• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Turbulence Models for the Numerical Prediction of Time-dependent Cavitating Flow During Water Entry of a Semi-closed Cylinder

    2018-10-12 06:27:56LUZhongleiSUNTiezhiCUILeiWEIYingjie
    船舶力學(xué) 2018年9期

    LU Zhong-lei,SUN Tie-zhi,CUI Lei,WEI Ying-jie

    (1.The System Design Insitute of Mechanical-Electrical Engineering,Beijing 100854,China;2.School of Naval Architecture,Dalian University of Technology,Dalian 116024,China;3.Theoretical Research Center of Flying Training Base,China;4.School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)

    Abstract:During water entry of the semi-closed cylinder,the air in the cell interacts with the flow field around the cylinder,which generates time-dependent cavitating flow with perturbation.The kε model,k-ω model and detached eddy simulation(DES)model are selected to assess the state-ofthe-art of computational capabilities for the special cavitating flow.The turbulence models mentioned above are evaluated and validated by comparing the numerical time evolution of cavitating flow with the experimental results.The results show that the DES model can better capture the unsteady phenomena including the cavity ripples,shedding,transition flow and multi-scales vortex.Furthermore,the formation mechanism of eddies around the cavity interface is analysed based on the boundarylayer theory.

    Key words:DES;cavitating flow;perturbation;water entry

    0 Introduction

    Water entry is the process that unconstrained mobile object with special speed move across the free surface from air into water or other liquids.This process refers to an unsteady,compressible and turbulent multi-phases flow[1-2].Many researchers have been focusing on applying the CFD method to predict trajectory[3],flow characteristic in near field[4]and the evolution of cavitating flow[5-6].However,the pre-existing researches were almost based on simple body such as sphere,disk,cylinder,and so on.This paper investigates a special cylinder model which has an large hollow cell and one end opened.In the process of water entry,the semi-closed cylinder keeps the posture of the opening end towards moving direction and impacts free surface first.Water flows into and closes the cell after initial impact.An air spring is formed inside the cell and causes a periodic jet form the opening end,which results to the local field and the cavity waved[7]and the hydrodynamics and motion parameters fluctuating[8].The opening hollow cell divides the field into an internal flow field and an external flow field.The two fields are coupling each other to form a complicated flow environment.The flow mechanics problems for the process of semi-closed cylinder water entry involve the unsteady flow,swirling turbulent flow,multiphase flow,and so on,so the complicated flow structure increases the difficulty on the numerical computation.

    Turbulence models play very important roles in the simulations of the flow phenomena.The Reynolds-averaged Navier-Stokes(RANS)turbulence models,such as the k-ε model and k-ω model two-equation closures,have been very popular in the numerical simulation of water entry[9-10].However,RANS noticeably over-predicts turbulent production and effective viscosity in stagnation flow region.Large Eddy Simulation(LES)method[11]is an alternative to RANS model that can be employed to simulate the multi-scale vortex field and to provide accurate prediction for cavity ripples and shedding.However,the LES model can not avoid the deficiencies of high resolution requirements for boundary layers and the huge computational cost.In recent years,researchers develop a series of derived models[12-14].Spalart[15]pioneered to put forward the detached eddy simulation(DES)turbulence model which combined RANS modeling with LES.Based on this method,Menter[16]developed a new DES model blended k-ω SST model and LES model.Strelets[17]and Morton[18]have applied DES model respectively to simulate the hydrofoil movement and obtained unsteady vortex shedding flows.

    In the present study,three turbulence models including k-ε model,k-ω model and DES model are used to evaluate the application for time-dependent cavitating flow with perturbation during water entry of a semi-closed cylinder.Serving as a reference to evaluate the validity of turbulence model,experimental visualization and data are used for comparisons and errors analysis with numerical results.At last,we based on the calculation results to analyze the typical flow phenomenon of the water entry for a semi-closed cylinder and to evaluate the applicability of DES model for the problem of a semi-closed cylinder water entry.

    1 Numerical method

    1.1 Governing equations

    The governing equations under the homogeneous-fluid modeling consist of the conservative form of the Favre-averaged Navier-Stokes equations and the turbulence closure.In the conditions of low Froude number and isothermal temperature flow,we assume that both fluids are no phase transition and no interpenetrating.The continuity,momentum and energy equations are given below:

    where keffis effective thermal conductivity.The thermodynamics relationship between energy and temperature is

    where Cpis the specific heat at constant pressure.

    The Volume of Fluid(VOF)multiphase flow model is adopted to track the interface of immiscible fluids.The volume-fraction-averaged properties for mixture fluids can be expressed as:

    where α is the volume fraction and the subscripts l and g indicate liquid and gas,respectively.

    1.2 Turbulence models

    The RANS equations have a similar form with the instantaneous Navier-Stokes equations with the solution variables representing ensemble-averaged values.The averaged momentum equations expressed as

    Additional terms appear in Eq.(8)and must be modeled in order to close the equations.

    The Boussinesq hypothesis[19]is used to relate the Reynolds stresses to the mean velocity gradients,the formulation of hypothesis can be written as

    where k is turbulence kinetic energy,k=(u′2+v′2+w′2)/2 andis turbulent viscosity.

    (1)k-ε model

    The k-ε model is a high Reynolds number turbulence model[20].The turbulent eddy viscosity is defined as

    with Cμ=0.09.Turbulence dissipation rate is defined as

    The modeled transport equations for k and ε are presented as follows:

    where the generation term of turbulence kinetic energy is presented aswithand Pr=0.85.The dissipation term of the turbulent kitnetic energy is presented as Yk=ρk3/2/lrke,where the turbulent length scale is given as lrke=k3/2/ε.The dissipation term of the fluctuating dilatation in compressible turbulence flow is presented as YM=2 ρkε /(γRT).

    (2)SST k-ω model

    SST k-ω model is a low Reynolds number turbulence model[21].This model effectively blends the robust and accurate formulation of the k-ω model in the near-wall region with the free-stream independence of the k-ε model in the far field.The turbulent eddy viscosity is defined as

    where the specific dissipation rate is defined as ω=ε/(Cμk ).The coefficient λ damps the turbulent viscosity causing a low-Reynolds number correction.The expression is

    The modeled transport equations for k and ω are presented as follows:

    where the generation term of turbulence kinetic energy is presented asThe production term of specific dissipation rate is presented asThe turbulent length scale is given by

    (3)DES model

    As a hybrid LES/RANS models,the DES model is to switch from the RANS model to the LES model in regions where the turbulent length predicted by the RANS model is larger than the local grid spacing.Basing the k-ω SST model,the turbulent length scale is used in the dissipation term of the turbulent kinetic energy,which is modified for the DES turbulence model such as

    where lDESis the turbulent length scale instead of lSST,and the expression is

    where CDESis a calibration constant used in the DES model and has a value of CDES=0.61.Δ is based on the largest dimension of the grid cell:

    According to turbulent length,The LES region is normally associated with the core turbulent region where unsteady turbulence scales play a dominant role.In the small-turbulence scales region,the RANS model is recovered.Fig.1 shows the relation between turbulent length and turbulent models.

    Fig.1 Prediction methods of RANS,LES and DES approaches

    Fig.2 Schematic of computation domain and boundary conditions

    1.3 Solution implementation and discretization method

    The semi-closed cylinder studied in this paper is a pipe with one end closed.Geometric parameters of the semi-closed cylinder are as follows:the external diameter is D=0.04 m,the internal diameter is d=0.036 m,the length is l=0.2 m and the depth of cell is lc=0.109 m.The mass of semi-closed cylinder is m=0.345 kg.The opening end is always towards gravity direction and impacts free surface first.

    The computation domain,coordinate system and boundary conditions are shown in Fig.2.At the initial time,the semi-closed cylinder is located above the free surface at the position z*with the velocity v*.The time initially impacting water is defined as the time t=0.

    The local mesh of the semi-closed cylinder is shown in Fig.3.The structured grid is adopted for whole domain.In order to accurately capture the boundary layer flow,it was necessary to tailor the mesh to satisfy the refinement criterion y+~1,where y+is a dimensionless distance measured from the fluid-wall interface.

    The Finite Volume Method(FVM)is used to discretize the governing equations and solve the discretization equations to obtain the values of the flow variable in the field overall process.For time discretization,we choose time-advancement algorithm which the transient term in the transport equation is discretized by the second-order implicit form with second-order accuracy.For spatial discretization,we choose the second-order upwind form to discretize convective term and the least squares cell-based form to discretize the gradients and derivatives in diffusive term.The discrete values of the scalar are stored at the cell centers,but face values are required for the convection terms.The face values must be interpolated from the cell center values.We select Body Force Weighed scheme for pressure interpolation and select Geo-Reconstruct scheme for volume fraction interpolation.

    Fig.3 Schematic of local mesh(a)Meshing around the cylinder;(b)Meshing on solid walls;(c)Meshing in the cell

    2 Results and discussion

    2.1 Kinematic parameters

    Fig.4 shows the trajectory of semi-closed cylinder.Water entry is a time-dependent process from cavity formation to cavity collapse.Generally,the time is transitory in water entry.At low Froude numbers,the inertia force magnitude has a same order with gravity,So the position of the center on the opening end presents linear relation with time.The trajectories are well-predicted on the early stage of water entry by three turbulence models.Because the RANS model(such as k-ε and SST)noticeably over-predicts turbulent production and hence effective viscosity in stagnation flow region,the errors created by the overpredicts viscosity are accumulated to cause the predicted value of sinking depth lesser than the actual value.To compare with the experimental data,the DES model performs best after the time t=0.06 s(see the enlarged graph).

    Fig.4 Trajectory of the semi-closed cylinder

    Fig.5 Velocity of the semi-closed cylinder

    Fig.5 shows the velocity of semi-closed cylinder.The velocity keeps linear increase before water impact and begins to decrease at the eve of impact under the effect of the air recoil.The drag force replaces the gravity to play a dominant role after the opening end sinking and leads to the velocity to decrease.A physical phenomenon that leads to an additional force on the closed end prominently is the air compressed and expanding alternately in the cell.The additional force results in a fluctuating velocity.By comparison with experimental data,DES model is more suitable to capture the periodical fluctuation according to the amplitude and frequency of velocity.

    Fig.6 shows the acceleration of semi-closed cylinder.The acceleration presents fluctuant variation synchronized with the air compression and expansion.The difference between three models results is more obvious,especially at both time of air compressed completely and air expanding process,the time-dependent acceleration of cylinder appear high frequency wave.For the impact process,water flow into cell and compress the air.In the meantime,an impact wave is produced and spreads toward the closed end.As the properties of impact wave are high frequency and low energy,the effect for the motion of cylinder is very tiny.The force created by the impact wave exerts pressure on the inner surface of closed end.

    Fig.7 shows the time history of force on the closed end.It is consistent with the impact wave action from the enlarged graph.Comparing the numerical results for the three turbulence models,DES model can capture the impact wave.

    Fig.6 Acceleration of the semi-closed cylinder

    Fig.7 Force on the closed end

    2.2 Cavity visualization

    As the important characteristic for water entry,the cavity visualization is another evaluation parameter for the validity of turbulence model.Comparisons of the cavity profile between experimental measurement and numerical results associated with different turbulence models are listed in Tab.1.The cavity visualizations present a waved profile.The time evolution of cavity goes through in sequence the smooth shape(t=0.01 s),the waved shape(t=0.02 s),pinchoff(t=0.04 s),necking(t=0.06 s)and segmental shedding(t=0.08 s).The air expansion forms the liquid jet on the opening end,and makes the flow structure to be disordered.As a interface of two phases which are water and air,the cavity will be disturbed by the chaos field to present a fluctuating flow pattern.

    Tab.1 Comparisons of the cavity profile at typical time

    As for the DES model in Tab.1,the features of every stage in experiment can be well captured,including the profile and the size of fluctuating cavity,the appearance time and position of detached cavity in the trailing at the last stage,and the frequency of fluctuating and shedding,which is more consistent to the observation experimentally.For the shedding cavity,the shape and scale have some errors.However,this value is already enough to activate the contribution of others models.DES model has a well performance on the accuracy for predicting the water entry of semi-closed cylinder.

    The accuracy of numerical results is an important validation index of the turbulence models.By comparison with the experimental data,we take the errors analysis to evaluate the simulation accuracy of turbulence models.The relative error is defined as

    where χCFDsignifies the variable by computation, χexpsignifies the variable by experimental measure.The accuracy of computational results is tested by comparing the relative errors of typical kinematics parameters including the sinking distance s,the axial velocity v,the maximum expanding radius amaxand the mean length of cavity b.The errors are shown in Tab.2 where the least errors are marked by bold fonts.According to comparisons between three turbulence models,excepting the error of mean length is larger at t=0.04 s,the results obtained by DES turbulence model manifest a higher accuracy.Above all,DES is a validity turbulence model for cavitating flows in water entry of semi-closed cylinder.

    2.3 Vortex structure

    For the water entry of a solid object,generally,cavitating flow and field structure are stable,the surface of cavity is smooth,and the closed point position is immobile.The shear flow is week leading to the vortex is hardly formed in cavity boundary-layer.So the distribution of viscosity layer is homogeneous,and the laminar flow is stable near the cavity wall.However,for the water entry of the semi-closed cylinder,the effect of the air spring motion in the opened hollow cell is violent to the cylinder motion and cavitating flows.A high flow velocity formed on the cavity surface by the water jet from the opening cell.In the domain of the cavity,the jet flow affects the flow around the cylinder and appears local circular rector of velocity.The local velocity circulation generates vortex near the cavity surface.It is one of the typical flow characteristics of local vortex flow pattern for water entry of semi-cylinder.

    Fig.8 shows the flow structures at two typical time,liquid jet stage(a)and cavity shedding stage(b),to illustrate the vortex structure produced by the time-dependent disturbance flow.The second invariant of the velocity gradient tensor Q on the left and the streamlines on the right are shown in the same figure.The second invariant of the velocity gradient tensor is used to describe the vortex structure[22],which can be expressed as

    where S is modulus of the mean rate-of-strain tensor and Ω is modulus of vorticity,ωk=?ui/?xj-?uj/?xi.It represents vortex flow which plays a dominant role when Q>0,and it represents shear deformation which plays a dominant role when Q<0.The vortex near the cavity wall focus mainly on the opening end and the trough of cavity.The mechanism of vortex production close to the opening end is the result of the difference of cavity expending speed between the wave crest and the wave trough,and the mechanism of vortex production lied to the trough of fluctuate cavity is the result of the re-entrant jet which created by local flow around the crest of cavity.The other action result of re-entrant jet is that the cavity emerges deep closure and local shedding more than once.The cavity shedding occur at the trough position and the vortex falls off with the shedding cavity.

    Fig.8 Distributions of Q value near the cavity wall and streamlines(a)t=0.02 s;(b)t=0.08 s

    According to the boundary-layer theory,the flow in boundary-layer field is shown in Fig.9.The pressure decreases along the flow direction and reverses at singularity.The flow velocity slows down and reverses to form re-entrant jet due to the pressure gradient inversion.

    Fig.9 Schematic of boundary flow and re-entrant jet

    The viscosity is predominant near the cavity surface,so it can be assumed that the flow pattern around the fluctuating cavity is similar with the boundary-layer flow.The liquid velocity is faster on the crest of cavity and lower on the trough of cavity.The boundary-layer is thicken gradually from the crest to the trough,re-entrant jet is formed at trough and supervene segmental is shedding many times at the trough of wave cavity.

    In sight of energy transport,the kinetic energy of cylinder is converted into the pressure potential energy by compressing the air in the cell,then the potential energy releases into kinetic energy of the liquid in the form of a liquid jet.The process is over and over again,and forms a period disturbance source at the center of the opening end.The results are to generate a time-dependent separating flow in which the intensity and direction determine the diameter of cavity expansion,and change the stable flow structure in the cavity boundary-layer where laminar flow,turbulence flow and transition flow are concurrent,local velocity gradient and pressure gradient are notable and form multi-scale turbulence vortex.DES model can accurately predict the vortex,liquid jet and the cavity shedding.

    3 Conclusions

    In the present study,the time-dependent cavitating flow with perturbation during water entry is investigated by different turbulence models.The typical turbulence models,including k-ε model,SST model and DES model have been utilized to capture the special fluctuation of the cavity caused by the perturbation of the air flow.Then the numerical results were compared with experimental data to validate the turbulence models.

    The water flows into the cell form an internal sealing cell for the semi-closed cylinder water entry.In the cell,the air flowing and the cylinder motion are coupled each other.The air flowing force on the closing end periodically to change the kinematic characteristic.The velocity and acceleration present fluctuant variation synchronized with the air compression and expansion.Excepting the influence for motion of the cylinder,the jet causes the flow field disturbance to form cavity wave and shedding periodically and to induce the vortex flow structure.The vortex appears at the position of wave trough,in which the formation mechanism of vortex is the boundary layer flow near the cavity surface.

    DES model results perform best in all aspects in terms of kinematics parameters,cavity visualization and vortex structure.The highlight characteristic of DES model is the ability to capture the small-scale vortex in the boundary-layer of cavity and the pressure fluctuation.Therefore,DES model is applicable and efficient for the time-dependent cavitating flows with perturbation,such as the cavitating flow during water entry of the cylinder with an opening cell.

    亚洲一码二码三码区别大吗| 久久精品成人免费网站| 女性生殖器流出的白浆| 一二三四社区在线视频社区8| 午夜福利一区二区在线看| 国产精品影院久久| 日韩欧美国产一区二区入口| 色综合站精品国产| 免费看十八禁软件| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久精品电影 | 成人18禁在线播放| 老司机在亚洲福利影院| 亚洲第一av免费看| 国产精品,欧美在线| 制服丝袜大香蕉在线| av福利片在线| 一级毛片女人18水好多| 国产精品亚洲一级av第二区| 精华霜和精华液先用哪个| 成人免费观看视频高清| 一区二区三区精品91| 午夜福利成人在线免费观看| 香蕉久久夜色| 日本五十路高清| 免费看a级黄色片| 久久久水蜜桃国产精品网| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 亚洲精品中文字幕在线视频| 在线永久观看黄色视频| 成人午夜高清在线视频 | 国产亚洲精品第一综合不卡| 神马国产精品三级电影在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品人妻蜜桃| 老熟妇乱子伦视频在线观看| 日韩 欧美 亚洲 中文字幕| 色综合站精品国产| 欧美人与性动交α欧美精品济南到| 日本三级黄在线观看| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 91成年电影在线观看| tocl精华| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 中亚洲国语对白在线视频| 很黄的视频免费| 久久 成人 亚洲| 亚洲成人久久性| 国产成年人精品一区二区| 一边摸一边抽搐一进一小说| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 国产av一区二区精品久久| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色| 亚洲av成人一区二区三| 村上凉子中文字幕在线| 亚洲一码二码三码区别大吗| 欧美大码av| 黄色成人免费大全| 亚洲男人天堂网一区| 又大又爽又粗| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 香蕉av资源在线| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 18禁国产床啪视频网站| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网| 久久人妻福利社区极品人妻图片| 欧美丝袜亚洲另类 | 国产亚洲欧美98| 男女那种视频在线观看| 亚洲欧美精品综合久久99| 国产单亲对白刺激| 波多野结衣高清无吗| 亚洲精品在线美女| 香蕉久久夜色| 9191精品国产免费久久| 久久精品亚洲精品国产色婷小说| 老司机深夜福利视频在线观看| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区| 国内揄拍国产精品人妻在线 | 看免费av毛片| 午夜日韩欧美国产| 精品国产国语对白av| 美国免费a级毛片| 又紧又爽又黄一区二区| 女同久久另类99精品国产91| 动漫黄色视频在线观看| 人人妻,人人澡人人爽秒播| avwww免费| 色精品久久人妻99蜜桃| 真人做人爱边吃奶动态| 99re在线观看精品视频| 成人手机av| 啦啦啦观看免费观看视频高清| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 日本熟妇午夜| 久久久久久久久久黄片| 成人国语在线视频| 黄网站色视频无遮挡免费观看| 88av欧美| 非洲黑人性xxxx精品又粗又长| 国产熟女xx| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美 日韩 在线 免费| 久久久久久国产a免费观看| 国产亚洲欧美98| 少妇熟女aⅴ在线视频| 在线观看一区二区三区| 午夜福利视频1000在线观看| 男男h啪啪无遮挡| 好男人电影高清在线观看| 美女高潮到喷水免费观看| 老司机午夜十八禁免费视频| 午夜久久久久精精品| 婷婷精品国产亚洲av| 亚洲五月色婷婷综合| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看 | 波多野结衣高清无吗| 丁香欧美五月| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| cao死你这个sao货| 亚洲第一欧美日韩一区二区三区| 亚洲电影在线观看av| 亚洲精品久久成人aⅴ小说| 国内毛片毛片毛片毛片毛片| 午夜福利视频1000在线观看| 国产成人av激情在线播放| 亚洲av中文字字幕乱码综合 | 校园春色视频在线观看| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美| 亚洲男人的天堂狠狠| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 日韩欧美 国产精品| 婷婷六月久久综合丁香| 母亲3免费完整高清在线观看| 国内精品久久久久精免费| 在线观看66精品国产| 国产一区在线观看成人免费| 91国产中文字幕| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站 | 免费在线观看亚洲国产| 国产精品1区2区在线观看.| 美女午夜性视频免费| 琪琪午夜伦伦电影理论片6080| 国产区一区二久久| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 老司机在亚洲福利影院| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 男男h啪啪无遮挡| 国产不卡一卡二| 少妇裸体淫交视频免费看高清 | 又大又爽又粗| svipshipincom国产片| 搞女人的毛片| 男人操女人黄网站| 国产成人影院久久av| 久久九九热精品免费| 大香蕉久久成人网| 国产真实乱freesex| 日本一区二区免费在线视频| 99久久精品国产亚洲精品| 色av中文字幕| 在线永久观看黄色视频| 亚洲久久久国产精品| 丝袜人妻中文字幕| 精品日产1卡2卡| 日韩国内少妇激情av| 精品人妻1区二区| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 观看免费一级毛片| 久久香蕉精品热| 91成人精品电影| 国产私拍福利视频在线观看| 成人免费观看视频高清| 免费高清在线观看日韩| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 久久久久久久久免费视频了| 超碰成人久久| 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 大型av网站在线播放| 男人操女人黄网站| 午夜成年电影在线免费观看| 国产熟女xx| 女同久久另类99精品国产91| 色老头精品视频在线观看| 欧美激情极品国产一区二区三区| 91麻豆精品激情在线观看国产| 国产精品二区激情视频| 女性生殖器流出的白浆| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 一本综合久久免费| 欧美在线黄色| 精品熟女少妇八av免费久了| 美国免费a级毛片| 宅男免费午夜| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 亚洲第一青青草原| 免费在线观看黄色视频的| 欧美一级a爱片免费观看看 | 中文资源天堂在线| 午夜视频精品福利| 两性夫妻黄色片| 国产激情欧美一区二区| avwww免费| 午夜福利在线观看吧| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 亚洲第一青青草原| 欧美另类亚洲清纯唯美| 亚洲aⅴ乱码一区二区在线播放 | 好男人在线观看高清免费视频 | 黑丝袜美女国产一区| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 19禁男女啪啪无遮挡网站| 十八禁人妻一区二区| 国产精品亚洲美女久久久| 女人高潮潮喷娇喘18禁视频| 亚洲性夜色夜夜综合| 欧美一级a爱片免费观看看 | 大型黄色视频在线免费观看| 最近最新免费中文字幕在线| 亚洲人成网站高清观看| 亚洲国产欧美日韩在线播放| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 热99re8久久精品国产| 热re99久久国产66热| 亚洲激情在线av| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 久久中文看片网| 久久香蕉激情| 国产精品免费视频内射| 亚洲中文av在线| 国产av又大| 久久国产精品影院| 久久久久久国产a免费观看| 国产高清videossex| 精品国产超薄肉色丝袜足j| 国产精品爽爽va在线观看网站 | 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 在线看三级毛片| 亚洲人成网站高清观看| 欧美黑人精品巨大| 三级毛片av免费| 成人特级黄色片久久久久久久| 久久久水蜜桃国产精品网| 亚洲成人久久爱视频| 亚洲电影在线观看av| a级毛片a级免费在线| 怎么达到女性高潮| 国产三级在线视频| 久久性视频一级片| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看 | 国产成人欧美| 午夜福利在线观看吧| 国产激情欧美一区二区| 久久久久久久久久黄片| 性欧美人与动物交配| 久久久久久人人人人人| 啪啪无遮挡十八禁网站| 夜夜躁狠狠躁天天躁| 香蕉av资源在线| 国产麻豆成人av免费视频| 亚洲精品国产区一区二| av视频在线观看入口| 国产久久久一区二区三区| 999久久久精品免费观看国产| 成人亚洲精品一区在线观看| 成人一区二区视频在线观看| 国产免费av片在线观看野外av| 久久久久久亚洲精品国产蜜桃av| 女同久久另类99精品国产91| 国产精品av久久久久免费| 亚洲av中文字字幕乱码综合 | 亚洲avbb在线观看| 国产成人欧美| 真人一进一出gif抽搐免费| 国产伦在线观看视频一区| 午夜福利一区二区在线看| 国产亚洲欧美精品永久| 成人国产一区最新在线观看| av福利片在线| 又紧又爽又黄一区二区| 日韩大码丰满熟妇| 久久久久免费精品人妻一区二区 | 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 亚洲精品中文字幕在线视频| 麻豆成人午夜福利视频| 国产精品1区2区在线观看.| cao死你这个sao货| 色播在线永久视频| 国产亚洲欧美在线一区二区| 午夜久久久久精精品| 国产爱豆传媒在线观看 | av在线天堂中文字幕| 成人国语在线视频| 国产又爽黄色视频| 国产成人av教育| 亚洲 国产 在线| av超薄肉色丝袜交足视频| 免费无遮挡裸体视频| 欧美激情极品国产一区二区三区| 国产成人av激情在线播放| 国产一区在线观看成人免费| 别揉我奶头~嗯~啊~动态视频| 麻豆久久精品国产亚洲av| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 国产精品,欧美在线| 伦理电影免费视频| 成人亚洲精品av一区二区| 成人欧美大片| 久久婷婷人人爽人人干人人爱| 免费搜索国产男女视频| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 国产主播在线观看一区二区| xxxwww97欧美| 每晚都被弄得嗷嗷叫到高潮| 日韩视频一区二区在线观看| 国产亚洲精品一区二区www| 99热只有精品国产| 我的亚洲天堂| 中文字幕人成人乱码亚洲影| 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 国产伦人伦偷精品视频| 日日夜夜操网爽| 国产野战对白在线观看| 老司机福利观看| 悠悠久久av| 99久久无色码亚洲精品果冻| 最近最新中文字幕大全电影3 | 99精品欧美一区二区三区四区| 最近最新中文字幕大全电影3 | 久久中文字幕人妻熟女| 亚洲国产日韩欧美精品在线观看 | 国内揄拍国产精品人妻在线 | 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 大香蕉久久成人网| 在线观看66精品国产| 国产精品久久视频播放| 人人妻人人看人人澡| 少妇被粗大的猛进出69影院| 91老司机精品| 欧美黑人精品巨大| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 白带黄色成豆腐渣| av在线天堂中文字幕| 久久久久精品国产欧美久久久| 嫩草影视91久久| 老鸭窝网址在线观看| 亚洲在线自拍视频| 久热这里只有精品99| aaaaa片日本免费| 久久国产精品影院| 久9热在线精品视频| 在线观看66精品国产| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人一区二区三区免费视频网站| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 日韩精品中文字幕看吧| 88av欧美| 欧美一级毛片孕妇| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av在线| 狂野欧美激情性xxxx| 成人av一区二区三区在线看| 国产精品精品国产色婷婷| 91老司机精品| 国产一区二区在线av高清观看| 日本一本二区三区精品| 草草在线视频免费看| 久久热在线av| 久久亚洲精品不卡| 特大巨黑吊av在线直播 | 99riav亚洲国产免费| 无限看片的www在线观看| 亚洲久久久国产精品| 啦啦啦观看免费观看视频高清| 亚洲成人国产一区在线观看| 婷婷丁香在线五月| 美女免费视频网站| 十分钟在线观看高清视频www| 一级毛片高清免费大全| 高清在线国产一区| 国产一区二区三区视频了| 国产成人精品无人区| 亚洲国产日韩欧美精品在线观看 | 欧美日韩一级在线毛片| 色哟哟哟哟哟哟| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| av超薄肉色丝袜交足视频| 妹子高潮喷水视频| 在线观看午夜福利视频| 国产一级毛片七仙女欲春2 | 久久国产亚洲av麻豆专区| 亚洲性夜色夜夜综合| 欧美中文日本在线观看视频| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 白带黄色成豆腐渣| 波多野结衣高清作品| 99久久99久久久精品蜜桃| 国产一区二区激情短视频| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 亚洲最大成人中文| 欧美日韩亚洲综合一区二区三区_| 手机成人av网站| 亚洲精品中文字幕一二三四区| 免费无遮挡裸体视频| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 人成视频在线观看免费观看| 熟妇人妻久久中文字幕3abv| 高清毛片免费观看视频网站| 国产精品一区二区精品视频观看| 一级作爱视频免费观看| 亚洲成人久久性| 性欧美人与动物交配| 国产男靠女视频免费网站| 国产精品久久电影中文字幕| 午夜a级毛片| 日韩大尺度精品在线看网址| 欧美黄色片欧美黄色片| 91在线观看av| 免费观看人在逋| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看 | 国产黄a三级三级三级人| 制服人妻中文乱码| 国产精品日韩av在线免费观看| 亚洲男人的天堂狠狠| 午夜a级毛片| 色综合欧美亚洲国产小说| 亚洲片人在线观看| 亚洲欧美激情综合另类| 一边摸一边做爽爽视频免费| 俺也久久电影网| 亚洲精品在线观看二区| xxxwww97欧美| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 亚洲精品粉嫩美女一区| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区| 成人亚洲精品av一区二区| 一a级毛片在线观看| 亚洲欧美激情综合另类| 国产三级在线视频| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器 | av超薄肉色丝袜交足视频| 久久久久久久久中文| 俄罗斯特黄特色一大片| 色播在线永久视频| 亚洲一码二码三码区别大吗| 怎么达到女性高潮| 免费观看人在逋| 色综合婷婷激情| av超薄肉色丝袜交足视频| 手机成人av网站| 久久香蕉激情| 91字幕亚洲| 午夜福利成人在线免费观看| 一区福利在线观看| 中文字幕av电影在线播放| 1024香蕉在线观看| 欧美成人免费av一区二区三区| av在线播放免费不卡| 成年女人毛片免费观看观看9| 亚洲成人国产一区在线观看| 亚洲人成网站高清观看| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 久久精品91无色码中文字幕| av免费在线观看网站| bbb黄色大片| 欧美一区二区精品小视频在线| 校园春色视频在线观看| av欧美777| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 国产黄片美女视频| 一夜夜www| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片 | 午夜亚洲福利在线播放| 亚洲精品国产区一区二| 午夜免费激情av| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 色综合站精品国产| 国产亚洲精品av在线| 中国美女看黄片| 久久精品91蜜桃| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 日韩精品中文字幕看吧| 麻豆av在线久日| 亚洲真实伦在线观看| 久久草成人影院| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 中国美女看黄片| 亚洲熟女毛片儿| 久久草成人影院| 亚洲熟妇中文字幕五十中出| 亚洲av片天天在线观看| a在线观看视频网站| 老汉色∧v一级毛片| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 国产久久久一区二区三区| 成在线人永久免费视频| 日韩精品中文字幕看吧| 午夜老司机福利片| 人人妻人人澡欧美一区二区| 亚洲成国产人片在线观看| 在线免费观看的www视频| 中文字幕av电影在线播放| 90打野战视频偷拍视频| 一区二区三区激情视频| 啪啪无遮挡十八禁网站| 一本综合久久免费| 99久久久亚洲精品蜜臀av| 日本五十路高清| 好男人在线观看高清免费视频 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻1区二区| 国产av又大| 成人精品一区二区免费| 深夜精品福利| 色综合欧美亚洲国产小说| 色在线成人网| 亚洲欧美激情综合另类| 国产高清激情床上av| 夜夜夜夜夜久久久久| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 国产主播在线观看一区二区| 成人国语在线视频| 好男人电影高清在线观看| 在线av久久热| 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站 | 婷婷亚洲欧美| 51午夜福利影视在线观看|