• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power Allocation with Proportional Fairness in Downlink NOMA System

    2018-10-10 07:44:10HanyuZhengHaiLiandShujuanHou

    Hanyu Zheng, Hai Li and Shujuan Hou

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    Abstract: The non-orthogonal multiple access (NOMA) has been regarded as a candidate radio access technology in the 5th generation (5G) mobile networks. In this paper, the problem of power allocation is considered with proportional fairness for downlink NOMA. Our objective is to maximize the logarithmic throughput of the system, which achieves a good tradeoff between the system throughput and user fairness. The approximate optimal solution of this proposed method can be found by the means of quasi-Newton method. For any number of users K, the numerical results verify the accuracy and convergence of our proposed method. Compared to the exhaustive search method, the computational complexity is significantly reduced when the two methods achieve the same accuracy. Furthermore, we show that as the number of users increases, the number of iterations of our method increases with an approximately linear trend.

    Key words: non-orthogonal multiple access (NOMA); power allocation; proportional fairness; logarithmic throughput

    The trend towards development of 5th generation (5G) mobile networks has attracted a huge amount of attention from the world. In order to meet the demand of growing data services and accommodate the tremendous amount of mobile devices, non-orthogonal multiple access (NOMA) has been proposed as a promising technology which has the potential to tackle this problem[1]. Typically, the existing NOMA solutions can be roughly divided into two categories[2]; code-domain NOMA and power-domain NOMA. Some new schemes based on code-domain NOMA have been proposed, such as MC-LDSMA and SCMA[3-4]. Meanwhile, a great deal of literature has analyzed the capability and performance of power-domain NOMA with successive interference cancellation (SIC) receivers[5].This is the main concern of this paper.

    It has been proved that NOMA can achieve higher capacity region compared to orthogonal multiple access (OMA)[6]. For the problem of power allocation, it is worth mentioning that the authors in Ref.[7] use game theory to model the interaction between the base station and multiple users as a Stackelberg game which outperforms the uniform power allocation scheme. In Ref. [8], the authors propose an efficient “relax-then-adjust” algorithm and provideresults of performance evaluation for power minimization in NOMA. The authors of Ref.[9] investigate an optimization problem of minimizing the total transmittal power under quality of service requirements in a downlink OFDM-based NOMA system.

    When considering the scheme of power allocation in NOMA system, we need to ensure that each user is connected and obtains a certain data rate no matter how the channel condition is. Hence, the fairness issue has to be taken into consideration during scheduling. In Ref.[10], the authors classify and analyze the fairness issues in wireless networking research. In Ref. [11], the authors introduce maximizing geometric mean user throughput as the policy for power allocation. Their method exploits tree-based search which can reduce the computational complexity by discarding the redundant power allocation ratio combinations. In Ref. [12], the author analyzes the power allocation schemes for both max-sum rate and max-min rate based on proportional fairness. In Ref.[13], the authors generalize the previous work in Ref.[14] into the multi-user NOMA system and propose a user set tree structure to enhance the efficiency of user selection.

    Primarily, in resource constrained wireless systems, throughput and fairness are conflicting objectives. It is known that proportional fairness strikes a good balance between system throughput and user fairness[15]. However, to the best of our knowledge, there are limited works about power allocation with proportional fairness in downlink NOMA system, most of which care about the case of 2 users sharing the same subchannel. For the situation of multi-users (K>2), the methods in existing literature always have a large computational load. Hence, in this paper, we investigate the proportional fairness power allocation problem in downlink NOMA systems to achieve tradeoff between throughput and fairness. The primary contributions of this paper can be summarized as follows.

    ① Unlike previous literature such as Refs. [14,16], which only tackle the case of 2 users sharing the same subchannel, we propose a proportional fairness power allocation scheme which is aimed at the situation ofKusers multiplexed on the same subchannel.

    ② Due to the existence of inter-user interference, the power allocation problem is non-convex. Quasi-Newton method[17]is applied to solve the non-convex optimization problem. We prove that the formulated optimization problem has only one local maximum point, which guarantees the convergence of quasi-Newton method.

    1 System Model and Problem Formulation

    1.1 System model

    We consider a downlink NOMA based cellular network servingKusers in a single cell. These users are multiplexed in the power domain and share the same carrier. The channel coefficient from the BS to the userkis denoted byhk. Without loss of generality, we assume that the channel gains are sorted in the descending order, i.e., |h1|2>|h2|2>…>|hK|2>0. Furthermore, the receiver Gaussian noise powerσ2of each user is assumed to be equal.

    The BS broadcasts the superposition ofKsignals to itsKusers. Based on the principle of NOMA, the user who has a higher channel coefficient can decode the signals of other users with lower channel coefficients for interference cancellation. Consequently, the noise of the userkcontains both the additive Gaussian noise and the inter-user interferences from the users whose number is less thank. We set the total transmit power of the BS asP. For simplicity, we first make the following definition as

    (1)

    It is obvious thatφ1>φ2>…>φK>0. Hence, the data rate of userkcan be expressed as

    (2)

    whereαiis the power assignment ratio of useri. This should satisfy the following conditions

    (3)

    Sinceαi>0, it means that each user needs to be allocated some power even if it has a poor channel condition.

    1.2 Problem formulation

    In NOMA systems, if we simply attempt to improve the system throughput without taking into concern the fairness amongKusers, all of the power will be allocated to the single user with the best channel condition[18]. Hence, it is important to develop appropriate policies to maintain fairness and specify the optimization objective[19]. In the following, we will introduce the proportional fairness policy for problem formulation.

    Proportional fairness makes a good compromise between system throughput and user fairness. In this paper, we aim to maximize the logarithmic sum of user data rates under the total transmit power constraint in order to achieve proportional fairness power allocation. Therefore, this optimization problem can be formulated as

    (4)

    (5)

    whereαis converted from aK×1 column vector to a (K-1)×1 one.

    2 Optimality Conditions

    Since the power allocation problem is non-convex, Quasi-Newton method may not converge to the global maximum point. However, if Eq.(5) has one and only one local maximum point in the definition domain, the convergence to the global maximum point can be ensured. Hence, in the following, we first prove that the derivative of Eq.(5) has only one stationary point in the definition domain. Then we demonstrate that this stationary point is a maximum point.

    (6)

    For the sake of simplicity, we defineri,jas

    (7)

    andr0,1=rK,K=0. Then, we can get the partial derivative of the objective functionf(α) as

    (8)

    (9)

    (10)

    (11)

    for all 1≤k≤K-1. Eq.(11) can also be converted as

    Rk+1/Rk=rk,k+1/rk,k

    (12)

    In order to demonstrate that Eq.(12) has a unique solution, we define two new functions as

    (13)

    When we regardλk+1andλk-1as constants, it is obvious thatga(λk) is a strictly monotone increasing function aboutλk, andgb(λk) is a strictly monotone decreasing function ofλk. Let us concern the value ofga(λ1) andgb(λ1) as

    (14)

    We notice that for a certainλ2

    λ1→0,ga(λ1)

    λ1→λ2,ga(λ1)>gb(λ1)

    (15)

    (16)

    For the stationary pointα*, since we knowrk,k>rk,k+1and Eq.(11), it is obvious that

    (17)

    (18)

    Therefore, the Hessian matrix off(α) can be expressed as

    (19)

    To prove H(f) is negative definite at the stationary point, we need to ensure that for ?k, 1≤k≤K-1, we have

    (20)

    On account of

    (21)

    (22)

    where z=α*+tp for somet∈(0,1). Since z∈D, we have pTH(z)p<0, and thereforef(α*+p)0, the definition domain is an open-interval. That is to say,α*is the optimum solution for the problem Eq.(5).

    As a result of the complicated Hessian matrix off(α), it is hard to figure out theα*directly. Quasi-Newton method has a good performance on unconstrained nonlinear optimization problems. The most popular quasi-Newton algorithm is the BFGS method, named for its discoverers Broyden, Fletcher, Goldfarb, and Shanno. It has been proved in Ref. [17] that the BFGS method can exhibit a superior convergence rate in solving non-linear problems.Thus, the problem Eq. (5) can be solved by BFGS method. Those details are not discussed here.

    3 Numerical Results

    In this section, we provide some numerical results to validate the performance of our proposed power allocation method. The simulation parameters are listed in Tab.1. In the first simulation scenario, we consider 3 users sharing the same downlink NOMA channel. We compare the performance of the proposed approach to exhaustive search method in order to check the convergence and accuracy of our method.

    In Fig.1, we use exhaustive search method to find a power allocation scheme which can get the maximum logarithmic throughput based on this scenario. Thex-axis andy-axis display the power allocation portion for user 1 and user 2. We can obtain the allocation ratio of User 3 fromα3=1-(α1+α2). Thez-axis exhibits the logarithmic throughput of each allocation scheme. Due to the large computing load, we first search a rough approximation in Fig.1a. Then we find the higher region in Fig.1a for further searching. The point with the highest logarithmic throughput has been marked in Fig.1b.

    Tab.1 Simulation parameters

    Fig.1 Power allocation scheme with exhaustire search method

    Fig.2 Comparison of the logarithmic throughput performance of the proposed method with exhaustive search

    To illustrate the accuracy and convergence of the proposed method, some simulation results are presented in Fig.2. Fig.2 displays the comparison of the logarithmic throughput performance of the proposed method with exhaustive search. The simulation results reveal that the proposed method can converge to the solution of the exhaustive search within several iterations. For the situation ofK=3, the allocation scheme calculated by the proposed method is the same as the result in Fig.1. These two methods both obtain the logarithmic throughput at 0.523 3. When these two methods achieve the same precision (10-6), the complexity of the proposed method is much lower. Since the total power is fixed, the data rate of each user will be reduced when the number of users increases. Therefore, the logarithmic throughput will be negative if the data rate of the new user is less than 1.

    Fig.3 Number of iterations for multi-users case

    The fairness plays an important role in the NOMA system as each user needs to be allocated some data rate. Hence, in the second scenario, we mainly focus on the performance of fairness among users in our proposed scheme. The fairness index (FI) which is mentioned in Ref. [15] is adopted for comparison. This is defined as

    (23)

    We compare our scheme (PF-in-NOMA) with the following schemes: ① max-sum-rate scheme in NOMA system and ② proportional fairness scheme in OMA system (PF-in-OMA). For the max-sum-rate scheme, we only optimize the throughput of the system. Thus, the user with the best channel condition will occupy the total power. And the purpose of the latter scheme is to allocate time slots to the users with proportional fairness[15]. We use Monte Carlo simulations to analyze the performance of these three schemes.

    In Fig.4, we compare the fairness of the three schemes with respect to the number of users. The two schemes with proportional fairness both reach higher FIs. Since the max-sum-rate scheme allocates the total power to only one user, it has the lowest FI which is inversely proportional to the number of users. On account of the importance of fairness in NOMA system, the proposed scheme with the highest FI has a more superior performance compared to the other two schemes. In Fig.5, the throughput of the three schemes is displayed. The throughput of our proposed scheme is always larger than PF-in-OMA even though these two schemes have similar FIs. This implies that NOMA outperforms OMA. Although the max-sum-rate scheme achieves the highest throughput of all, it sacrifices the data rate of the other users, leading to a lower FI. In summary, our proposed scheme achieves a good tradeoff between the throughput and fairness.

    Fig.4 User fairness comparison between the proposed scheme and other two schemes

    Fig.5 System throughput comparison between the proposed scheme and other two schemes

    4 Conclusion

    This paper focused on the problem of power allocation for downlink NOMA. To find a compromise between the throughput and fairness, we maximized the logarithmic throughput of the system based on quasi-Newton method, which acted as proportional fairness. The simulation results demonstrate that the optimum solution solved by quasi-Newton method can achieve high accuracy with several iterations. When compared to exhaustive search method, our scheme significantly reduces the computational complexity. The numerical results also show that as the number of users grows, the number of iterations of our proposed method increases with an approximately linear trend. In our future work, the issues of user pairing and subcarrier allocation in multi-carrier circumstance will be taken into consideration.

    中国美白少妇内射xxxbb| 午夜日本视频在线| 一级毛片黄色毛片免费观看视频| 久久99蜜桃精品久久| 亚洲一级一片aⅴ在线观看| 嫩草影院入口| 久热久热在线精品观看| 人妻一区二区av| 成人毛片60女人毛片免费| 亚洲国产精品专区欧美| 欧美日韩国产mv在线观看视频| 亚洲国产欧美日韩在线播放| 国产不卡av网站在线观看| 大陆偷拍与自拍| 欧美bdsm另类| 在线观看免费高清a一片| 性色av一级| 午夜免费男女啪啪视频观看| 国产精品成人在线| 成人18禁高潮啪啪吃奶动态图| 亚洲人与动物交配视频| 少妇的逼水好多| 成人免费观看视频高清| 深夜精品福利| 日韩成人av中文字幕在线观看| 一区二区av电影网| 我的女老师完整版在线观看| 国产黄频视频在线观看| 亚洲精品视频女| 天堂中文最新版在线下载| 国产成人精品久久久久久| 巨乳人妻的诱惑在线观看| 丝袜在线中文字幕| 曰老女人黄片| 一级黄片播放器| 免费日韩欧美在线观看| 黄片播放在线免费| 五月天丁香电影| 国产一区有黄有色的免费视频| 欧美激情极品国产一区二区三区 | 777米奇影视久久| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 日产精品乱码卡一卡2卡三| 免费av中文字幕在线| 久久精品国产综合久久久 | 日韩精品有码人妻一区| 99久久综合免费| 丝瓜视频免费看黄片| 不卡视频在线观看欧美| 天天操日日干夜夜撸| 啦啦啦在线观看免费高清www| av不卡在线播放| 精品亚洲成a人片在线观看| 国产精品.久久久| 日本午夜av视频| 亚洲国产精品一区三区| 妹子高潮喷水视频| 波野结衣二区三区在线| 女人精品久久久久毛片| 女性被躁到高潮视频| 国产又爽黄色视频| 亚洲av国产av综合av卡| 在线观看国产h片| 黄网站色视频无遮挡免费观看| 日韩成人伦理影院| 美女大奶头黄色视频| 国产 一区精品| www.色视频.com| 日韩人妻精品一区2区三区| 国产一区二区在线观看日韩| 日本wwww免费看| 国产精品 国内视频| 母亲3免费完整高清在线观看 | 亚洲中文av在线| 成年美女黄网站色视频大全免费| 亚洲内射少妇av| 最近的中文字幕免费完整| 亚洲精品国产av蜜桃| 在现免费观看毛片| www.熟女人妻精品国产 | 在线观看一区二区三区激情| 精品一品国产午夜福利视频| 蜜桃在线观看..| 母亲3免费完整高清在线观看 | 在线观看免费高清a一片| 老熟女久久久| a级毛片在线看网站| 亚洲欧洲日产国产| 又大又黄又爽视频免费| 日本爱情动作片www.在线观看| 美女xxoo啪啪120秒动态图| 国产白丝娇喘喷水9色精品| 精品亚洲成a人片在线观看| av视频免费观看在线观看| 97在线人人人人妻| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品一区二区免费开放| 多毛熟女@视频| 国产亚洲精品久久久com| 欧美成人精品欧美一级黄| 高清欧美精品videossex| 国产精品嫩草影院av在线观看| 国产成人欧美| 热99久久久久精品小说推荐| 久久女婷五月综合色啪小说| 大话2 男鬼变身卡| 久久99蜜桃精品久久| 精品久久蜜臀av无| xxxhd国产人妻xxx| 熟女人妻精品中文字幕| 伊人久久国产一区二区| 日韩在线高清观看一区二区三区| 成人亚洲精品一区在线观看| 精品人妻熟女毛片av久久网站| 女性生殖器流出的白浆| freevideosex欧美| 极品人妻少妇av视频| 狂野欧美激情性xxxx在线观看| 激情五月婷婷亚洲| 免费日韩欧美在线观看| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 日本免费在线观看一区| 满18在线观看网站| 成人手机av| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 久久 成人 亚洲| 成年人午夜在线观看视频| 人妻系列 视频| 久久精品国产亚洲av天美| 人妻 亚洲 视频| 伦理电影大哥的女人| 欧美激情极品国产一区二区三区 | 成人漫画全彩无遮挡| 大片免费播放器 马上看| 水蜜桃什么品种好| 亚洲av综合色区一区| 伊人久久国产一区二区| 亚洲人成网站在线观看播放| 欧美+日韩+精品| 国产一区二区激情短视频 | 国产在视频线精品| 韩国av在线不卡| 九九爱精品视频在线观看| 久久毛片免费看一区二区三区| 90打野战视频偷拍视频| 国产女主播在线喷水免费视频网站| 国产一区二区三区av在线| 精品国产一区二区久久| 黄片播放在线免费| 亚洲国产色片| 久久久久久久国产电影| 日韩在线高清观看一区二区三区| 欧美日韩成人在线一区二区| 各种免费的搞黄视频| 中文字幕精品免费在线观看视频 | 欧美精品一区二区免费开放| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 国产精品一二三区在线看| 99久久人妻综合| 国产探花极品一区二区| 高清黄色对白视频在线免费看| 如日韩欧美国产精品一区二区三区| 99久久中文字幕三级久久日本| 只有这里有精品99| 亚洲国产精品专区欧美| 欧美日韩国产mv在线观看视频| 亚洲伊人色综图| 国产在线免费精品| 亚洲欧美一区二区三区黑人 | 香蕉国产在线看| 成人18禁高潮啪啪吃奶动态图| 久久人人爽人人片av| 少妇被粗大的猛进出69影院 | 成人国产av品久久久| 久久人人爽人人片av| 日日啪夜夜爽| 性高湖久久久久久久久免费观看| 99香蕉大伊视频| 亚洲,一卡二卡三卡| 女的被弄到高潮叫床怎么办| 高清视频免费观看一区二区| 日本-黄色视频高清免费观看| www.色视频.com| 亚洲,一卡二卡三卡| 欧美丝袜亚洲另类| 国产69精品久久久久777片| 99久久人妻综合| 高清在线视频一区二区三区| 少妇精品久久久久久久| h视频一区二区三区| 免费人成在线观看视频色| 久热这里只有精品99| 国产有黄有色有爽视频| 搡女人真爽免费视频火全软件| 亚洲欧洲精品一区二区精品久久久 | 宅男免费午夜| 黑丝袜美女国产一区| 国产永久视频网站| 国产麻豆69| 一区在线观看完整版| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 精品一区在线观看国产| 日韩制服丝袜自拍偷拍| 国产精品成人在线| 国产成人aa在线观看| 国产精品.久久久| 色哟哟·www| 久久久久久人妻| 母亲3免费完整高清在线观看 | 亚洲精品日本国产第一区| 亚洲精品美女久久久久99蜜臀 | 亚洲,欧美,日韩| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 在线天堂最新版资源| 精品第一国产精品| av在线老鸭窝| 精品一区二区三区四区五区乱码 | 纵有疾风起免费观看全集完整版| 国产精品久久久久久av不卡| 免费在线观看完整版高清| 国产成人免费观看mmmm| 国产爽快片一区二区三区| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 国精品久久久久久国模美| 一区二区日韩欧美中文字幕 | 飞空精品影院首页| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 国产精品免费大片| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕 | 美女脱内裤让男人舔精品视频| 久久热在线av| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 国产在线免费精品| 午夜免费鲁丝| 考比视频在线观看| 九色成人免费人妻av| 日韩制服丝袜自拍偷拍| 五月伊人婷婷丁香| 一边摸一边做爽爽视频免费| 日韩av不卡免费在线播放| 午夜福利影视在线免费观看| 欧美最新免费一区二区三区| 观看美女的网站| 成年女人在线观看亚洲视频| 七月丁香在线播放| 97精品久久久久久久久久精品| 看免费成人av毛片| 久久久久人妻精品一区果冻| 新久久久久国产一级毛片| 婷婷色麻豆天堂久久| 99久国产av精品国产电影| 国产精品.久久久| 亚洲av电影在线观看一区二区三区| 97在线人人人人妻| 日本wwww免费看| 人妻系列 视频| 久久久久久久久久人人人人人人| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 日韩制服骚丝袜av| 国产黄频视频在线观看| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| 欧美+日韩+精品| 69精品国产乱码久久久| 狂野欧美激情性xxxx在线观看| 性色av一级| 午夜福利在线观看免费完整高清在| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| av在线观看视频网站免费| 我要看黄色一级片免费的| 亚洲欧美成人精品一区二区| av片东京热男人的天堂| 欧美日韩av久久| 国产精品久久久av美女十八| 婷婷色麻豆天堂久久| 亚洲 欧美一区二区三区| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 90打野战视频偷拍视频| 日本色播在线视频| 卡戴珊不雅视频在线播放| 在现免费观看毛片| 精品一品国产午夜福利视频| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 欧美日韩一区二区视频在线观看视频在线| 国产黄频视频在线观看| 九色成人免费人妻av| 男人爽女人下面视频在线观看| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 亚洲精品日韩在线中文字幕| 国产精品免费大片| 国产成人欧美| 日韩av不卡免费在线播放| 在现免费观看毛片| 最近最新中文字幕大全免费视频 | 亚洲成av片中文字幕在线观看 | av天堂久久9| 免费黄频网站在线观看国产| 少妇人妻 视频| 妹子高潮喷水视频| 亚洲熟女精品中文字幕| 另类精品久久| 男女免费视频国产| 99久久精品国产国产毛片| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 啦啦啦视频在线资源免费观看| 欧美+日韩+精品| 欧美性感艳星| 久久精品国产亚洲av涩爱| 两个人看的免费小视频| 91精品三级在线观看| 成人漫画全彩无遮挡| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级| 另类亚洲欧美激情| 啦啦啦在线观看免费高清www| 高清在线视频一区二区三区| av免费在线看不卡| 亚洲国产精品国产精品| 精品一区二区免费观看| av线在线观看网站| 最黄视频免费看| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 五月天丁香电影| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 亚洲av男天堂| 涩涩av久久男人的天堂| 精品午夜福利在线看| 久久精品国产a三级三级三级| 五月伊人婷婷丁香| 高清毛片免费看| 又大又黄又爽视频免费| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| 免费人成在线观看视频色| 高清av免费在线| 国产淫语在线视频| 多毛熟女@视频| 两个人免费观看高清视频| 色哟哟·www| 两个人免费观看高清视频| 97在线视频观看| 少妇的逼水好多| 伦理电影免费视频| 国产成人午夜福利电影在线观看| 丰满迷人的少妇在线观看| 亚洲性久久影院| 人人妻人人添人人爽欧美一区卜| 黄色配什么色好看| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 日韩成人伦理影院| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 伦理电影大哥的女人| 美女内射精品一级片tv| 中文字幕人妻丝袜制服| 午夜激情av网站| 久久久久久久久久久久大奶| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 欧美亚洲日本最大视频资源| 少妇被粗大猛烈的视频| 如何舔出高潮| 色婷婷av一区二区三区视频| 国产成人精品一,二区| 国产国拍精品亚洲av在线观看| 久久这里有精品视频免费| 国产片内射在线| 色5月婷婷丁香| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 国产精品久久久久久久电影| 9热在线视频观看99| 亚洲av国产av综合av卡| 丝袜在线中文字幕| 亚洲国产精品专区欧美| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 欧美激情 高清一区二区三区| 午夜免费鲁丝| 老司机影院毛片| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人片av| 久久精品人人爽人人爽视色| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美| 日产精品乱码卡一卡2卡三| 欧美人与性动交α欧美软件 | 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| 久久青草综合色| 亚洲精品一二三| 人人妻人人添人人爽欧美一区卜| 国产av码专区亚洲av| 亚洲成人手机| 精品国产露脸久久av麻豆| 成年人午夜在线观看视频| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 国产一区二区在线观看日韩| 丁香六月天网| 久久久国产一区二区| 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 亚洲成人av在线免费| 老司机影院成人| 丝袜人妻中文字幕| 久热久热在线精品观看| av免费在线看不卡| 男女无遮挡免费网站观看| 在线观看国产h片| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 永久网站在线| 欧美成人午夜精品| 成人国产麻豆网| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 五月开心婷婷网| 亚洲综合精品二区| 男女啪啪激烈高潮av片| 国产精品蜜桃在线观看| 亚洲成国产人片在线观看| 久热这里只有精品99| 久久热在线av| 国产高清不卡午夜福利| 男人爽女人下面视频在线观看| 超色免费av| 高清毛片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美成人精品一区二区| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 热re99久久精品国产66热6| 国产精品蜜桃在线观看| 日韩三级伦理在线观看| 国产不卡av网站在线观看| 日日爽夜夜爽网站| av.在线天堂| 秋霞在线观看毛片| 草草在线视频免费看| 精品国产一区二区三区四区第35| 人人妻人人添人人爽欧美一区卜| 精品国产露脸久久av麻豆| 久久精品夜色国产| 国产 一区精品| 在线观看人妻少妇| 久久午夜综合久久蜜桃| 久久久久久久久久人人人人人人| 最近2019中文字幕mv第一页| 久久久久精品久久久久真实原创| 日韩电影二区| 男女高潮啪啪啪动态图| 看十八女毛片水多多多| 黄色视频在线播放观看不卡| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 国产精品女同一区二区软件| 国产高清不卡午夜福利| 亚洲欧美日韩另类电影网站| 亚洲欧美成人综合另类久久久| 天天影视国产精品| 久久热在线av| 全区人妻精品视频| 天堂俺去俺来也www色官网| 观看av在线不卡| 亚洲第一av免费看| 综合色丁香网| 日本-黄色视频高清免费观看| 99热这里只有是精品在线观看| 搡女人真爽免费视频火全软件| 成年动漫av网址| 亚洲,一卡二卡三卡| 满18在线观看网站| 女人被躁到高潮嗷嗷叫费观| 午夜激情久久久久久久| 人人妻人人爽人人添夜夜欢视频| 春色校园在线视频观看| 2022亚洲国产成人精品| 老熟女久久久| 狂野欧美激情性xxxx在线观看| 90打野战视频偷拍视频| 在线免费观看不下载黄p国产| 搡女人真爽免费视频火全软件| 在线观看免费视频网站a站| 亚洲精品av麻豆狂野| 男女免费视频国产| 久久久久久久大尺度免费视频| 又粗又硬又长又爽又黄的视频| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 制服诱惑二区| 欧美97在线视频| 国精品久久久久久国模美| 亚洲精品aⅴ在线观看| 中文字幕制服av| 午夜久久久在线观看| 性高湖久久久久久久久免费观看| 国产成人aa在线观看| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 99久久综合免费| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 9色porny在线观看| 永久网站在线| 中文字幕亚洲精品专区| 欧美国产精品一级二级三级| videosex国产| 国产日韩欧美视频二区| 少妇人妻 视频| 久久久欧美国产精品| 精品久久久精品久久久| 欧美精品一区二区免费开放| 国产免费又黄又爽又色| 一区二区三区四区激情视频| 母亲3免费完整高清在线观看 | 亚洲丝袜综合中文字幕| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 91成人精品电影| 视频中文字幕在线观看| 在线天堂最新版资源| 999精品在线视频| 国产精品人妻久久久影院| 亚洲在久久综合| 国产精品久久久久久精品电影小说| 视频区图区小说| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 国产淫语在线视频| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 日本欧美视频一区| 国产免费视频播放在线视频| 亚洲精品视频女| 久久久国产欧美日韩av| av在线播放精品| 1024视频免费在线观看| av在线老鸭窝| 啦啦啦视频在线资源免费观看| 视频在线观看一区二区三区| 自线自在国产av| 9色porny在线观看| 边亲边吃奶的免费视频| 精品亚洲乱码少妇综合久久| 人人澡人人妻人| 精品福利永久在线观看| 久久久久久人妻| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 18禁观看日本| 激情五月婷婷亚洲| 中文字幕人妻丝袜制服| 久久久久久久国产电影| 中国国产av一级| 亚洲一码二码三码区别大吗| 亚洲av在线观看美女高潮| 视频中文字幕在线观看| 精品人妻偷拍中文字幕| 免费黄频网站在线观看国产| 日日爽夜夜爽网站| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕| 国产免费又黄又爽又色| videossex国产| 五月伊人婷婷丁香|