• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chicken Swarm Optimization Algorithm Based on Behavior Feedback and Logic Reversal

    2018-10-10 07:44:08ZhenwuWangandChengfengYin

    Zhenwu Wang and Chengfeng Yin

    (Department of Computer Science and Technology, China University of Mining and Technology, Beijing 100083, China)

    Abstract: Considering the problem that a rooster in chicken swarm optimization (CSO) easily falls into a local optimum and cannot fully demonstrate the population wisdom, the paper proposed an improved CSO algorithm, which based on behavior feedback from hens to rooster and rooster behavior logic reversal, therefore it is named behavior feedback and logic reversal CSO (BFLRCSO). The proposed algorithm changes the original rooster behavior logic to boost the convergence rate, which can accelerate the rooster optimization process, and the algorithm also introduces a feedback mechanism from hens to rooster which can prevent swarm dropping into a local optimum. The experiment results demonstrated that the BFLRCSO algorithm is not easy to fall into a local optimum, which has a better optimization result and shorter optimization time compared with the original CSO algorithm in both high and low dimensional search space.

    Key words: chicken swarm optimization (CSO) algorithm; population wisdom; behavior feedback; behavior logic reversal

    With good application effects, bionic optimization algorithms have been widely used in searching global optimal solutions in the fields of computation, engineering and management, which utilize the multiple member population behavior in nature, and solve the multi-dimensional global optimization problem based on the swarm intelligence of its population. Different algorithms have been proposed, such as genetic algorithm (GA)[1], particle swarm optimization (PSO) algorithm[2], artificial bee colony (ABC) algorithm[3], artificial fish swarm (AFS) algorithm[4], bat algorithm (BA)[5], and so on.

    Chicken swarm optimization (CSO) algorithm[6]was proposed in 2014, which imitated the social relation structure in the chicken population, the corresponding organization form and activity mode of searching food behavior. CSO divides the population members into roosters, hens and chicks, and each of whom has different behavioral norms. The chicken swarm is organized as several groups which have a competitive relationship, and each group has a rooster, many hens and a small number of chicks which have independent social stratum and labor division. Meng[6]compared CSO with PSO, BA and the difference algorithm in low dimensional space, and the experimental results have shown that CSO has higher optimization accuracy and faster optimal speed in contrast to the other three methods, but CSO is easy to fall into a local optimal solution and has the premature convergence problem in high dimensional space. In details, although roosters have the minimal number, they play guiding roles in the whole population, and the hens have the maximum quantity, but they do not provide feedbacks to roosters, which makes the algorithm rapidly fall into local optimal solution when roosters sink into a local minima. This work improved the rooster’s behavior pattern and introduced the feedback mechanism from hens to roosters in each group which explores the population intelligence sufficiently.

    The rest of this paper is organized as follows. Section 1 gives the related work about the CSO algorithm, the details of the proposed CSO based on behavior feedback and logic reversal (BFLRCSO) algorithm have been discussed in Section 2 and Section 3 analyzes the experimental results carefully, at last this work is concluded in Section 4.

    1 Related Work

    Although CSO has been put forward in recent years, the theoretical research work[6-10]shown that it has obvious advantages compared with GA and PSO algorithms, and it has been applied in different domains[11-19].CSO has some basic premise hypothesis:

    ①There are some groups in the whole chicken population, and each group has one rooster, some hens and chicks.

    ②The identities of roosters, hens and chicks are determined by their fitness values, in which the least suitable part is the roosters, the worst part is the chicks and the other is the hens; Each hen randomly chooses one rooster as her spouse, and each chick also selects one hen as her mother.

    ③The individual identity, spouse relationship and mother-child relationship remain unchanged within several generations, and after that (suppose the update cycle isG)they will be updated.

    ④In each group, hens follow their spouse rooster to look for food, and randomly compete with other individuals for food, the individuals with better fitness values are more likely to get food when they compete with each other.

    (1)

    (2)

    where Randn(0,σ2) represents the random number which follows a Gaussian distribution where the expectation is 0 and the variance isσ2.εis the minimum constant,kis the label of another randomly selected rooster,fiandfkis the fitness value of theithand thekthroosters, respectively. The hen’s position can be updated by the following formulas.

    (3)

    (4)

    C2=exp (fr2-fi)

    (5)

    where Rand is the random number which follows a uniform distribution that falls in [0,1],r1is the tag of theithhen’s spouse rooster,r2is the tag of another randomly selected rooster or hen,r1≠r2.The chicks have been updated by

    These days having a best friend seems so important to girls. You want to be special. However I have learned1 the hard way that having one best friend is not the way to go. It s so much better to have many great friends.

    (6)

    CSO has also been applied in different fields. Liang[11]used a hybrid cuckoo search-chicken swarm algorithm to optimize sidelobe-level suppression for linear and circular antenna arrays; Feng[12]applied CSO to solve the deadlock-free migration for virtual machine consolidation; Chen[13]used CSO to estimate parameter of nonlinear systems, Hafez[14]integrated CSO to an estimation function to realize the feature selection, Banerjee[15]applied CSO to optimize serially concatenated convolution turbo code which can improve the bit error rate of communication system, Chen[16]used CSO to adjust the space searching direction of wireless sensor network(WSN) adaptively in order to optimize the convergence of WSN location algorithm; Khaled[17]adopted CSO to detect community in social network, Li[18]used CSO to optimize the ascent trajectory of hypersonic vehicles, and Nursyiva[19]applied CSO to compete data clustering.

    Although different scholars[6-19]studied CSO in theory and applications, it is still easy to fall into local optimums in high dimensional space. For this problem, this work improves the rooster’s behavior logic to accelerate its convergence speed, and also introduces the feedback from hens to roosters to prevent falling into a local optimal solution, the principle of proposed BFLRCSO is discussed in Section 2.

    2 BFLRCSO Algorithm

    Fig.1 Flowchart of CSO algorithm

    As described in Fig.1, CSO algorithm firstly initializes parameters, such asN,M,G,Nr,Nh,NcandNm, allocates position for each individual randomly, and then the fitness values of individuals are computed, the global and local optimal positions are set, and the iterative number is 1; If the current iterative numbertreachesG, CSO sorts all the individuals by the fitness values from high to low, theNrindividuals are chosen as roosters, which have the best fitness values, the worstNcindividuals are the chicks, others are hens, the population is divided into different groups, each group has one rooster, hens choose roosters as their spouses randomly and chicks randomly select hens as their mothers and join the corresponding groups; The positions of roosters, hens and chicks are updated by Eqs.(1)(3)(6),and the corresponding fitness values are computed; The individual local optimal positions and the global best position are updated, and CSO goes to the next iteration, if satisfies end conditions algorithm finished, and the termination conditions aret≤Mor the global optimal position satisfies the threshold value.

    Ref.[8] pointed out that hens, which have the maximum quantity play an important role in the optimization, but hens’ influence on roosters cannot be reflected in the original CSO algorithm. At the same time, according to the update rules of roosters, if their fitness values are higher, the searching scopes are larger. However, according to CSO optimization rules, a better fitness value indicates that the corresponding individual is closer to food, and searching food in a small scope can have a high probability, so the searching scope should be smaller as the fitness becomes better. In addition, in order to prevent roosters falling into a local optimum, the BFLRCSO algorithm introduces a feedback mechanism from hens to roosters, and the update formula of roosters is modified as follows

    (7)

    (8)

    S=exp (fave-fi)

    (9)

    Herefaverepresents the average fitness value of all the hens which belong to the roosterigroup, Eq.(7) shows thatσ2is smaller when rooster has a smaller fitness value, which indicates that the rooster with a better fitness value is closer to food(the global optimum), and it can accurately confirm the searching scope in the next iteration. At the same time,S≥1 indicates that when rooster updates the position, the grouped hens can delay the efficiency of searching food. In other words, they can enlarge the rooster’s searching scope. But if the grouped hens have better fitness values,favewould be smaller, andSis closer to 1, which indicates that the grouped hens play less influence on the rooster.

    3 Experimental Results Analysis of BFLRCSO Algorithm

    3.1 Experimental result analysis

    In order to test the optimization effects, 7 popular test functions are chosen to compare the BFLRCSO algorithm with the standard CSO algorithm, which are described in Tab.1.

    Tab.1 7 standard test functions

    In order to ensure the validity of the results, each algorithm will perform 100 times independently, the particle number of each algorithm is 100, and the iterative number is 1 000. The platform’s hardware and software specifics are listed as follows. CPU is Intel(R) Core(TM) i5-4210H 2.90 GHz, the memory is RAM 4.00 GB, the operating system is Windows 10 64 bit, the software development platform is VS.NET 2013,and the programming language is C#. All test functions will be tested in the search space with the dimension is 5 and 50 respectively, and the initial parameters of each algorithm is described in Tab.2.

    Tab.2 Parameters of compared algorithms

    Tab.3 Experimental data under D=5

    Tab.4 Experimental data under D=50

    According to Tab.3, it can be observed that the optimal, the worst, the average and the standard deviation values of BFLRCSO algorithm are all better than (or equal to) those standard CSO algorithms for F1,F2,F3,F5,F6 and F7.All the above values of BFLRCSO obtained the best results(zero) on F1,F3,F6 and F7,and its results on F2 and F5 are obviously better than those of standard CSOs. For F4, the optimal values of the two algorithms have little difference, and the average, the worst and the standard deviation values of BFLRCSO are better than those of standard CSO algorithms.

    As described in Tab.4, in high dimension space, all the experimental results of BFLRCSO algorithm are better than those of CSO on F1,F2,F3,F4,F6 and F7. BFLRCSO got the optimal values (zero) on F1,F3,F6 and F7. The experimental results of BFLRCSO are obviously better than those of CSO on F2,F3,F4 and F6;On F5,the optimal value of CSO is better than those of BFLRCSO,but the difference is very little, and the worst, the average values of BFLRCSO are better than those of CSO.

    Therefore from the above discussion, the BFLRCSO algorithm has obvious advantages (better accuracy) than CSO in most cases not only in low dimension space but also in high dimension space. In order to make a more accurate description of the algorithm efficiency, this paper analyzes the change of the global optimal fitness in each iteration. The change curves of global fitness values under 7 test functions are shown in Figs.2-8 forD=5. Theyaxis values in these figures are the mean values of the global fitness under the corresponding iterations in 100 independent experiments. Since the BFLRCSO algorithm has reached the global optimum after a small amount of iterations, the fitness change curves are shown for the first 50 iterations.

    Through Tab.3 and Figs.2-8, it can be seen that BFLRCSO can reach the global optimum in a few iterations on F1-F7 compared with the CSO algorithm, which indicates that BFLRCSO has higher searching efficiency and accuracy. That is to say, BFLRCSO can find the global optimum more quickly within the same number of iterations compared with the CSO algorithm. The change curves of global fitness values under 7 test functions are shown in Figs. 9-15 forD=50. Theyaxis values in these figures are the mean values of the global fitness under the corresponding iterations in 100 independent experiments. Since the BFLRCSO algorithm has reached the global optimum after a small amount of iterations, the fitness change curves are also displayed for the first 50 iterations.

    Fig.2 F1 global optimum adaptation curves under D=5

    Fig.3 F2 global optimum adaptation curves under D=5

    Fig.5 F4 global optimum adaptation curves under D=5

    Fig.6 F5 global optimum adaptation curves under D=5

    Fig.7 F6 global optimum adaptation curves under D=5

    Fig.8 F7 global optimum adaptation curves under D=5

    From Tab.4 and Figs.9-15 it is obvious that BFLRCSO converges very fast on the global optimal values in most cases (F1, F2, F3, F4, F6 and F7) in high dimension space, and its optimized accuracy and efficiency have been improved obviously, under the certain optimization accuracy constraints. BFLRCSO has a less iterative number. So the results in Figs.2-15 indicate that BFLRCSO has obvious advantages on conver-gence speed and optimized accuracy compared with CSO both on low and high dimension space.

    Fig.9 F1 global optimum adaptation curves under D=50

    Fig.10 F2 global optimum adaptation curves under D=50

    Fig.11 F3 global optimum adaptation curves under D=50

    Fig.12 F4 global optimum adaptation curves under D=50

    3.2 Further discussion

    In the CSO algorithm, there is a competitive relationship between roosters. If the rooster’s fitness is better, the search scope is larger, but this is not consistent with the actual situation. In practice, the fitness value is represented by the distance between the individual and the food. If the fitness value is smaller, it should be closer to the food (global optimum). At the same time, the hens in each group had no feedback on the rooster in the CSO algorithm, that is, the location information of other members in the group was not effectively utilized for the rooster.

    Fig.13 F5 global optimum adaptation curves under D=50

    Fig.14 F6 global optimum adaptation curves under D=50

    Fig.15 F7 global optimum adaptation curves under D=50

    To deal with the first problem, this paper assumes that if the individual is more outstanding, the search range is smaller. So the individual fitness is more likely to be close to the global optimum. For the latter problem, this paper introduces a feedback mechanism from grouped hens to rooster to enhance the utilization rate of the information within the group. Namely, it is assumed that the grouped hens will slow the convergence speed of rooster, if the hens are more excellent, they would play a less influence on the rooster. In BFLRCSO, the above improvement make roosters avoid falling into local optimums. With the more effective utilization of the swarm information, the convergence rate of rooster fitness is faster. Because roosters are the important part in the chicken population and they are in charge of guiding the direction and speed of the whole swarm optimization, the BFLRCSO enhances the overall optimized speed and avoids falling into local optimal solutions.

    4 Conclusion

    CSO is a novel swarm intelligence optimization algorithm which imitates the structure of social relations in chicken population. Compared with PSO and GA, CSO has obvious advantages in high dimensional problem. In order to give full play to swarm intelligence, this work adds a feedback mechanism from hens to roosters to the CSO algorithm, and optimizes the rooster’s update method. The experimental results shown that the proposed BFLRCSO algorithm has higher searching accuracy and faster optimization speed compared with CSO both in low and high dimension spaces. In the future, the CSO applications in different fields should be studied deeply, especially for high dimensional problems. The proposed algorithm also can be further improved in some aspects, such as the establishment of chicken social relations, the random death of individuals in the population, and so on.

    涩涩av久久男人的天堂| 国产黄片美女视频| 久久久国产精品麻豆| 街头女战士在线观看网站| 国产一区二区在线观看日韩| 噜噜噜噜噜久久久久久91| 亚洲综合精品二区| 如何舔出高潮| 国产精品国产三级国产专区5o| 国产精品.久久久| 免费看光身美女| 91午夜精品亚洲一区二区三区| 国内揄拍国产精品人妻在线| 一级a做视频免费观看| 日本欧美国产在线视频| 观看免费一级毛片| 色94色欧美一区二区| 精品久久久久久久久亚洲| 2018国产大陆天天弄谢| 男女国产视频网站| 女性被躁到高潮视频| 久久久国产欧美日韩av| 国产成人精品久久久久久| 22中文网久久字幕| 久久久国产一区二区| 青春草亚洲视频在线观看| 国产综合精华液| 欧美日韩国产mv在线观看视频| 最近的中文字幕免费完整| 99久久人妻综合| 午夜视频国产福利| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 国产综合精华液| 99热全是精品| 国产伦精品一区二区三区四那| 国产白丝娇喘喷水9色精品| a级毛片在线看网站| 亚洲欧洲国产日韩| 少妇裸体淫交视频免费看高清| 亚洲四区av| 免费看日本二区| 日韩电影二区| 黄色配什么色好看| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| 欧美日韩精品成人综合77777| 免费久久久久久久精品成人欧美视频 | 欧美高清成人免费视频www| 99视频精品全部免费 在线| 亚洲经典国产精华液单| 伦理电影大哥的女人| 精品久久久精品久久久| 亚洲内射少妇av| 久久午夜综合久久蜜桃| 亚洲成人手机| 亚洲欧美日韩另类电影网站| 一级爰片在线观看| 国产精品一区二区在线观看99| 久久久久久久久久久久大奶| xxx大片免费视频| www.色视频.com| 亚洲av福利一区| 黄色毛片三级朝国网站 | 亚洲国产日韩一区二区| 国产黄色免费在线视频| 色吧在线观看| 亚洲欧美一区二区三区国产| 国产成人一区二区在线| 亚洲国产av新网站| 国产av国产精品国产| 特大巨黑吊av在线直播| 大陆偷拍与自拍| 极品人妻少妇av视频| 久久6这里有精品| 在线亚洲精品国产二区图片欧美 | 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 久久久久久人妻| 亚洲av成人精品一区久久| 欧美人与善性xxx| 国产有黄有色有爽视频| av福利片在线| 黑人高潮一二区| 在线观看免费日韩欧美大片 | 一级,二级,三级黄色视频| 校园人妻丝袜中文字幕| 一本久久精品| 婷婷色av中文字幕| 高清毛片免费看| 国产乱人偷精品视频| 美女中出高潮动态图| 成年人午夜在线观看视频| 亚洲国产av新网站| 国内揄拍国产精品人妻在线| 欧美三级亚洲精品| 亚洲在久久综合| 精品亚洲成a人片在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人一二三区av| 国产成人精品婷婷| 亚洲综合色惰| 国产欧美另类精品又又久久亚洲欧美| 国产黄色免费在线视频| 欧美精品一区二区免费开放| 亚洲第一av免费看| a级一级毛片免费在线观看| 国产一区有黄有色的免费视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区蜜桃| 中文字幕免费在线视频6| 99热6这里只有精品| 久久人人爽人人片av| 51国产日韩欧美| av黄色大香蕉| 另类亚洲欧美激情| 亚洲在久久综合| 久久久久久久久久久免费av| 国产精品.久久久| av在线老鸭窝| 国产精品久久久久久精品古装| 天美传媒精品一区二区| 精品国产国语对白av| 免费在线观看成人毛片| 亚洲精品国产av蜜桃| 亚洲精华国产精华液的使用体验| 免费观看av网站的网址| 亚洲精品乱久久久久久| 能在线免费看毛片的网站| 免费看日本二区| 亚洲人成网站在线观看播放| .国产精品久久| 亚洲真实伦在线观看| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av天美| 人妻一区二区av| 久久99一区二区三区| 各种免费的搞黄视频| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 国产一级毛片在线| 欧美激情国产日韩精品一区| 观看av在线不卡| 嫩草影院新地址| 秋霞在线观看毛片| 久久国产精品男人的天堂亚洲 | 大片免费播放器 马上看| 免费看日本二区| 日韩在线高清观看一区二区三区| 国产一区二区三区av在线| 伦理电影免费视频| 建设人人有责人人尽责人人享有的| 国产又色又爽无遮挡免| 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 女性被躁到高潮视频| 乱码一卡2卡4卡精品| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 一级毛片我不卡| 久久精品国产鲁丝片午夜精品| 久久女婷五月综合色啪小说| 麻豆乱淫一区二区| 丰满迷人的少妇在线观看| 99久久精品国产国产毛片| 国产精品久久久久久久久免| 亚洲无线观看免费| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 午夜av观看不卡| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 久久ye,这里只有精品| 最后的刺客免费高清国语| av一本久久久久| 最近中文字幕高清免费大全6| 午夜91福利影院| 中文字幕精品免费在线观看视频 | 丰满乱子伦码专区| 亚洲精品成人av观看孕妇| 一级黄片播放器| 人人澡人人妻人| 亚洲色图综合在线观看| 久久久久久人妻| 亚洲电影在线观看av| 亚洲av.av天堂| av女优亚洲男人天堂| 亚洲第一av免费看| 在线看a的网站| 高清av免费在线| 人妻少妇偷人精品九色| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区 | 午夜老司机福利剧场| 欧美3d第一页| 国产成人精品一,二区| 伊人久久精品亚洲午夜| 国产精品一区二区性色av| 国产极品粉嫩免费观看在线 | 亚洲,一卡二卡三卡| 免费黄色在线免费观看| 久久婷婷青草| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区三区| 国产黄频视频在线观看| 午夜av观看不卡| 99久久综合免费| 日韩精品免费视频一区二区三区 | 欧美日本中文国产一区发布| 国产精品一区二区性色av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产av在线观看| 国产伦精品一区二区三区四那| 91久久精品电影网| 十分钟在线观看高清视频www | 性色av一级| 国产精品人妻久久久久久| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 九草在线视频观看| 男人舔奶头视频| 国产伦精品一区二区三区视频9| 最后的刺客免费高清国语| 观看免费一级毛片| 国产在线免费精品| 色婷婷av一区二区三区视频| 国产在视频线精品| 精品一区二区三卡| 一级,二级,三级黄色视频| 国产精品免费大片| 国产精品嫩草影院av在线观看| 国产淫语在线视频| 精品国产一区二区久久| 91精品国产国语对白视频| 精品人妻一区二区三区麻豆| 狠狠精品人妻久久久久久综合| 国产成人一区二区在线| 国产精品偷伦视频观看了| 大码成人一级视频| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 亚洲成人av在线免费| 这个男人来自地球电影免费观看 | 亚洲精品乱码久久久久久按摩| 免费久久久久久久精品成人欧美视频 | 人妻 亚洲 视频| 纵有疾风起免费观看全集完整版| 99热网站在线观看| 成年人午夜在线观看视频| 亚洲第一av免费看| 亚洲激情五月婷婷啪啪| 免费大片18禁| 亚洲不卡免费看| 精品熟女少妇av免费看| 大码成人一级视频| 人妻少妇偷人精品九色| 国产av一区二区精品久久| 亚洲精品aⅴ在线观看| 午夜久久久在线观看| 免费黄色在线免费观看| 成年人免费黄色播放视频 | √禁漫天堂资源中文www| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 免费人妻精品一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本-黄色视频高清免费观看| √禁漫天堂资源中文www| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三| 亚洲av国产av综合av卡| 国产男女内射视频| av不卡在线播放| tube8黄色片| 成年美女黄网站色视频大全免费 | 精品国产露脸久久av麻豆| 哪个播放器可以免费观看大片| 亚洲国产av新网站| 黄色毛片三级朝国网站 | 日韩制服骚丝袜av| 亚洲va在线va天堂va国产| 一个人免费看片子| 欧美精品一区二区大全| 亚洲av.av天堂| 日韩欧美精品免费久久| videos熟女内射| 交换朋友夫妻互换小说| 久久午夜综合久久蜜桃| 麻豆精品久久久久久蜜桃| 少妇被粗大的猛进出69影院 | 国产淫片久久久久久久久| 久久久a久久爽久久v久久| 免费看光身美女| 精品久久久久久久久亚洲| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 美女大奶头黄色视频| 嫩草影院新地址| 久久精品熟女亚洲av麻豆精品| 日本av免费视频播放| 亚洲精品久久午夜乱码| 欧美成人午夜免费资源| www.av在线官网国产| 亚洲综合色惰| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 男人舔奶头视频| 色婷婷久久久亚洲欧美| 全区人妻精品视频| 2021少妇久久久久久久久久久| 大香蕉久久网| 人人妻人人添人人爽欧美一区卜| 内射极品少妇av片p| 老司机影院成人| 熟女av电影| 精品一区在线观看国产| 在线播放无遮挡| 丰满乱子伦码专区| 久久狼人影院| 精品久久久久久久久av| 日韩电影二区| 高清av免费在线| 午夜影院在线不卡| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲 | videos熟女内射| 男的添女的下面高潮视频| 校园人妻丝袜中文字幕| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 日本av免费视频播放| 9色porny在线观看| 久久精品夜色国产| 久久精品国产亚洲av涩爱| 久久热精品热| 黄色毛片三级朝国网站 | a级毛片免费高清观看在线播放| 国产在线一区二区三区精| 两个人的视频大全免费| 观看美女的网站| 免费人成在线观看视频色| 亚洲av福利一区| 国产免费又黄又爽又色| 99久久中文字幕三级久久日本| 少妇 在线观看| 国产男女超爽视频在线观看| 高清av免费在线| 免费看日本二区| 交换朋友夫妻互换小说| 国产成人a∨麻豆精品| a级片在线免费高清观看视频| 久久久久久伊人网av| 国产中年淑女户外野战色| 亚洲成色77777| 亚洲国产精品一区三区| 国产高清三级在线| 深夜a级毛片| 男人和女人高潮做爰伦理| 欧美激情极品国产一区二区三区 | 国产av精品麻豆| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 久久久久久久久久久免费av| 亚洲精品国产色婷婷电影| 十八禁高潮呻吟视频 | 香蕉精品网在线| 久久久亚洲精品成人影院| av女优亚洲男人天堂| 22中文网久久字幕| 麻豆乱淫一区二区| 美女主播在线视频| 亚洲不卡免费看| 美女国产视频在线观看| 国产色婷婷99| 噜噜噜噜噜久久久久久91| 中文资源天堂在线| 国产高清有码在线观看视频| 老司机影院毛片| 日韩免费高清中文字幕av| 欧美区成人在线视频| 能在线免费看毛片的网站| 日本免费在线观看一区| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 免费在线观看成人毛片| 美女主播在线视频| 极品少妇高潮喷水抽搐| 在线观看三级黄色| a级一级毛片免费在线观看| 国产精品一区二区在线不卡| 尾随美女入室| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 永久网站在线| 秋霞在线观看毛片| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 国产精品人妻久久久影院| 国产色婷婷99| 久久ye,这里只有精品| 少妇的逼水好多| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 人人澡人人妻人| 内射极品少妇av片p| 在线观看免费高清a一片| 九九在线视频观看精品| 国产 精品1| 在线观看免费日韩欧美大片 | 久久久国产精品麻豆| 插阴视频在线观看视频| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 最新的欧美精品一区二区| 亚洲精品456在线播放app| 少妇人妻 视频| tube8黄色片| 男女边吃奶边做爰视频| 一个人看视频在线观看www免费| 美女福利国产在线| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 久久久久久久久久久久大奶| 国产精品伦人一区二区| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 熟女av电影| 中文字幕av电影在线播放| 插逼视频在线观看| 国产 精品1| 欧美精品一区二区免费开放| 日日啪夜夜爽| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| av在线播放精品| 九九在线视频观看精品| 欧美xxxx性猛交bbbb| 亚洲天堂av无毛| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 国产av国产精品国产| 高清午夜精品一区二区三区| 免费黄色在线免费观看| 日韩精品有码人妻一区| 在线观看一区二区三区激情| 精品一区在线观看国产| 少妇高潮的动态图| 久久久久网色| 少妇人妻一区二区三区视频| 精品亚洲成国产av| 日韩强制内射视频| 亚洲人成网站在线观看播放| 91精品国产国语对白视频| 亚洲第一区二区三区不卡| 一级黄片播放器| 日韩精品有码人妻一区| 美女中出高潮动态图| 久久人人爽av亚洲精品天堂| 一区二区三区乱码不卡18| 高清午夜精品一区二区三区| 国产中年淑女户外野战色| 国产一区二区在线观看日韩| 精品久久久噜噜| 国产亚洲最大av| 人妻制服诱惑在线中文字幕| 日韩免费高清中文字幕av| 男女边摸边吃奶| 中文字幕制服av| 中国三级夫妇交换| 中国美白少妇内射xxxbb| 美女内射精品一级片tv| 亚洲精品aⅴ在线观看| 国产无遮挡羞羞视频在线观看| 国产成人91sexporn| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 日本黄大片高清| 热re99久久精品国产66热6| 99热网站在线观看| kizo精华| 能在线免费看毛片的网站| 妹子高潮喷水视频| 少妇人妻久久综合中文| 国产精品国产av在线观看| 久久韩国三级中文字幕| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 日韩欧美精品免费久久| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 亚洲精品自拍成人| 老熟女久久久| 激情五月婷婷亚洲| 久久av网站| 亚洲精品久久午夜乱码| 黑丝袜美女国产一区| 亚洲欧美日韩另类电影网站| av免费观看日本| 成年av动漫网址| 女人精品久久久久毛片| 在线观看人妻少妇| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 丰满迷人的少妇在线观看| 99精国产麻豆久久婷婷| 青春草国产在线视频| 亚洲综合色惰| 亚洲国产精品999| 婷婷色综合www| 久久99蜜桃精品久久| 中文字幕人妻熟人妻熟丝袜美| 久久ye,这里只有精品| 亚洲成人av在线免费| 日韩一区二区三区影片| 成人国产av品久久久| 亚洲欧美日韩东京热| 亚洲欧洲日产国产| 91精品伊人久久大香线蕉| 熟女av电影| 久久综合国产亚洲精品| av视频免费观看在线观看| 夫妻午夜视频| av福利片在线观看| 最近的中文字幕免费完整| 草草在线视频免费看| 国产日韩欧美在线精品| 夫妻午夜视频| 日韩在线高清观看一区二区三区| 亚洲情色 制服丝袜| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 三级经典国产精品| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人 | 少妇熟女欧美另类| 亚洲美女黄色视频免费看| 男人狂女人下面高潮的视频| 免费播放大片免费观看视频在线观看| av线在线观看网站| 亚洲一级一片aⅴ在线观看| 精品一品国产午夜福利视频| 欧美另类一区| 麻豆成人av视频| 91精品伊人久久大香线蕉| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 22中文网久久字幕| 天堂俺去俺来也www色官网| av福利片在线| av黄色大香蕉| 色视频在线一区二区三区| 我的老师免费观看完整版| 女的被弄到高潮叫床怎么办| 欧美另类一区| 你懂的网址亚洲精品在线观看| 国产精品伦人一区二区| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 99热这里只有是精品在线观看| 五月玫瑰六月丁香| 日韩熟女老妇一区二区性免费视频| 少妇熟女欧美另类| 精品午夜福利在线看| 日韩熟女老妇一区二区性免费视频| 秋霞在线观看毛片| 亚洲国产欧美在线一区| 三级经典国产精品| 日本黄色片子视频| 久久人人爽人人爽人人片va| 黄色日韩在线| 啦啦啦啦在线视频资源| 日本猛色少妇xxxxx猛交久久| 黑丝袜美女国产一区| 男人狂女人下面高潮的视频| 国产亚洲午夜精品一区二区久久| 久久国产精品大桥未久av | 我的女老师完整版在线观看| 国产成人freesex在线| 亚洲欧美一区二区三区国产| 久久国产乱子免费精品| videos熟女内射| 精品一区在线观看国产| 日本黄色日本黄色录像| 亚洲婷婷狠狠爱综合网| 国产女主播在线喷水免费视频网站| 国产精品一二三区在线看| 日韩精品有码人妻一区| 成人综合一区亚洲| 欧美性感艳星| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三|