91狼人影院| 又黄又爽又免费观看的视频| 网址你懂的国产日韩在线| 熟女电影av网| 亚洲精品在线美女| 日韩免费av在线播放| 国产三级在线视频| 他把我摸到了高潮在线观看| 亚洲美女视频黄频| 丰满人妻一区二区三区视频av| 欧美精品国产亚洲| 90打野战视频偷拍视频| 国产精品自产拍在线观看55亚洲| 99国产综合亚洲精品| 亚洲欧美日韩卡通动漫| 高清毛片免费观看视频网站| 给我免费播放毛片高清在线观看| 性色avwww在线观看| 国产亚洲欧美在线一区二区| 乱人视频在线观看| 69人妻影院| 国产精品久久视频播放| 禁无遮挡网站| 色视频www国产| 亚洲第一电影网av| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 国产伦在线观看视频一区| av在线蜜桃| 亚洲专区中文字幕在线| 男人舔女人下体高潮全视频| 久久人人爽人人爽人人片va | 在线观看美女被高潮喷水网站 | 午夜福利成人在线免费观看| 亚洲av成人精品一区久久| 中文字幕久久专区| 日本一本二区三区精品| 免费av观看视频| h日本视频在线播放| 国产爱豆传媒在线观看| 国产三级在线视频| 中文字幕人成人乱码亚洲影| 我的女老师完整版在线观看| 亚洲国产欧美人成| 俄罗斯特黄特色一大片| 久久午夜福利片| 精品熟女少妇八av免费久了| 久久精品国产亚洲av天美| 免费看光身美女| 身体一侧抽搐| 午夜福利高清视频| 91久久精品电影网| 国产精品影院久久| 亚洲美女黄片视频| 婷婷色综合大香蕉| 久久精品久久久久久噜噜老黄 | 在线看三级毛片| aaaaa片日本免费| 老女人水多毛片| 日韩精品中文字幕看吧| 精品久久久久久久久亚洲 | 久久精品国产清高在天天线| 男女床上黄色一级片免费看| 90打野战视频偷拍视频| 免费看美女性在线毛片视频| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 久久精品人妻少妇| www日本黄色视频网| 久久精品国产自在天天线| 91麻豆精品激情在线观看国产| 国产私拍福利视频在线观看| 亚洲18禁久久av| 九色成人免费人妻av| 色综合站精品国产| 久久久久久久午夜电影| 18禁在线播放成人免费| 亚洲av免费高清在线观看| 亚洲一区高清亚洲精品| 亚洲avbb在线观看| 脱女人内裤的视频| 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| 国产一区二区激情短视频| 中亚洲国语对白在线视频| 1024手机看黄色片| 免费在线观看亚洲国产| 亚洲男人的天堂狠狠| 亚洲三级黄色毛片| 色5月婷婷丁香| 欧美最新免费一区二区三区 | 国产av在哪里看| 搡老熟女国产l中国老女人| 欧美最黄视频在线播放免费| 国产精品乱码一区二三区的特点| 小说图片视频综合网站| 日韩人妻高清精品专区| 亚洲片人在线观看| 精品久久久久久久久av| 搡老妇女老女人老熟妇| 51午夜福利影视在线观看| 免费电影在线观看免费观看| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线免费播放| 青草久久国产| 老司机福利观看| 中文资源天堂在线| 国产精品一区二区三区四区免费观看 | 男人的好看免费观看在线视频| 一个人免费在线观看的高清视频| 欧美性感艳星| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 亚洲一区二区三区不卡视频| 又紧又爽又黄一区二区| 少妇人妻一区二区三区视频| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 成年女人毛片免费观看观看9| 一本精品99久久精品77| 两性午夜刺激爽爽歪歪视频在线观看| 黄色配什么色好看| 亚洲经典国产精华液单 | 国产精品日韩av在线免费观看| 一边摸一边抽搐一进一小说| 亚洲精品456在线播放app | av专区在线播放| 国内精品一区二区在线观看| 久久精品91蜜桃| 亚洲精品一区av在线观看| 最新中文字幕久久久久| 亚洲av成人av| 亚洲av第一区精品v没综合| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩精品一区二区| 欧美三级亚洲精品| 久久精品久久久久久噜噜老黄 | 成人美女网站在线观看视频| 日本成人三级电影网站| 国产极品精品免费视频能看的| 又黄又爽又免费观看的视频| 免费在线观看影片大全网站| 高清日韩中文字幕在线| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 成人精品一区二区免费| 一区二区三区高清视频在线| 久久精品国产亚洲av香蕉五月| 亚洲国产欧洲综合997久久,| 九九热线精品视视频播放| 久久久久久久午夜电影| 草草在线视频免费看| 午夜福利在线在线| 动漫黄色视频在线观看| 伊人久久精品亚洲午夜| 久久久久久久久中文| 在线播放国产精品三级| 蜜桃亚洲精品一区二区三区| 桃色一区二区三区在线观看| 男人的好看免费观看在线视频| 亚洲五月天丁香| 69av精品久久久久久| 免费观看人在逋| 乱人视频在线观看| 国产精品精品国产色婷婷| a级毛片免费高清观看在线播放| 欧美日韩中文字幕国产精品一区二区三区| 哪里可以看免费的av片| 国产成人福利小说| 九色成人免费人妻av| 亚洲成人精品中文字幕电影| 国产成+人综合+亚洲专区| 国产探花在线观看一区二区| a级一级毛片免费在线观看| 日韩大尺度精品在线看网址| 国产免费男女视频| 成人三级黄色视频| 免费看美女性在线毛片视频| 日韩有码中文字幕| 脱女人内裤的视频| 精品福利观看| 日本与韩国留学比较| 免费av毛片视频| 国产精品日韩av在线免费观看| 久久久久久久精品吃奶| 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 国产激情偷乱视频一区二区| 国产黄片美女视频| 成人av一区二区三区在线看| 69人妻影院| 舔av片在线| 青草久久国产| 蜜桃亚洲精品一区二区三区| 国产色婷婷99| 亚洲色图av天堂| 国产免费av片在线观看野外av| 观看美女的网站| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 最新在线观看一区二区三区| 搞女人的毛片| 少妇丰满av| 搡老妇女老女人老熟妇| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 亚洲七黄色美女视频| 很黄的视频免费| 内射极品少妇av片p| 亚洲片人在线观看| 国产成人影院久久av| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 一个人免费在线观看电影| 国产av一区在线观看免费| 少妇高潮的动态图| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 国产v大片淫在线免费观看| 伦理电影大哥的女人| 久久亚洲精品不卡| 69av精品久久久久久| 精品人妻一区二区三区麻豆 | 欧美一区二区精品小视频在线| 99久久精品热视频| 51午夜福利影视在线观看| 国产麻豆成人av免费视频| 国产又黄又爽又无遮挡在线| 国产探花极品一区二区| 久久精品人妻少妇| 国产精品免费一区二区三区在线| 亚洲av第一区精品v没综合| 热99re8久久精品国产| 国产 一区 欧美 日韩| 激情在线观看视频在线高清| 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 欧美绝顶高潮抽搐喷水| 国产三级中文精品| 69人妻影院| 成人美女网站在线观看视频| 美女大奶头视频| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看电影| 非洲黑人性xxxx精品又粗又长| 99精品在免费线老司机午夜| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 一本一本综合久久| 国产精品电影一区二区三区| 精品国产亚洲在线| 最新中文字幕久久久久| 久久久久久大精品| 欧美日韩乱码在线| 桃色一区二区三区在线观看| 色综合婷婷激情| 亚洲精品在线观看二区| 琪琪午夜伦伦电影理论片6080| 1024手机看黄色片| 啦啦啦观看免费观看视频高清| 亚洲成人免费电影在线观看| 国产精品一及| 国产亚洲欧美98| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站 | 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 99国产综合亚洲精品| 久久伊人香网站| 亚洲电影在线观看av| 国内少妇人妻偷人精品xxx网站| 久久久久久大精品| 美女被艹到高潮喷水动态| 国产欧美日韩一区二区三| 久久久久性生活片| 日韩免费av在线播放| 97热精品久久久久久| 亚洲国产日韩欧美精品在线观看| 天堂√8在线中文| 国产高清三级在线| 国产一区二区在线观看日韩| 无人区码免费观看不卡| 小说图片视频综合网站| 男女之事视频高清在线观看| 精品国内亚洲2022精品成人| 一区福利在线观看| 久久99热6这里只有精品| 国内精品美女久久久久久| 久久亚洲真实| 一本综合久久免费| 麻豆国产97在线/欧美| 国产在视频线在精品| 久久国产乱子伦精品免费另类| 久久久国产成人免费| 国产黄片美女视频| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| 97碰自拍视频| 日韩亚洲欧美综合| 在线观看66精品国产| 观看美女的网站| 麻豆一二三区av精品| 99热只有精品国产| 欧美极品一区二区三区四区| av中文乱码字幕在线| 一级作爱视频免费观看| 女同久久另类99精品国产91| 两个人视频免费观看高清| 9191精品国产免费久久| 国产成人福利小说| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 色视频www国产| 精品人妻偷拍中文字幕| 久久性视频一级片| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 少妇人妻一区二区三区视频| 简卡轻食公司| 久久香蕉精品热| 欧美激情在线99| 91字幕亚洲| 免费大片18禁| 国产欧美日韩精品一区二区| 亚州av有码| 精品久久久久久久久久久久久| 国产一区二区在线观看日韩| 国产亚洲欧美98| 亚洲精品亚洲一区二区| 1024手机看黄色片| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久亚洲 | 国产精品美女特级片免费视频播放器| 欧美三级亚洲精品| 最后的刺客免费高清国语| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看 | 全区人妻精品视频| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 一级毛片久久久久久久久女| 国产精品不卡视频一区二区 | 国产亚洲精品综合一区在线观看| 九色成人免费人妻av| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 女人被狂操c到高潮| 国产三级在线视频| 99久久精品国产亚洲精品| 亚洲精品亚洲一区二区| 国产精品美女特级片免费视频播放器| 国内精品美女久久久久久| 久久性视频一级片| 日本黄色视频三级网站网址| 久久久久国内视频| 一级黄色大片毛片| 中国美女看黄片| 国产老妇女一区| a在线观看视频网站| 变态另类成人亚洲欧美熟女| 日本 欧美在线| 黄色日韩在线| 日本 欧美在线| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 99久久九九国产精品国产免费| 99国产精品一区二区蜜桃av| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 超碰av人人做人人爽久久| 一本综合久久免费| 亚洲av一区综合| 91狼人影院| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 制服丝袜大香蕉在线| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站 | 男人舔女人下体高潮全视频| 国产单亲对白刺激| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 一级av片app| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 精品国产三级普通话版| 精品久久久久久久久久久久久| 日韩欧美一区二区三区在线观看| 久久久国产成人免费| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 国产精品人妻久久久久久| 90打野战视频偷拍视频| 亚洲国产日韩欧美精品在线观看| www.色视频.com| aaaaa片日本免费| 99国产极品粉嫩在线观看| 欧美精品国产亚洲| 一个人免费在线观看的高清视频| 国产精品电影一区二区三区| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站| 日韩精品中文字幕看吧| 日本免费a在线| 国产av麻豆久久久久久久| 国产精品av视频在线免费观看| 精品无人区乱码1区二区| 午夜福利在线观看免费完整高清在 | 天堂网av新在线| 男女做爰动态图高潮gif福利片| 色视频www国产| ponron亚洲| 亚洲五月婷婷丁香| 国产精品一区二区三区四区免费观看 | 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 美女黄网站色视频| 日韩欧美在线二视频| 色在线成人网| 国产中年淑女户外野战色| 精品国产亚洲在线| 成年人黄色毛片网站| 亚洲成人久久性| 亚洲人成电影免费在线| 午夜福利在线观看免费完整高清在 | 中文字幕人成人乱码亚洲影| 国产单亲对白刺激| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 一本久久中文字幕| 国产亚洲精品久久久久久毛片| 欧美黑人巨大hd| 亚洲av五月六月丁香网| 欧美成人性av电影在线观看| 国内精品一区二区在线观看| 日韩av在线大香蕉| 久久久久久久久久成人| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看| 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 午夜日韩欧美国产| 超碰av人人做人人爽久久| 亚洲欧美日韩东京热| 欧美激情在线99| 伦理电影大哥的女人| 性色avwww在线观看| 12—13女人毛片做爰片一| 精品熟女少妇八av免费久了| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| 日本五十路高清| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看| 真人一进一出gif抽搐免费| 成人毛片a级毛片在线播放| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 国产美女午夜福利| 成人国产一区最新在线观看| 精品人妻熟女av久视频| 99久久久亚洲精品蜜臀av| 亚洲国产色片| 国产爱豆传媒在线观看| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| x7x7x7水蜜桃| 村上凉子中文字幕在线| 亚洲欧美激情综合另类| 人人妻,人人澡人人爽秒播| 国产69精品久久久久777片| 国产男靠女视频免费网站| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频|