• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser Methane Sensor and the Study of Cross Interference

    2018-10-10 06:27:32YanfangLiYuejinZhaoTingtingZhangJieHuYubinWeiandTongyuLiu

    Yanfang Li, Yuejin Zhao, Tingting Zhang, Jie Hu, Yubin Wei and Tongyu Liu

    (1.School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China;2.Shandong Key Laboratory of Optical Fiber Sensing Technologies, Jinan 250102, China)

    Abstract: A methane sensor system was designed based on tunable diode laser absorption spectroscopy (TDLAS) technology and the feature of vertical cavity surface emitting laser (VCSEL) with wavelengths up to several nanometers. We studied the gas present in the methane sensor’s common operation environment. Through absorption spectrum stimulation and experiments,we analyzed the cross interference of the gas of H2O, CO and CO2 to methane detection. The results prove that this laser methane sensor has the characteristics of high stability and anti-cross interference.

    Key words: tunable diode laser absorption spectroscopy(TDLAS); vertical cavity surface emitting laser (VCSEL); methane sensor;cross interference

    Methane (CH4) is a colorless, odorless gas, which is lighter than air. It is the principal component of natural gas.It widely exists in our life and it is one of the main components of greenhouse gases. Methane is an explosive and acts as asphyxiate, it can therefore cause serious harm to human’s health. Methane detection is required in the areas like coal mines, power plant, waste water treatment and petroleum chemical industry[1]. With the development of optical fiber and semiconductor laser technology, tunable diode laser absorption spectroscopy (TDLAS) has become an important technology in the field of gas detection.

    The TDLAS technology was first developed in the 1970s by Hinkley and Reid[2]. With the continuous development and improvement of the technology, more and more gases can be detected, such as O2and H2O whose contents are high in the atmosphere, and atmospheric pollution gases of CO, CO2, SO2, NOxand CH4[3-6]. And the detection sensitivity is becoming more and more high. With the rapid development of optoelectronic technology and optical communication technology in the past decade, the tunable semiconductor laser has small size, long life and high power, which further promote the TDLAS technology use in industrial, environmental, and medical science fields. The gas detection technologies are developing towards multi-component, system miniaturization, and open optical path directions[7-10].Generally speaking,TDLAS includes direct absorption method and modulation method. To reduce the system’s complexity and costs, we choose the direct absorption method and used a saw tooth current to scan the absorption peak in our system.

    In this paper, we designed a laser methane sensor based on the Lambert-Beer law and by detecting the optical power change of a VCSEL laser source before and after the gas absorption.By introducing a reference cell, we realized the output wavelength of the laser to track the gas absorption line automatically. This senor is commonly used in coal mines, chemical plants and other places whereother gases, such as H2O, CO and CO2, also exist. If there are other interfering gases in the measurement environment, a traditional sensor might have large errors, whichcan cause great inconvenience to production, wrong operation and economic loss. A gas sensor based on TDLAS could identify different gases, and achieve a trace detection of a specific gas. We did cross interference experiments to check the anti-cross interference of our laser methane sensor. And the results show that our sensors can resist cross interference.

    1 Measurement Principle and System Design

    1.1 Measurement principle

    Based on the Beer-Lambert law, when a monochromatic light with wavelengthλgoes through the sample gas, the intensity of the transmitted lightI(λ) and original lightI0(λ) meets the following relationship as

    I(λ)=I0(λ)exp [-α(λ)CL]=
    I0(λ)exp [-PS(T)φ(λ)CL]

    (1)

    whereα(λ) is the gas absorption coefficient;Cis the volume concentration;Lis the length of the absorption path (cm);S(T) is the intensity of gas characteristic spectral line that indicates the intensity of the absorption and is only a function of temperature;Pis the pressure of the sample gas;φ(λ) is the line profile function related to the temperature, the pressure and the contents of the gas.

    By doing logarithm calculation on both sides of Eq.(1) followed by integration, we have

    (2)

    Then we can obtain the concentration calculation formula as

    (3)

    According to Eq.(3), ifP,S(T) andLare all known, we can obtain the concentration if we put the integral values in the frequency domain of -ln (I/I0) into Eq.(3). Instead of directly integrating the spectrum absorption signal, we usually find a proper fitting curve to obtain the value of -ln(I/I0). In the actual design of the sensors, firstly we assumePandS(T) are all fixed constants. After the manufacture of the sensor, the length of optic pathLis fixed, so we can easily get the gas concentration by detect the power change before and after gas absorption.

    1.2 System design

    1.2.1System structure

    In TDLAS system design, the first and most important step is to determine the absorption spectrum of the system according to the HITRANdatabase. At room temperature, the absorption spectrum of methane is shown in Fig.1. After the analyses of the spectrum factors such as the absorption intensity of methane and the deviation from center wavelength, we choose 1 650.5 nm as the absorption line. Then we began to design our methane sensor system.

    Fig.1 Absorption line of methane

    The system structure was shown in Fig.2a. In our system, we drive the light source and the temperature/pressure detection with CPU. Then the light comes to photoelectric conversion and signals processing after optical path. The electric signals from detector are transmitted to AD conversion, then to CPU. After data processing, we could get the methane concentration, and then the frequency signal corresponding to concentration, RS485, alarm signal and LCD display were output. In the data processing, we introduce consumption of temperature and pressure to improve the veracity and reliability of measurements.

    Optical part of the system mainly includes laser, coupler, detectors and probe. To reduce the cost of this sensor, we select detectors in communication band—InGaAs detector to detect the light signal before and after the absorption, the response wavelength range of this detector is 600 nm to 1 700 nm, and the responsiveness in the 1 550 nm is 0.85 mA/mW. After the conversion voltage value and stability measurement of these PD,we confirm that the detector can be used in 1 650 nm band.The sensor has a gas cell, in macro analysis. It’s effective optical pathlength is about 6 cm, in trace analysis, it’s effective optical path length is about 20 m. In addition, we introduce a wavelength reference probe, through which the absorption wavelength could be easily find. Depending on this, we could make sure that the absorption line is in the wavelength scanning range by modulating the drive current.

    Combining our process design, a methane sensor was manufactured as Fig.2b. The operating temperature of this sensor is 0-40 ℃. It outputs the methane concentration signal with standard serial port (RS485).The physical diagram of the sensor is as follows. Its machine dimension is about 90 mm×70 mm×20 mm.

    Fig.2 Structure of the system and the sensor photo

    1.2.2Sensor calibration and verification

    Fig.3 Display value

    Per the calibration method given in the coal mine safety standard, we use standard sample gas to calibrate our sensors. In this process, we make sure that the response time T90 is not greater than 10 s. After the calibration, to check the performance at 0 ℃ and 40 ℃, we inlet standard gases with volume fraction of methane to N2being 1.49%,3.47%,8.48%,20% and 59.4% respectively. Fig.3 shows the display value results of one sensor at 0 ℃ and 40 ℃ respectively. Compared with the standard gas concentration, the relative errors are all less than 3%. This error is far below the requirements of coal mine safety standards (less than 6%). In all our experiments, the relative expanded uncertainty of standard gas is about 2.0%.

    2 Experiments of Cross Interference

    To further verify the anti-cross interference of the laser methane under normal temperature and pressure, we select H2O, CO and CO2as the interference gases which generally exist in coal mine environment.

    2.1 Analysis of cross spectrum

    (4)

    Fig.5 Absorption line simulation

    Based on HITRAN database, there are cross interference gases nearby 1 650.9 nm. According to Eq.(4), we assume the absorption length of the gas cell is 100 cm, the volume fraction of CH4, H2O, CO and CO2to N2are 0.1%,15%,0.1%, and 10% respectively. The simulation results is shown in Fig.4.

    Fig.4 Absorption line simulation

    From Fig.4, in the macro measurement (the methane measurement error is greater than 0.06%), the absorption intensity of cross gas and the target gas is more than 5 orders of magnitude. We can ignore the effects of cross gases directly. In experiment I, to verify anti-cross interference of this laser methane sensors, we selected 3 methane sensors (1#,2#and 3#) randomly as our sample prototype. Then we inlet H2O, CO and CO2to the gas cell and record value data.The result are as follows.

    In the trace gas measurement, we couldn’t ignore the influence of crossed gas. Taking CO2as an example, we studied cross interference data processing techniques of this sensor. Fig.5 shows the simulation results with the absorption length of the gas cell being 20 m, the volume fraction of CH4and CO2to N2being 0.000 2% and 0.1% respectively.

    From Fig.5, we couldn’t ignore the influence of CO2for trace methane detection. In our data progress, we used correlation function method to reduce the impact of CO2. If we assume the real concentration of CH4and CO2areC1andC2respectively, and the absorption peak of CH4and CO2areP1andP2. At these two peak, the CH4absorption intensity isα1(self-intensity) andα12(interference intensity). CO2absorption intensity isα21(interference intensity) andα2(self-intensity). Then the total absorption intensity of these two peaks satisfied

    which can be written in matrix form as

    C=A-1Ap

    (5)

    Through the simulation or standard gas calibration, we could get the value self-absorption intensity ofα1andα2and interference intensity ofα12andα21. Once we know the value of every element of matrix, we could get the inverse matrix of A. Then according to Eq.(5), we could get CH4real concentrationC1.

    2.2 Experiment I—macro measurement cross interference

    2.2.1Cross interference of H2O

    Because of the effect of groundwater and spray water on the working surface in coal mine field, the air humidity is high and can be up to 90%-100%, and the air intake lane is very wet even in winter. Combined with the above investigation and laboratory testing conditions, in the preliminary test experiment, the water vapor that is 37 ℃ and has relative humidity of 95%, is set as the initial test sample gas.We began our experiment by resetting the sensor value as 0. After the instrument is stable, the sample water vapor was introduced and 3 instrument display values were recorded at 30 s, 60 s and 120 s. The 3 values were averaged as the final test concentration of the instrument to calculate the interference errors of this sample instrument.The results are shown in Tab.1.

    Tab.1 Interference test results of RH 95% H2O on methane

    2.2.2Cross interference of CO

    The source of coal mine carbon monoxide mainly include: the gas and coal dustexplosion, coal oxidation, direct fire suppression with water and blasting operation of working face. “Coal mine safety regulations” in the provisions of the maximum allowable volume fraction of CO in the air is not more than 0.002 4%. And the range of CO volume fraction alarm used in coal mine environment is generally 0-0.1%. Based on the above investigation and existing standard gas in our lab, the volume fraction of carbon monoxide to N2is selected to be 0.1% in our experiment.We began our experiment at sensor value of 0, after the instrument is stable, 0.1% CO is introduced, and 3 instruments display values were recorded at 30 s, 60 s and 120 s. The values were averaged as the final test concentration of the instrument to calculate the interference errors of this sample instrument.The result is shown in Tab.2.

    2.2.3Cross interference of CO2

    “Coal mine safety regulations” in the provisions of the maximum allowable concentration of CO2in the air is 0.5%. And the range of CO2concentration alarm used in coal mine is generally 0-5%. In this experiment, 10% CO2is selected as interference gas. The results are as follows.

    Tab.2 Interference test results of 1×10-3 CO on methane

    The main source of CO2in coal mine mainly include: pit prop become bad, slowly oxidation of coal and carbon, and so on. In addition, human breath, explosion of underground gas and coal dust, fire accidents also produce large amounts of CO2. “Coal mine safety regulations” in the provisions of the maximum allowable concentration of CO2in the air is 0.5%. And the range of CO2concentration alarm used in coal mine environment is generally 0-5%. Combined with the above investigation and existing standard gas in our lab, the initial concentration of CO2is selected as 10%. We began our experiment at the sensor shows the value of 0, after the instrument stable, pump the 10% CO2to the gas cell, and then in the 30 s, 60 s and 120 s, we recorded 3 instrument display values as the stable display value and then averaged them as the final test concentration of the instrument to calculate the interference errors of this sample instrument. The result is given in Tab.3.

    2.3 Experiment II—trace measurement cross interference

    In this experiment, the effective absorption length is 20 m and the measuring volume fraction range of the sensor is 0-0.003 0. We choose 0.04%, 0.1% and 1% CO2as the interference gas. Before pumping the distributed gas for measurement, we blew the gas cell with high purity nitrogen gas (99.999%) for 3 min. The volume fraction of CH4to N2are 0.000 2%, 0.001%, and 0.003% respectively. After 30 s of stabilization, we recorded the display value. Tab.4 gives the test result. This result show that our data processing method is effective in eliminating cross interference.

    Tab.3 Interference test results of 10%CO2on methane

    Tab.4 Display value before and after compensation 10-6 vol/vol

    3 Conclusion

    The experimental results show that our laser methane sensor had high stability and good anti-interference performance to H2O, CO or CO2. To improve the performance further, we would improve the concentration of interference gas in future studies. For some coal mine, C2H2, H2S and other cross interference gases also need to be further verified. In addition, in our experiment, we found that measurement value of the sensor in the hydrogen environment had a large variation, so algorithm optimization to improve the sensor performance should also be studied in the future.

    免费av中文字幕在线| 简卡轻食公司| 老师上课跳d突然被开到最大视频| 国产毛片在线视频| 91午夜精品亚洲一区二区三区| 久久久久久久久大av| 久久人人爽人人爽人人片va| 丰满乱子伦码专区| 精品国产三级普通话版| 全区人妻精品视频| 亚洲无线观看免费| 国产成人精品一,二区| 国产爽快片一区二区三区| 日韩一区二区三区影片| 亚洲精品中文字幕在线视频 | 国产一区有黄有色的免费视频| 亚洲中文av在线| 只有这里有精品99| 噜噜噜噜噜久久久久久91| 少妇猛男粗大的猛烈进出视频| 国产高清国产精品国产三级 | 老师上课跳d突然被开到最大视频| 纯流量卡能插随身wifi吗| 国产 精品1| 国产黄片视频在线免费观看| 亚洲国产欧美在线一区| 日韩中文字幕视频在线看片 | 超碰97精品在线观看| 丝袜喷水一区| kizo精华| 亚洲欧美成人精品一区二区| 亚洲国产精品国产精品| 国产成人aa在线观看| 亚洲欧美日韩卡通动漫| 亚洲国产精品999| 色网站视频免费| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 五月玫瑰六月丁香| 天美传媒精品一区二区| 简卡轻食公司| 18禁动态无遮挡网站| 成年av动漫网址| 久久精品国产鲁丝片午夜精品| 精品一区二区三卡| 日本欧美视频一区| 最近最新中文字幕大全电影3| 欧美激情国产日韩精品一区| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 免费看光身美女| 黄色欧美视频在线观看| av专区在线播放| 久久久精品免费免费高清| 精品久久久噜噜| .国产精品久久| 视频区图区小说| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 麻豆成人av视频| 亚洲欧美精品专区久久| 校园人妻丝袜中文字幕| 国产片特级美女逼逼视频| 秋霞在线观看毛片| 中文字幕免费在线视频6| 亚洲国产毛片av蜜桃av| 国产伦理片在线播放av一区| 另类亚洲欧美激情| 日韩欧美一区视频在线观看 | 久久6这里有精品| 啦啦啦视频在线资源免费观看| 激情五月婷婷亚洲| 18禁在线无遮挡免费观看视频| 纯流量卡能插随身wifi吗| 国产成人精品福利久久| 日本wwww免费看| videossex国产| 在线观看人妻少妇| 在线精品无人区一区二区三 | 黑人高潮一二区| 久久99蜜桃精品久久| 22中文网久久字幕| 永久免费av网站大全| 身体一侧抽搐| 成人国产麻豆网| 久久精品久久精品一区二区三区| 高清欧美精品videossex| 免费在线观看成人毛片| 欧美成人午夜免费资源| 欧美成人精品欧美一级黄| 国产精品99久久99久久久不卡 | 简卡轻食公司| 91精品一卡2卡3卡4卡| 汤姆久久久久久久影院中文字幕| 久久青草综合色| 国产老妇伦熟女老妇高清| 久久久久精品性色| 91久久精品国产一区二区成人| 午夜激情久久久久久久| 精品久久国产蜜桃| 亚洲,一卡二卡三卡| 最近中文字幕高清免费大全6| 国产黄片视频在线免费观看| 欧美成人a在线观看| 国产成人aa在线观看| 又爽又黄a免费视频| 人人妻人人爽人人添夜夜欢视频 | 精品亚洲成a人片在线观看 | 黄色一级大片看看| 精品酒店卫生间| 秋霞伦理黄片| 亚洲人成网站高清观看| 成人午夜精彩视频在线观看| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 国产 精品1| 中文字幕免费在线视频6| 蜜桃在线观看..| 黑丝袜美女国产一区| 午夜日本视频在线| 国产精品国产三级专区第一集| 亚洲真实伦在线观看| 一区二区三区精品91| 亚洲精品日韩av片在线观看| 日本色播在线视频| 丰满人妻一区二区三区视频av| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区免费毛片| 成年女人在线观看亚洲视频| 黄片无遮挡物在线观看| 国国产精品蜜臀av免费| 天美传媒精品一区二区| 久久国产亚洲av麻豆专区| 久久久久久久精品精品| 九色成人免费人妻av| 天美传媒精品一区二区| 免费av中文字幕在线| 日韩av免费高清视频| 成人漫画全彩无遮挡| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 久久久久人妻精品一区果冻| 精品亚洲乱码少妇综合久久| 久久久亚洲精品成人影院| 偷拍熟女少妇极品色| 久久久久国产精品人妻一区二区| 亚洲av在线观看美女高潮| 成人午夜精彩视频在线观看| 久久这里有精品视频免费| 久久亚洲国产成人精品v| 十八禁网站网址无遮挡 | 极品少妇高潮喷水抽搐| 男人舔奶头视频| 日韩强制内射视频| 亚洲精品日本国产第一区| 国产精品久久久久久久久免| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲 | 国产成人91sexporn| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 伦理电影大哥的女人| 日韩中文字幕视频在线看片 | 日韩av不卡免费在线播放| 国产精品av视频在线免费观看| 大片电影免费在线观看免费| 日韩三级伦理在线观看| 国产国拍精品亚洲av在线观看| 18禁在线播放成人免费| 国产精品国产三级国产专区5o| 亚洲图色成人| 中文字幕免费在线视频6| 久久久欧美国产精品| 亚洲av二区三区四区| 久久久久久九九精品二区国产| 国产真实伦视频高清在线观看| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 91精品一卡2卡3卡4卡| 亚洲av日韩在线播放| 久久国产乱子免费精品| 成人黄色视频免费在线看| 少妇人妻久久综合中文| 免费观看a级毛片全部| 国产男人的电影天堂91| 日日摸夜夜添夜夜爱| 国产乱来视频区| 精品人妻一区二区三区麻豆| 国产伦在线观看视频一区| 欧美精品一区二区大全| 久久 成人 亚洲| 国产成人a区在线观看| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 妹子高潮喷水视频| 日韩视频在线欧美| 日日摸夜夜添夜夜添av毛片| 另类亚洲欧美激情| 黑丝袜美女国产一区| av播播在线观看一区| 99久久中文字幕三级久久日本| 美女xxoo啪啪120秒动态图| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片 | 国产高清三级在线| 亚洲电影在线观看av| 亚洲精品,欧美精品| 亚洲av男天堂| 国产亚洲最大av| 亚洲高清免费不卡视频| 国产精品99久久99久久久不卡 | 肉色欧美久久久久久久蜜桃| 久久久久人妻精品一区果冻| 成人综合一区亚洲| 久久精品国产自在天天线| 综合色丁香网| 一本一本综合久久| 国产v大片淫在线免费观看| 国产大屁股一区二区在线视频| 欧美高清成人免费视频www| av在线蜜桃| 亚洲欧美成人综合另类久久久| 夫妻午夜视频| 免费黄频网站在线观看国产| av在线观看视频网站免费| 男女国产视频网站| 女性被躁到高潮视频| 欧美精品亚洲一区二区| 国产视频内射| 久久精品国产鲁丝片午夜精品| 欧美老熟妇乱子伦牲交| 亚洲电影在线观看av| 日韩强制内射视频| 日韩电影二区| 久久久久久伊人网av| 一区二区三区免费毛片| 欧美成人午夜免费资源| 欧美变态另类bdsm刘玥| 成人午夜精彩视频在线观看| 麻豆成人av视频| 高清黄色对白视频在线免费看 | 成人国产麻豆网| 最近的中文字幕免费完整| 亚洲最大成人中文| 又大又黄又爽视频免费| 伦理电影免费视频| 女人十人毛片免费观看3o分钟| 一本一本综合久久| 亚洲精品国产av蜜桃| 久久av网站| 亚洲第一区二区三区不卡| 国产成人精品婷婷| 亚洲av不卡在线观看| 老司机影院毛片| 亚洲美女视频黄频| 一边亲一边摸免费视频| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区 | 国产黄片美女视频| 一级片'在线观看视频| 99热6这里只有精品| 久久亚洲国产成人精品v| 91久久精品电影网| 亚洲精品日韩av片在线观看| 亚洲国产欧美人成| 婷婷色综合www| 99久久人妻综合| 欧美区成人在线视频| 黄片wwwwww| 久久人人爽av亚洲精品天堂 | 国国产精品蜜臀av免费| 尤物成人国产欧美一区二区三区| 最新中文字幕久久久久| 特大巨黑吊av在线直播| av.在线天堂| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 国产精品久久久久久精品古装| 涩涩av久久男人的天堂| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 国产亚洲91精品色在线| 下体分泌物呈黄色| 赤兔流量卡办理| av在线蜜桃| 我的女老师完整版在线观看| 欧美成人一区二区免费高清观看| av在线app专区| 国产精品国产av在线观看| 久久久久久久久久人人人人人人| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频 | 欧美激情国产日韩精品一区| 亚洲精品久久久久久婷婷小说| 九色成人免费人妻av| 日韩亚洲欧美综合| 水蜜桃什么品种好| 国产 一区 欧美 日韩| 黄色一级大片看看| 国产精品成人在线| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| 日韩一本色道免费dvd| 又大又黄又爽视频免费| www.色视频.com| 男女边摸边吃奶| 国内少妇人妻偷人精品xxx网站| 我要看日韩黄色一级片| 在线免费十八禁| 联通29元200g的流量卡| 精品熟女少妇av免费看| 少妇的逼好多水| 日本一二三区视频观看| 男人添女人高潮全过程视频| 在线天堂最新版资源| 精品国产三级普通话版| 在线免费十八禁| av专区在线播放| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 少妇高潮的动态图| 免费高清在线观看视频在线观看| 精品久久久久久久久av| 日韩欧美精品免费久久| 最近最新中文字幕大全电影3| 永久免费av网站大全| xxx大片免费视频| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频 | 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 国内精品宾馆在线| 丝袜喷水一区| 国产精品一区二区在线观看99| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 亚洲av电影在线观看一区二区三区| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| 少妇人妻一区二区三区视频| 五月伊人婷婷丁香| 青青草视频在线视频观看| 中文字幕精品免费在线观看视频 | av在线app专区| 内射极品少妇av片p| 精品久久久久久久久亚洲| 国产亚洲一区二区精品| 我的老师免费观看完整版| 久久久久久久精品精品| 免费看av在线观看网站| 青春草视频在线免费观看| 我的老师免费观看完整版| 中国三级夫妇交换| 久久久久精品性色| 在线精品无人区一区二区三 | 婷婷色综合www| 欧美日本视频| 丰满迷人的少妇在线观看| 熟女av电影| 国产高清国产精品国产三级 | 在线观看免费高清a一片| 国产av一区二区精品久久 | 亚洲av成人精品一二三区| 亚洲国产欧美人成| 精品人妻熟女av久视频| 国产毛片在线视频| 观看av在线不卡| 天堂8中文在线网| 美女高潮的动态| 交换朋友夫妻互换小说| 欧美日韩国产mv在线观看视频 | 18禁裸乳无遮挡动漫免费视频| 国模一区二区三区四区视频| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费 | 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 日韩成人伦理影院| 美女主播在线视频| 亚洲va在线va天堂va国产| 国产免费又黄又爽又色| 91久久精品电影网| 搡老乐熟女国产| 日日啪夜夜爽| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 日本欧美视频一区| 久久国产乱子免费精品| 国产人妻一区二区三区在| 日韩,欧美,国产一区二区三区| 日韩伦理黄色片| 插阴视频在线观看视频| 99久久精品一区二区三区| 亚洲真实伦在线观看| 男男h啪啪无遮挡| 日韩成人伦理影院| 七月丁香在线播放| 亚洲国产精品成人久久小说| 亚洲国产日韩一区二区| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | 91在线精品国自产拍蜜月| 狠狠精品人妻久久久久久综合| 欧美区成人在线视频| 日韩中文字幕视频在线看片 | 黄色一级大片看看| 午夜激情久久久久久久| 特大巨黑吊av在线直播| 91久久精品电影网| av国产精品久久久久影院| 直男gayav资源| 日韩人妻高清精品专区| 成年免费大片在线观看| 又大又黄又爽视频免费| 蜜桃久久精品国产亚洲av| 在线观看免费日韩欧美大片 | 久久午夜福利片| 国产爽快片一区二区三区| av.在线天堂| 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 欧美+日韩+精品| 精品午夜福利在线看| 久久久久久久国产电影| 免费观看av网站的网址| 一级二级三级毛片免费看| 男人添女人高潮全过程视频| 亚洲国产av新网站| 99热全是精品| 午夜福利在线观看免费完整高清在| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 伊人久久精品亚洲午夜| 免费播放大片免费观看视频在线观看| 简卡轻食公司| 97精品久久久久久久久久精品| 国产黄片美女视频| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| 熟女av电影| 午夜激情久久久久久久| 亚洲人成网站在线播| 男女边摸边吃奶| 亚洲va在线va天堂va国产| 亚洲无线观看免费| 黑人高潮一二区| av线在线观看网站| av在线观看视频网站免费| 在线 av 中文字幕| 欧美日韩一区二区视频在线观看视频在线| a 毛片基地| 国产黄频视频在线观看| 久久人人爽人人片av| 中文字幕av成人在线电影| 春色校园在线视频观看| 国产黄片美女视频| 国产视频首页在线观看| 高清毛片免费看| 国产精品福利在线免费观看| 99久国产av精品国产电影| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| 成人综合一区亚洲| 国产男人的电影天堂91| 97超碰精品成人国产| 激情五月婷婷亚洲| 亚洲av中文字字幕乱码综合| 亚洲av男天堂| 青春草国产在线视频| av在线蜜桃| 18禁在线无遮挡免费观看视频| 午夜免费男女啪啪视频观看| 一级毛片 在线播放| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 男女免费视频国产| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 国产v大片淫在线免费观看| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区成人| 国产成人午夜福利电影在线观看| xxx大片免费视频| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 一区二区三区精品91| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 六月丁香七月| 久久久久久九九精品二区国产| 国产v大片淫在线免费观看| 97超视频在线观看视频| 日韩视频在线欧美| 一边亲一边摸免费视频| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在| 日日摸夜夜添夜夜爱| 免费看不卡的av| 多毛熟女@视频| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 日本欧美视频一区| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 国产伦理片在线播放av一区| 亚洲综合精品二区| av播播在线观看一区| 在线观看人妻少妇| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 韩国高清视频一区二区三区| 看非洲黑人一级黄片| 高清毛片免费看| 国产成人91sexporn| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 亚洲人与动物交配视频| 国产成人精品久久久久久| 国产精品久久久久成人av| 老司机影院毛片| 国模一区二区三区四区视频| 九九在线视频观看精品| 精品少妇久久久久久888优播| 看免费成人av毛片| 久久国产亚洲av麻豆专区| 精品国产露脸久久av麻豆| 久久精品国产亚洲网站| 日韩伦理黄色片| 在线观看人妻少妇| 国产成人精品婷婷| 联通29元200g的流量卡| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 这个男人来自地球电影免费观看 | 国产老妇伦熟女老妇高清| 男女免费视频国产| 少妇熟女欧美另类| av免费在线看不卡| 99re6热这里在线精品视频| 亚洲国产最新在线播放| av在线蜜桃| 久久精品夜色国产| 国产一区二区三区av在线| 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 亚洲精品456在线播放app| 久久国产乱子免费精品| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 在线看a的网站| 夜夜骑夜夜射夜夜干| 1000部很黄的大片| 久久久久网色| 男女边摸边吃奶| 免费看av在线观看网站| 日韩中字成人| 亚洲精品一区蜜桃| 日韩欧美 国产精品| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 国产精品一二三区在线看| 久久精品国产自在天天线| 中文在线观看免费www的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 青春草视频在线免费观看| 男女国产视频网站| 91狼人影院| 亚洲国产精品一区三区| 99re6热这里在线精品视频| 91精品国产国语对白视频| 日本免费在线观看一区| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 亚洲精品亚洲一区二区| 在线免费观看不下载黄p国产| 国产精品人妻久久久影院| 在线观看一区二区三区激情| 亚洲内射少妇av| 欧美+日韩+精品| 国产精品久久久久久av不卡| av在线蜜桃| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 中文字幕免费在线视频6| 亚洲一级一片aⅴ在线观看| 人妻 亚洲 视频| 亚洲国产精品一区三区| 成人免费观看视频高清| 亚洲四区av| 男人舔奶头视频| 啦啦啦啦在线视频资源| 99久久精品热视频|