尹泉,傅鶴林,劉運(yùn)思,岳健,郭志廣
?
肋梁?樁?錨支護(hù)結(jié)構(gòu)錨索拉力計(jì)算理論模型及其應(yīng)用
尹泉1, 2,傅鶴林1,劉運(yùn)思3, 4,岳健3, 4,郭志廣4
(1. 中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙,410075;2. 湖南城市學(xué)院 土木工程學(xué)院,湖南 益陽(yáng),413000;3. 湖南科技大學(xué) 巖土工程穩(wěn)定控制與健康監(jiān)測(cè)省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,411201;4. 湖南科技大學(xué) 土木工程學(xué)院,湖南 湘潭,411201)
肋梁?樁?錨支護(hù)結(jié)構(gòu)有別于傳統(tǒng)樁錨支護(hù)結(jié)構(gòu),前者在傳統(tǒng)排樁上增設(shè)了豎向肋梁。為解決肋梁樁錨支護(hù)結(jié)構(gòu)中錨索拉力計(jì)算問(wèn)題,以變形協(xié)調(diào)理論為基礎(chǔ),根據(jù)肋梁、樁和錨索這3種支護(hù)結(jié)構(gòu)在共點(diǎn)時(shí)水平位移相等,構(gòu)建肋梁?樁?錨索共同支護(hù)作用下錨索拉力計(jì)算理論模型,并將該模型應(yīng)用于某深基坑工程的錨索拉力計(jì)算。研究結(jié)果表明:基于該理論模型求解得到的錨索拉力小于傳統(tǒng)樁錨支護(hù)結(jié)構(gòu)錨索拉力,與工程實(shí)際結(jié)果更加接近;由于有肋梁存在,支護(hù)結(jié)構(gòu)整體剛度提高,支護(hù)結(jié)構(gòu)的受力分布更加合理,錨索內(nèi)力更小,節(jié)約了工程造價(jià),同時(shí)提高了支護(hù)結(jié)構(gòu)的整體穩(wěn)定性。
深基坑支護(hù);變形協(xié)調(diào);肋梁?樁?錨支護(hù);錨索拉力;剛度;穩(wěn)定性
隨著城市超高層建筑的發(fā)展,深基坑支護(hù)結(jié)構(gòu)設(shè)計(jì)面臨巨大挑戰(zhàn)。目前,樁錨支護(hù)結(jié)構(gòu)是深基坑最常見的支護(hù)形式之一,樁錨支護(hù)體系的受力和變形分析是深基坑建設(shè)中非常重要的研究課題[1?6]。如何準(zhǔn)確計(jì)算錨索拉力是樁錨支護(hù)結(jié)構(gòu)設(shè)計(jì)的關(guān)鍵問(wèn)題,在一般情況下,樁錨支護(hù)結(jié)構(gòu)通過(guò)考慮錨索與樁的變形協(xié)調(diào)求解[7?9]。如劉煥斌等[10]提出了一種確定預(yù)應(yīng)力的方法,將錨索、抗滑樁與周圍的巖土體作為一個(gè)整體,根據(jù)樁身正負(fù)彎矩基本相等時(shí)錨索上的拉力視為總拉力,再充分考慮樁錨協(xié)調(diào)變形條件進(jìn)行錨索預(yù)應(yīng)力計(jì)算。晏鄂川等[11]在此基礎(chǔ)上對(duì)變形協(xié)調(diào)方程從2個(gè)方面進(jìn)行改進(jìn),考慮了預(yù)應(yīng)力施加完成后和樁后土壓力逐步作用在抗滑樁上這2個(gè)階段樁體變形協(xié)調(diào),同時(shí)也考慮了其他排錨索作用效果對(duì)變形協(xié)調(diào)的影響,這樣更加接近實(shí)際情況。簡(jiǎn)文星等[12]則對(duì)常規(guī)和修改變形協(xié)調(diào)條件再次進(jìn)行優(yōu)化,優(yōu)化的變形協(xié)調(diào)不僅能使抗滑樁在預(yù)應(yīng)力施加階段處于有利的受力和變形狀態(tài),而且適用于錨索與水平面成不同角度的情況。可見,許多學(xué)者針對(duì)樁錨支護(hù)結(jié)構(gòu)錨索預(yù)應(yīng)力以及總應(yīng)力進(jìn)行了研究[13?15],但針對(duì)加設(shè)肋梁的樁錨支護(hù)結(jié)構(gòu)的研究較少,而該種支護(hù)形式已應(yīng)用于工程實(shí)踐中,如長(zhǎng)沙國(guó)際金融中的35 m深基坑便采取了該種支護(hù)形式。人們對(duì)類似的圈梁、腰梁與樁錨共同支護(hù)的框架結(jié)構(gòu)有少量研究,如孫書偉等[16]進(jìn)行了對(duì)框架微型樁結(jié)構(gòu)抗滑特性的模型試驗(yàn),發(fā)現(xiàn)框架梁可以有效限制微型樁頂位移并減小樁身彎矩,但也會(huì)在微型樁頂部產(chǎn)生較大的彎矩。胡敏云等[17]認(rèn)為圈梁對(duì)護(hù)壁樁頂?shù)募s束作用隨樁身變形的發(fā)展而變化,兩者協(xié)同工作有利于減小樁身內(nèi)力,提高護(hù)壁樁的安全性,并提高排樁支護(hù)的整體穩(wěn)定性。設(shè)計(jì)時(shí),應(yīng)計(jì)入圈梁的有利影響,以使基坑支護(hù)安全、合理且經(jīng)濟(jì)。錢同輝等[18]研究了框架式抗滑樁受力特性,發(fā)現(xiàn)縱、橫向框架梁與樁的連接對(duì)框架式抗滑樁起到了支點(diǎn)作用,有效地抑制了最大位移的增加,改變了樁和錨索的內(nèi)力?;诖耍疚淖髡咭宰冃螀f(xié)調(diào)理論為基礎(chǔ),根據(jù)肋梁、樁和錨索3種支護(hù)結(jié)構(gòu)在共點(diǎn)時(shí)水平位移相等,推導(dǎo)肋梁?樁?錨索共同支護(hù)作用下錨索拉力的求解公式。
1) 不考慮樁體自身重力、樁體反力、樁與土體的摩擦力的作用,假設(shè)滑動(dòng)面樁體背后土壓力荷載為三角形分布。
2) 在研究錨索受力時(shí),將樁與錨索共同作用點(diǎn)考慮為彈性鉸支座,在進(jìn)行滑動(dòng)面以上部分的樁與錨索受力分析時(shí)按結(jié)構(gòu)靜力學(xué)原理計(jì)算。
3) 考慮樁與錨索間的變形協(xié)調(diào)時(shí),錨索伸長(zhǎng)量在水平方向的分量與錨索作用于樁處的水平位移相等。
圖1 樁?錨結(jié)構(gòu)計(jì)算簡(jiǎn)圖
假設(shè)基坑開挖面以上主動(dòng)土壓力呈三角形分布,則按朗肯土壓力計(jì)算:
對(duì)于基坑內(nèi)底部以下的土體,在嵌入支護(hù)樁后的土壓力仍可按朗肯主動(dòng)土壓力計(jì)算,而嵌入支護(hù)樁前部的土體則受到被動(dòng)土壓力,可按朗肯被動(dòng)土壓力計(jì)算式表示為
圖2 樁錨變形協(xié)調(diào)示意圖
錨索作用點(diǎn)處樁的水平位移f-為
根據(jù)地基系數(shù)法,預(yù)應(yīng)力錨索產(chǎn)生的位移1為
其中,
式中:Q和M為樁后土壓力和錨索應(yīng)力在錨固段頂端點(diǎn)處的剪力和彎矩。
式中:和分別為土壓力作用于樁嵌固端頂端點(diǎn)的剪力和彎矩,根據(jù)樁后土壓力分布和郎肯土壓力計(jì)算公式,有
1) 不考慮肋梁和樁的自重、樁與土體的摩擦力作用,假設(shè)肋梁上受土壓力為分布荷載,錨索拉力為集中力;
2) 肋梁按Winkler地基模型有限長(zhǎng)梁計(jì)算;
3) 考慮肋梁與樁相交的節(jié)點(diǎn)處變形協(xié)調(diào),肋梁與樁相交節(jié)點(diǎn)處肋梁水平撓度與該處樁水平位移相等。
肋梁與樁相交的節(jié)點(diǎn)處作用錨索拉力為1,…,R,…,R,肋梁長(zhǎng)度為,錨索與錨索之間的距離為,錨索拉力1與肋梁邊緣距離為,則計(jì)算模型如圖3所示。
圖3 肋梁計(jì)算簡(jiǎn)圖
在Winkler地基模型基礎(chǔ)上,將圖3分解成若干個(gè)受集中力下的有限長(zhǎng)梁,其受力模型如圖4所示。
圖4 集中力作用下有限長(zhǎng)梁計(jì)算模型
有限長(zhǎng)梁作用集中力時(shí)的撓度方程如下。
當(dāng)<時(shí),
當(dāng)<<時(shí),
對(duì)于多個(gè)集中力作用下的有限長(zhǎng)梁擾度問(wèn)題,可采用疊加法計(jì)算,即
肋梁、樁和錨索共點(diǎn)處變形相等,其肋梁的水平方向撓度與樁水平方向變形以及錨索伸長(zhǎng)量的水平分量相等,有
將肋梁、樁和錨索共點(diǎn)處視為1個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)包含2個(gè)未知量R和R,分別為實(shí)際工作狀態(tài)時(shí)的總拉力和錨索初始預(yù)拉力。根據(jù)肋梁樁錨變形協(xié)調(diào)即式(29),每個(gè)節(jié)點(diǎn)可列出3個(gè)平衡方程,將所有節(jié)點(diǎn)考慮進(jìn)來(lái),未知力數(shù)目小于平衡方程數(shù)目方可求解所有節(jié)點(diǎn)處的錨索拉力R和R。
長(zhǎng)沙國(guó)際金融中心基坑工程位于長(zhǎng)沙市黃興路與蔡鍔路之間、解放西路以北、東牌樓街以南。擬建建筑物最大高度為452.00 m,基坑深度=34.25 m。采用肋梁樁錨支護(hù)結(jié)構(gòu),共設(shè)12排錨索,錨索傾角為15°,支護(hù)樁的直徑為1.80 m,間距為2.40 m,其基坑典型計(jì)算簡(jiǎn)圖如圖5所示。
圖5 肋梁樁錨支護(hù)計(jì)算簡(jiǎn)圖
根據(jù)朗肯土壓力理論,計(jì)算作用在支護(hù)結(jié)構(gòu)上的土壓力為15 900 kN/m,樁長(zhǎng)=44.0 m,懸臂端= 34.0 m,嵌固端=10.0 m,每排錨索距坑底的距離為1=31.5 m,2=29.0 m,3=27.0 m,4=25.0 m,5= 23.0 m,6=21.0 m,7=19.0 m,8=17.0 m,9=15.0 m,10=13.0 m,11=11.0 m,12=9.0 m;每排錨索的自由端分別為1=21.0 m,2=20.0 m,3=18.0 m,4=17.0 m,5=16.0 m,6=15.0 m,7=14.0 m,8=13.0 m,9=12.0 m,l10=10.0 m,11=8.0 m,12=7.0 m;錨索孔徑為200.0 mm,內(nèi)置預(yù)應(yīng)力鋼絞線,錨索傾角為15°,肋梁截面面積為0.5 m×0.5 m,腰梁截面面積為0.8 m×0.8 m,樁身和肋梁材料采用C30混凝土。
1) 以變形協(xié)調(diào)理論為基礎(chǔ),將肋梁視為Winkler地基模型上的有限長(zhǎng)梁,推導(dǎo)了肋梁?樁?錨索共同支護(hù)作用下錨索工作應(yīng)力和預(yù)應(yīng)力的解析解。
2) 考慮肋梁影響時(shí)的錨索拉力要比不考慮肋梁時(shí)的小。
3) 肋梁的存在提高了支護(hù)結(jié)構(gòu)的整體剛度,有效地減小了基坑的變形。
[1] 周誠(chéng), 蔣雙南, 林興貴. 基于無(wú)人機(jī)的深基坑施工安全風(fēng)險(xiǎn)巡視與預(yù)警研究[J].施工技術(shù), 2016, 45(1): 14?19. ZHOU Cheng, JIANG Shuangnan, LIN Xinggui. Research on UAV-based remote monitoring for risks of deep foundation excavation construction[J]. Construction Technology, 2016, 45(1): 14?19.
[2] 梅源, 胡長(zhǎng)明, 王雪艷, 等. 西安地區(qū)濕陷性黃土地鐵車站深基坑開挖引起的地表及基坑支護(hù)樁變形特性[J].中國(guó)鐵道科學(xué), 2016, 37(1): 9?16. MEI Yuan, HU Changming, WANG Xueyan, et al. Deformation characteristics of ground surface and retaining pile induced by deep foundation pit excavation of subway station in collapsible loess of Xi’an area[J]. China Railway Science, 2016, 37(1): 9?16.
[3] 梁發(fā)云, 褚峰, 宋著, 等. 緊鄰地鐵樞紐深基坑變形特性離心模型試驗(yàn)研究[J]. 巖土力學(xué), 2012, 45(3): 657?664. LIANG Fayun, CHU Feng, SONG Zhu, et al. Centrifugal model test research on deformation behaviors of deep foundation pit adjacent to metro stations[J]. Rock and Soil Mechanics, 2012, 45(3): 657?664.
[4] STAHLHUT O, BORCHERT K M, VOIGT R E. Design and execution of a trough excavation pit in the Hamburg city center considering complex structural conditions[J]. Bautechnik, 2018, 95(1): 62?71.
[5] 王召磊, 楊志銀, 張俊, 等. 樁撐錨組合支護(hù)結(jié)構(gòu)的三維數(shù)值分析[J]. 巖土工程學(xué)報(bào), 2012, 34(增刊): 230?232. WANG Zhaolei, YANG Zhiyin, ZHANG Jun, et al. Three- dimensional numerical analysis of pile-support-anchorbracing structure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl): 230?232.
[6] 熊智彪, 歐陽(yáng)中意, 王啟云, 等. 深基坑樁錨支護(hù)結(jié)構(gòu)錨索檢測(cè)及監(jiān)測(cè)分析[J]. 采礦與安全工程學(xué)報(bào), 2009, 26(1): 123?126. XIONG Zhibiao, OUYANG Zhongyi, WANG Qiyun, et al. Test and monitoring for anchor rope of pile-anchor retaining structure in deep foundation pit[J]. Journal of Mining Safety Engineering, 2009, 26(1): 123?126.
[7] 尹靜, 鄧榮貴, 王金梅, 等. 錨索抗滑樁內(nèi)力計(jì)算的傳遞矩陣法[J]. 巖土力學(xué), 2017, 38(12): 3517?3523. YIN Jing, DENG Ronggui, WANG Jinmei, et al. Transfer matrix algorithm for calculating internal forces of anti-sliding pile with anchor cable[J]. Rock and Soil Mechanics, 2017, 38(12): 3517?3523.
[8] 馮申鐸, 姜曉光, 楊志銀, 等.“樁(墻)–撐–錨”聯(lián)合支護(hù)技術(shù)的工程應(yīng)用與變形協(xié)調(diào)探討[J]. 巖土工程學(xué)報(bào), 2012, 34(增刊): 456?460. FENG Shenduo, JIANG Xiaoguang, YANG Zhiyin, et al. The engineering application and deformation coordination discussion of pile?support?anchor bracing structure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl): 456?460.
[9] 許海勇, 陳龍珠, 劉全林. 樁錨支護(hù)結(jié)構(gòu)水平位移的簡(jiǎn)化算法[J]. 巖土力學(xué), 2013, 34(8): 2321?2328. XU Haiyong, CHEN Longzhu, LIU Quanlin. A simplified algorithm of lateral displacements of pile-anchor retaining structures[J]. Rock and Soil Mechanics, 2013, 34(8): 2321?2328.
[10] 劉煥斌, 晏鄂川, 吳益平, 等. 樁錨結(jié)構(gòu)預(yù)應(yīng)力的變形協(xié)調(diào)確定方法[J]. 巖土力學(xué), 2007, 28(S1): 891?894.LIU Huanbin, YAN Echuan, WU Yiping, et al. A compatible distortion method of cable in structure of pile-anchor[J]. Rock and Soil Mechanics, 2007, 28(S1): 891?894.
[11] 晏鄂川, 劉煥斌, 李相依, 等. 樁錨結(jié)構(gòu)變形協(xié)調(diào)方法的改進(jìn)[J]. 巖土力學(xué), 2009, 30(5): 1446?1450.YAN Echuan, LIU Huanbin, LI Xiangyi, et al. Improvement of compatible distortion method for structure of pile-anchor[J]. Rock and Soil Mechanics, 2009, 30(5): 1446?1450.
[12] 簡(jiǎn)文星, 鄧先華. 優(yōu)化的變形協(xié)調(diào)條件在樁?錨結(jié)構(gòu)錨索拉力計(jì)算中的應(yīng)用[J]. 巖土力學(xué), 2014, 35(8): 2171?2178.JIAN Wenxing, DENG Xianhua. Application of optimized deformation consistence condition to anchor cable tensile force calculation of pile-anchor cable structure[J]. Rock and Soil Mechanics, 2014, 35(8): 2171?2178.
[13] 楊志紅, 郭忠賢. 深基坑加固錨索預(yù)應(yīng)力荷載變化規(guī)律的監(jiān)測(cè)分析[J]. 巖土工程學(xué)報(bào), 2012, 34(Suppl): 145?148. YANG Zhihong, GUO Zhongxian. Monitoring analysis of pre-stressed load of anchor cables for deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl): 145?148.
[14] 申海平, 彭文祥, 郝玉, 等. 深基坑樁錨支護(hù)結(jié)構(gòu)變形的坑角效應(yīng)分析[J]. 土工基礎(chǔ), 2016, 30(1): 73?76, 82. SHEN Haiping, PENG Wenxiang, HAO Yu, et al.Corner effect in a deep excavation supported by soldier pile and ground anchor system[J]. Soil Engineering and Foundation, 2016, 30(1): 73?76, 82.
[15] 鮑生才. 深基坑樁錨支護(hù)結(jié)構(gòu)數(shù)值模擬研究[J]. 地下空間與工程學(xué)報(bào), 2014, 10(S2): 1941?1945. BAO Shengcai. Numerical simulation study of pile anchor support structure in deep pits[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2): 1941?1945.
[16] 孫書偉, 朱本珍, 馬惠民. 框架微型樁結(jié)構(gòu)抗滑特性的模型試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào), 2010, 29(S1): 3039?3044. SUN Shuwei, ZHU Benzhen, MA Huimin. Model experimental research on anti-sliding characteristics of micropiles with cap beam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3039?3044.
[17] 胡敏云, 夏永承. 深基坑無(wú)錨撐護(hù)壁樁變形狀態(tài)及圈梁約束分析[J]. 力學(xué)與實(shí)踐, 2001, 23(1): 20?26. HU Minyun, XIA Yongcheng. The deformation and ring beam binding forces of cantilever retaining pile for excavation support[J]. Mechanics in Engineering, 2001, 23(1): 20?26.
[18] 錢同輝, 徐華, 夏文才, 等. 框架式抗滑樁受力特性對(duì)比分析[J]. 中國(guó)公路學(xué)報(bào), 2012, 25(6): 56?59. QIAN Tonghui, XU Hua, XIA Wencai, et al. Force analysis of framed anti-slide piles[J]. China Journal of Highway and Transport, 2012, 25(6): 56?59.
[19] 鐵道部第二期勘測(cè)設(shè)計(jì)院. 抗滑樁設(shè)計(jì)與計(jì)算[M]. 北京: 中國(guó)鐵道出版社, 1983: 47?50. Second Survey and Design Institute of the Ministry of Railways. Design and calculation of anti-slide pile[M]. Beijing: China Railway Press, 1983: 47?50.
(編輯 陳燦華)
Theoretical model and application of anchor cable tension calculation for rib-beam-pile-anchor support structure
YIN Quan1, 2, FU Helin1, LIU Yunsi3, 4, YUE Jian3, 4, GUO Zhiguang4
(1. School of Civil Engineering, Central South University, Changsha 410075, China;2. School of Civil Engineering, Hunan City University, Yiyang 413000, China;3. Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring of Hunan Province, Hunan University of Science & Technology, Xiangtan 411201, China;4. School of Civil Engineering, Hunan University of Science & Technology, Xiangtan 411201, China)
The rib-beam-pile-anchor support structure is different from the traditional pile anchor support structure, with the former adding the vertical rib beam to the traditional row pile. In order to solve the rib-beam pile anchor support structure, according to the equal horizontal displacement at the combined point of the rib beam, pile and anchor, the tension calculation model was built for the rib-beam-pile-anchor support structure based on the deformation coordination theory. The model was applied to calculate the anchor cable tension in a deep foundation pit engineering. The results show that with the theoretical model, the anchor cable tension is less than that of the traditional anchor support structure, and it is also closer to the actual situation of the engineering. Because of the existence of rib beam, the overall stiffness of the structure is improved, the supporting structure stress distribution is more reasonable, the prestress is smaller, the construction cost is lower, and the overall stability of the supporting structure is improved.
support of deep foundation pit; deformation coordination; ribbed beam?pile?anchor support; anchor tension force; stiffness; stability
10.11817/j.issn.1672-7207.2018.09.024
TU470
A
1672?7207(2018)09?2301?07
2018?01?10;
2018?03?16
國(guó)家自然科學(xué)基金資助項(xiàng)目(51538009,51578550,51704109) (Projects(51538009, 51578550, 51704109) supported by the National Natural Science Foundation of China)
尹泉,博士,講師,從事巖土工程研究;E-mail: yinquan@csu.edu.cn