• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forest Mapping and Classification with Compact PolInSAR Data

    2018-10-10 07:44:18NingxiaoSunYuejinZhaoLinSunandQiongzhiWu

    Ningxiao Sun, Yuejin Zhao, Lin Sun and Qiongzhi Wu,

    (1.School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China;2.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    Abstract: An unsupervised classification method was applied to compact polarimetric-interferometric SAR(C-PolInSAR) data to investigate its potential for forest mapping and classification. Unsupervised classification requires an initial class as a training set. In this paper, the compact polarimetric entropy H and the optimal coherence spectrum A were computed, and their capabilities for initial classification were analyzed. Based on the H and A, a partition method was proposed to subdivide the H-A plane, and initial classes were hence obtained. Next, unsupervised C-PolInSAR segmentation procedures based on H-A and the complex coherence matrix J4 were investigated. The effectiveness of the unsupervised classification of C-PolInSAR data was demonstrated by using an E-SAR L-band PolInSAR dataset of the Traunstein test site.

    Key words: forest mapping; unsupervised classification; Wishart classifier; optimal coherence set; compact polarimetric-interferometric SAR (C-PolInSAR)

    In recent years, new SAR modes called compact polarimetric SAR (C-PolSAR) systems have emerged.A C-PolSAR system has three polarimetric modes: the π/4 mode[1], the CL mode[2], and the CC mode[3]. It has advantages over a fully polarimetric SAR system in terms of pulse repetition frequency reduction, data volume, and system power requirements. Compared with a fully PolSAR, a C-PolSAR only has two data channels. Even though the compact polarimetric data are halved (i.e. only two data channels), the polarimetric information is not. Studies have shown that the C-PolSARs have important potentials for target decomposition[4], terrain classification and ocean targets detection[5], and to a certain extent, its capabilities are comparable to the fully SAR. The C-PolSAR interferometric technique[5],which combines the C-PolSAR with the interferometric technique,also plays an important role in forest parameters inversion.

    Forests play an important role as a natural resource of biomass storage and in the dynamic carbon cycle. Research of forestry applications have demonstrated their profound significance. For example, the PolSAR technique was widely applied to forest structure analysis, tree heights and biomass estimation[7-8]etc. Classifications based on polarimetric SAR (PolSAR) data have revealed a good relationship between the Wishart[9]classified results and the tree ages of homogeneous forests[10]. However, for large biomass heterogeneous forests with trees of different types, heights and structures, classifications based on PolSAR data alone do not provide sufficient sensitivity for different forest classes. To solve this problem, classification methods were introduced to the interferometric observations. Studies have shown[11]that unsupervised forest mapping techniques based on quad polarimetric-interferometric SAR (quad-PolInSAR) data improve forest mapping and classification performance.

    In this paper, the unsupervised classification method was applied to a C-PolInSAR to investigate the potentials of the C-PolInSAR for forest mapping. Unsupervised C-PolInSAR segmentation procedures based on the complex coherence matrix were investigated. The unsupervised classification results for different compact polarimetric modes were analyzed and discussed. The potential of these C-PolInSAR classification methods were demonstrated using DLR E-SAR L-band PolInSAR datasets acquired in 2003 with a 5 m spatial baseline of the Traunstein test site.

    1 Compact Polarimetric SAR Interferometry

    1.1 C-PolSAR interferometry

    There are three compact polarimetry modes: the π/4 mode, the CL mode, and the CC mode. The C-PolSAR scattering vector k can be obtained from the complex scattering matrix S. The scattering vectors of the three compact modes can be expressed as

    (1)

    A monostatic C-PolInSAR system can measure two target scattering vectors at both ends of the baseline. The compact polarimetric scattering vectors measured at ends 1 and 2 of the baseline can be expressed as kcp1and kcp2, respectively. A four-element complex scattering target vector k4can be formed by stacking kcp1and kcp2, i.e. k4=[kcp1kcp2]T. Then, the 4×4 compact polarimetric interferometric matrix J4can be expressed as

    (2)

    where the superscript H stands for the matrix conjugate transpose; J11and J22are the Hermitian coherency matrices of the two images, respectively;Ωis a non-Hermitian complex matrix that contains polarimetric and interferometric information of the two target vectors kcp1and kcp2. The compact polarimetric-interferometric matrix J4is Hermitian and positive semi-definite.

    1.2 C-PolInSAR optimal coherence

    For C-PolInSAR, the complex polarimetric-interferometric coherenceγ(ω1,ω2) can be expressed as

    (3)

    whereω1andω2represent polarimetric projection vectors, and particular projection vectors can maximize the modulus of the coherenceγ(ω1,ω2). Many previous works[12]have proved that the maximization of the coherence modulus is an eigenvector-resolving problem, i.e.

    (4)

    Consequently, the modulus of the optimum coherence is the square root of the corresponding eigenvalues of Eq.(4), where |γopt1|≥|γopt2|.

    2 Unsupervised Classification Method Based on the H-A and C-PolInSAR Matrix

    In this section, an unsupervised C-PolInSAR classification procedures based on the compact polarimetric-interferometric coherency matrix J4is described. Since the unsupervised classification method needs the initial classes’ centers. Consequently, the parameters which can be used for initial classification should be found firstly. In this paper, we used DLR E-SAR L-band PolInSAR datasets acquired in 2003 of the Traustein test site to investigate the classification methods by transforming the fully PolInSAR data into C-PolInSAR data based on Eq.(1). The experimental datasets and the ground truth data are described in detail in the next section.

    2.1 Compact polarimetric entropy H and optimal coherence spectrum A

    Fig.1 Distribution of correlation coefficient

    In Section 2, the coherence of C-PolSAR data was introduced. The coherence between different polarization states is an additional, and important, indicator of the underlying scattering mechanism. The coherence is generally composed of different values and is invariant under apolarimetric change of basis. In addition, the optimized coherences which are computed via Eq.(4) preserve the characteristics of the scene properties and is independent of the radar polarimetric measurement basis. The optimal coherences of C-PolInSAR are shown in Fig.2. Fig.2 reveals the enhanced contrast between different optimal coherences, as studied in previous works[9,11,14]. As a result, optimized coherences indicate that the C-PolInSAR properties of vegetation media can be applied to forest classification.

    Fig.2 Magnitudes of two optimal coherences of the CL mode C-PolInSAR data

    In order to isolate the polarization-dependent part of the optimal coherences, we computed the relative values as

    (5)

    The relative optimal coherence spectrum can be expressed as[14]

    (6)

    This parameter indicates relative amplitude variations between the two optimized channels. WhenAis close to one, it indicates a single coherence scattering mechanism, whereasAclose to 0 depicts a low dependence of the scattering coherence to the polarization information.

    2.2 Initial classification based on H- A plane

    Fig.3 H-A plane zones division and color coded of the CL mode C-PolInSAR data

    Based on the entropyHand the optimal coherence spectrumA, we obtained theH-Aplane. To improve the classification accuracy, theH-Aplane was divided into several classes. These classes were used to provide an initial classification of both the Wishart iteration classification. Based on theH,Adistributions in the plane, theH-Aplane can be divided into 6-8 zones. First, based on the entropy, theH-Aplane was divided into three areas, i.e. low entropy (H<0.8), medium entropy (0.80.9) areas. Low entropy areas correspond to bare ground or agricultural areas, medium entropy areas correspond to the sparsely forested areas, and high entropy areas correspond to forested areas. Then, based on the optimal coherence spectrumA, the above three zones were further divided into several subareas to classify different kinds of forests. Note that the boundaries of different zones are not invariant, and depend on the specific data. Taking the CL mode C-PolInSAR data as an example, theH-Adistribution image and the eight-zone discrimination image are shown in Fig.3.

    2.3 Classification based on the C-PolInSAR matrix statistics

    (7)

    The compact polarimetric-interferometric coherency matrix J4is generated fromnindependent realizations of k4. Consequently, J4follows a complex Wishart pdf,Wc(n,Σ4), whose probability is defined as

    (8)

    (9)

    whereΣm=E(J4|m).

    2.4 Unsupervised classification procedure summary

    In the former section, we used the CL mode C-PolInSAR data as an example to analyze and investigate the classification parameters and the classification method. In this section, we give the general unsupervised classification steps in detail.

    ① Data preparation and pre-processing. Obtain the compact polarimetric-interferometric matrix J4via Eq.(2), and filter the data to suppress the noise and achieve an adequate equivalent number of looks.

    ② Compute the compact polarimetric entropyHbased on eigenvalue decomposition with the master or slave C-PolSAR data, and compute the optimal coherence set |γopt1| , |γopt2| via Eq.(4) and the coherence spectrumAvia Eq.(6).

    ③ Divide theH-Aplane into several zones to obtain the initial classes, and label all the pixels.

    ④ Compute the cluster centersΣmwith the compact polarimetric-interferometric matrix J4.

    ⑤ Compute the Wishart distance of each pixel based on Eq.(9). Reclassify all the pixels, and compute the new cluster centersΣm.

    ⑥ Return to the above steps for iterative classification until the termination criterion is met.

    This iterative procedure is convergent[15]. In this paper, when the number of pixels switched classes to the pre-specified number (5%), the iteration ended[16]. In addition, during classification, two classes will be merged if their center distances were very close.

    3 Unsupervised Classification Results and Discussion

    3.1 Experimental data and ground truth data description

    The PolInSAR data used in this research are the DLR-SAR L-band PolInSAR datasets acquired in 2003 of the southwestern part of the city of Routh, Germany (Traunstein). The spatial baseline is 5 m and the temporal baseline is 20 min. The flight height was 3 000 m. The range resolution is 1.5 m and azimuth resolution is 3.0 m. The original SLC image has 10 260×1 414 pixels. To suppress specked pixels and increase the SNR, we first performed 4×4 multi-look processing in the azimuthal direction. The resultant test data had a dimension of 2 565×1 414 pixels, where the RGB coded image is shown in Fig.4. Note that 4×4 multi-look is insufficient to obtain an unbiased coherence estimation and the polarimetric entropy. Therefore, 7×7 multi-look processing is further used to obtain anunbiased and stable coherence and entropy estimation. These heterogeneous forests have different heights and biomasses. The different experimental areas and species description are shown in Fig.4 and Tab.1.

    Fig.4 Experimental sites distribution and labels based on different biomass

    Tab.1 Mean biomass of each experimental site (t/ha)

    Fig.5 Unsupervised classification results of the C-PolInSAR data

    3.2 Unsupervised classification results

    Following the unsupervised classification steps in Section 4, the final classification results are achieved, as shown in Fig.5. To better evaluate forests classification results, we remove the bare ground and agriculture areas. In addition, the classification results are reclassified into 3 board categories: the low biomass class (light gray), the medium biomass (medium gray) and the high biomass class (dark gray) as shown in Fig.5. The low, medium biomass and high biomass classes are corresponding tob<200 t/ha, 200 t/ha300 t/ha, respectively, wherebstand for the biomass. The producer accuracy, user accuracy and the final accuracy based on the known biomass data of each forest area can be retrieved.

    From Fig.5, the unsupervised classification with three compact modes of the C-PolInSAR data show clear and correct results. Different biomass classes are clearly distinguishable. We compared the classification results with ground truth data in detail. We know the class level of each pixel. Based on the ground truth data (Fig.4), 30 455 pixels belong to the low biomass class, 84 038 pixels belong to the medium biomass class, and 111 566 pixels belong to the high biomass class. These pixels were used as the validation set. We computed the producer and user accuracies of the classification results, which are listed in Tab.2-Tab.4.

    We find that the high biomass class (coded in dark gray color) is easily discriminated from the medium (medium gray) and low biomass (light gray) classes, and the producer accuracy of the high biomass classification is greater than 91%. The user accuracy of the high biomass class is greater than 88%. For the π/4 and CC modes, the accuracy reached 90%. In addition, the producer accuracy of the low biomass and medium biomass classes are both greater than 74%. The user accuracy of the medium biomass class is greater than 83%, while the user accuracy of low biomass is about 60%. Even though the classification accuracy of the low biomass class is low, the final accuracy of the classification with the three compact polarimetric modes PolInSAR data was more than 83%, which validates the effectiveness of our proposed methods. We also find that the three compact modes of the PolInSAR data have similar classification results, which also means that any C-PolInSAR mode has great potential in forest classification and mapping.

    Tab.2 Classification results of π/4 mode PolInSAR

    Tab.3 Classification results of CL mode PolInSAR

    Tab.4 Classification results of CC mode PolInSAR

    4 Conclusion

    In this paper, unsupervised classification methods based on the Wishart classifier were introduced to the C-PolInSAR to investigate the potential for C-PolInSAR forest mapping and classification. The compact polarimetric entropyHand the optimal coherence spectrumAwere first computed and analyzed. Based on theH-Aplane, a partition method was proposed and applied to subdivide theH-Aplane, and initial classes were obtained. Unsupervised C-PolInSAR segmentation procedures based onH-Aand the complex coherence matrix J4were investigated. The unsupervised classification results for different compact polarimetric modes were analyzed and discussed via the actual E-SAR airborne PolInSAR data. Classification results of the three compact modes C-PolInSAR data showed clear and highly accurate classification results, and to some extent, the classification results matched those obtained from quad PolInSAR classification results. This demonstrates that supervised classification with C-PolInSAR data has a significant potential for forest mapping and classification.

    亚洲情色 制服丝袜| 欧美人与性动交α欧美精品济南到| 超色免费av| 亚洲精品国产av成人精品| 热re99久久精品国产66热6| 老司机影院成人| 一边摸一边抽搐一进一出视频| 国产日韩欧美视频二区| av在线老鸭窝| 捣出白浆h1v1| 久久免费观看电影| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 亚洲国产精品成人久久小说| 男女高潮啪啪啪动态图| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 成年av动漫网址| 亚洲欧美日韩另类电影网站| 大片电影免费在线观看免费| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 亚洲精品久久久久久婷婷小说| 精品一区二区三卡| 日韩成人av中文字幕在线观看| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 国产激情久久老熟女| 国产国语露脸激情在线看| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 亚洲综合色网址| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 十分钟在线观看高清视频www| 色婷婷av一区二区三区视频| 丰满乱子伦码专区| 中文乱码字字幕精品一区二区三区| 日日爽夜夜爽网站| 亚洲欧美激情在线| 人人妻人人澡人人看| 建设人人有责人人尽责人人享有的| 亚洲,一卡二卡三卡| 欧美日韩视频高清一区二区三区二| 久久韩国三级中文字幕| 在线观看免费午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 日日撸夜夜添| 亚洲,一卡二卡三卡| 人人妻人人澡人人看| 国产精品 欧美亚洲| 人人澡人人妻人| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线观看一区二区三区| 九九爱精品视频在线观看| 国产高清国产精品国产三级| 亚洲精品美女久久av网站| 欧美亚洲日本最大视频资源| 日本欧美国产在线视频| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美网| 性色av一级| 91成人精品电影| 亚洲欧美清纯卡通| 国产精品三级大全| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费鲁丝| 老司机在亚洲福利影院| 老司机影院成人| 熟女少妇亚洲综合色aaa.| 久久久久久久久久久久大奶| 1024香蕉在线观看| 国产又色又爽无遮挡免| 下体分泌物呈黄色| 精品一区在线观看国产| 国产精品.久久久| 色婷婷久久久亚洲欧美| 亚洲图色成人| 少妇 在线观看| 丝袜喷水一区| 亚洲av在线观看美女高潮| 国产视频首页在线观看| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区| 亚洲国产精品一区三区| 不卡av一区二区三区| 天堂俺去俺来也www色官网| 国产xxxxx性猛交| 欧美激情高清一区二区三区 | 亚洲专区中文字幕在线 | 久久天躁狠狠躁夜夜2o2o | 日韩欧美一区视频在线观看| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 国产黄色免费在线视频| 成人国产麻豆网| 国产亚洲最大av| 色婷婷av一区二区三区视频| 国产亚洲精品第一综合不卡| 亚洲精品日本国产第一区| 操美女的视频在线观看| 国产一区二区 视频在线| 中文字幕色久视频| 亚洲精品国产av成人精品| 又大又黄又爽视频免费| 啦啦啦 在线观看视频| 国产欧美亚洲国产| 熟女av电影| 人妻一区二区av| 美女中出高潮动态图| 日韩一卡2卡3卡4卡2021年| 十八禁人妻一区二区| 天天躁夜夜躁狠狠久久av| 久久久国产精品麻豆| 欧美精品一区二区免费开放| 久久国产精品大桥未久av| 蜜桃在线观看..| 国产日韩一区二区三区精品不卡| 国产成人免费无遮挡视频| 自拍欧美九色日韩亚洲蝌蚪91| av在线观看视频网站免费| 免费高清在线观看日韩| 色吧在线观看| 久久午夜综合久久蜜桃| 一区二区av电影网| 亚洲精品国产av成人精品| 国产精品女同一区二区软件| 精品少妇久久久久久888优播| www.熟女人妻精品国产| av一本久久久久| 亚洲精品国产色婷婷电影| 欧美日韩亚洲国产一区二区在线观看 | 精品亚洲成国产av| 成人影院久久| 国产一区二区在线观看av| 精品福利永久在线观看| xxx大片免费视频| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 无遮挡黄片免费观看| 亚洲久久久国产精品| 高清黄色对白视频在线免费看| 美女大奶头黄色视频| 亚洲国产av新网站| 免费日韩欧美在线观看| avwww免费| 免费观看人在逋| 色吧在线观看| 下体分泌物呈黄色| 老司机在亚洲福利影院| 久久久欧美国产精品| 国产成人精品久久久久久| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 亚洲在久久综合| 国产有黄有色有爽视频| 欧美激情极品国产一区二区三区| a级片在线免费高清观看视频| www.自偷自拍.com| 一区福利在线观看| 日韩 欧美 亚洲 中文字幕| 国精品久久久久久国模美| 亚洲av电影在线观看一区二区三区| 亚洲国产av影院在线观看| 99国产综合亚洲精品| 一区二区三区乱码不卡18| 精品福利永久在线观看| 久久精品国产亚洲av涩爱| av在线app专区| 亚洲国产精品999| 美女脱内裤让男人舔精品视频| 曰老女人黄片| 国产精品一国产av| 夫妻午夜视频| 免费黄色在线免费观看| 国产毛片在线视频| 99香蕉大伊视频| 男的添女的下面高潮视频| 精品一区二区免费观看| svipshipincom国产片| 下体分泌物呈黄色| 99热全是精品| 欧美激情 高清一区二区三区| 亚洲人成电影观看| 亚洲免费av在线视频| 国产极品粉嫩免费观看在线| 啦啦啦在线免费观看视频4| 麻豆乱淫一区二区| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 91aial.com中文字幕在线观看| 丰满迷人的少妇在线观看| 国产亚洲av高清不卡| av在线app专区| 在线天堂中文资源库| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 五月开心婷婷网| 成人国产麻豆网| 黄片无遮挡物在线观看| 男女高潮啪啪啪动态图| 黑人猛操日本美女一级片| www.熟女人妻精品国产| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 午夜日本视频在线| 国产精品一区二区在线不卡| 国产精品免费视频内射| 成年人免费黄色播放视频| 国产精品成人在线| av国产久精品久网站免费入址| 亚洲图色成人| videosex国产| 日韩大码丰满熟妇| 午夜精品国产一区二区电影| 亚洲综合精品二区| 一边摸一边做爽爽视频免费| 日韩 欧美 亚洲 中文字幕| 妹子高潮喷水视频| 欧美国产精品va在线观看不卡| 在线 av 中文字幕| 久久99热这里只频精品6学生| 精品第一国产精品| 狠狠精品人妻久久久久久综合| 飞空精品影院首页| 黄色视频不卡| 黄片无遮挡物在线观看| 国产成人精品无人区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美网| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 久久免费观看电影| 日韩成人av中文字幕在线观看| 亚洲专区中文字幕在线 | 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| bbb黄色大片| 咕卡用的链子| 欧美日韩视频高清一区二区三区二| 午夜激情久久久久久久| 搡老乐熟女国产| 秋霞在线观看毛片| 韩国高清视频一区二区三区| 国产伦人伦偷精品视频| 看免费成人av毛片| 国产亚洲av高清不卡| 国产又色又爽无遮挡免| 一级毛片 在线播放| 看十八女毛片水多多多| 欧美日韩一级在线毛片| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人久久小说| 久久精品久久精品一区二区三区| 看免费av毛片| 亚洲成人免费av在线播放| 欧美日韩一区二区视频在线观看视频在线| 日韩一卡2卡3卡4卡2021年| 街头女战士在线观看网站| 免费观看性生交大片5| 999久久久国产精品视频| 中文字幕人妻丝袜制服| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 免费黄网站久久成人精品| 国产乱人偷精品视频| 51午夜福利影视在线观看| 日韩制服丝袜自拍偷拍| 美女视频免费永久观看网站| 久久99一区二区三区| 亚洲国产精品国产精品| 欧美精品一区二区大全| 91老司机精品| 国产精品蜜桃在线观看| av有码第一页| 精品久久蜜臀av无| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 亚洲av男天堂| 欧美亚洲日本最大视频资源| 国产福利在线免费观看视频| 欧美人与性动交α欧美软件| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 免费av中文字幕在线| 九九爱精品视频在线观看| 国产精品无大码| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| a级毛片在线看网站| 青青草视频在线视频观看| 欧美av亚洲av综合av国产av | 日韩免费高清中文字幕av| 考比视频在线观看| 成人国产麻豆网| a 毛片基地| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 女人被躁到高潮嗷嗷叫费观| 51午夜福利影视在线观看| xxxhd国产人妻xxx| 美女中出高潮动态图| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 精品少妇黑人巨大在线播放| 日韩一本色道免费dvd| 七月丁香在线播放| 天天躁日日躁夜夜躁夜夜| 日韩一区二区三区影片| 巨乳人妻的诱惑在线观看| videosex国产| 亚洲精品久久久久久婷婷小说| 熟女少妇亚洲综合色aaa.| 天天躁日日躁夜夜躁夜夜| 日韩制服丝袜自拍偷拍| 亚洲欧美成人精品一区二区| 超色免费av| 亚洲国产精品一区三区| 麻豆精品久久久久久蜜桃| 欧美老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 精品久久蜜臀av无| 免费观看性生交大片5| 韩国av在线不卡| 女人久久www免费人成看片| 国产男女内射视频| 新久久久久国产一级毛片| 80岁老熟妇乱子伦牲交| 最近最新中文字幕免费大全7| 老汉色∧v一级毛片| 满18在线观看网站| av卡一久久| 一区福利在线观看| 亚洲欧洲国产日韩| a 毛片基地| 国产熟女欧美一区二区| 久久青草综合色| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 亚洲国产精品999| 大香蕉久久成人网| 9191精品国产免费久久| 黄片小视频在线播放| 成人国产av品久久久| 久久久久久久精品精品| 日本欧美视频一区| 日韩制服骚丝袜av| 性色av一级| 人成视频在线观看免费观看| 国产免费视频播放在线视频| 91成人精品电影| 精品久久久久久电影网| 秋霞伦理黄片| 秋霞伦理黄片| 操出白浆在线播放| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 老鸭窝网址在线观看| 久久影院123| 欧美 日韩 精品 国产| 一区二区日韩欧美中文字幕| 国产极品天堂在线| 免费黄色在线免费观看| 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 永久免费av网站大全| 国产在视频线精品| 在线看a的网站| 不卡av一区二区三区| 欧美激情高清一区二区三区 | 国产精品二区激情视频| 久久精品久久精品一区二区三区| 在线天堂中文资源库| 国产99久久九九免费精品| 久久精品国产亚洲av涩爱| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜一区二区 | 色网站视频免费| 99九九在线精品视频| 国产av精品麻豆| 人妻人人澡人人爽人人| 中文字幕另类日韩欧美亚洲嫩草| 五月天丁香电影| 国产福利在线免费观看视频| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 日韩中文字幕欧美一区二区 | 国产精品女同一区二区软件| 老汉色av国产亚洲站长工具| 国精品久久久久久国模美| 大香蕉久久网| 午夜日韩欧美国产| 免费观看人在逋| 欧美 亚洲 国产 日韩一| av.在线天堂| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 久热爱精品视频在线9| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影 | 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 久久婷婷青草| 国产片内射在线| 另类亚洲欧美激情| 久久影院123| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 99国产综合亚洲精品| 一本大道久久a久久精品| 51午夜福利影视在线观看| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人| 老司机影院成人| 一级片免费观看大全| 99热全是精品| 免费观看a级毛片全部| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 国产一区亚洲一区在线观看| 国产精品国产av在线观看| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品| 夫妻性生交免费视频一级片| 热99国产精品久久久久久7| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲第一av免费看| 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 国产精品熟女久久久久浪| 日韩人妻精品一区2区三区| 国产亚洲一区二区精品| 成人国产麻豆网| 波多野结衣av一区二区av| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 日日爽夜夜爽网站| 男女之事视频高清在线观看 | 一二三四在线观看免费中文在| 超色免费av| 999久久久国产精品视频| 色吧在线观看| 国产午夜精品一二区理论片| 高清不卡的av网站| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 午夜福利在线免费观看网站| 成年人午夜在线观看视频| 丝袜人妻中文字幕| 午夜精品国产一区二区电影| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 精品国产露脸久久av麻豆| 午夜91福利影院| 亚洲成色77777| 丰满少妇做爰视频| a级毛片在线看网站| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码 | 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 一边摸一边抽搐一进一出视频| 大香蕉久久成人网| 国产深夜福利视频在线观看| 高清av免费在线| 自线自在国产av| 亚洲天堂av无毛| 黄色 视频免费看| 电影成人av| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费| 老司机深夜福利视频在线观看 | 国产色婷婷99| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 最近中文字幕2019免费版| 大话2 男鬼变身卡| 久热爱精品视频在线9| 99精品久久久久人妻精品| 三上悠亚av全集在线观看| 爱豆传媒免费全集在线观看| av线在线观看网站| √禁漫天堂资源中文www| 亚洲av成人不卡在线观看播放网 | 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 在线免费观看不下载黄p国产| 这个男人来自地球电影免费观看 | 日韩电影二区| 午夜免费鲁丝| 欧美av亚洲av综合av国产av | 伊人久久国产一区二区| 日韩精品有码人妻一区| 午夜福利视频在线观看免费| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 一区二区av电影网| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| av天堂久久9| 国产又爽黄色视频| 欧美另类一区| 亚洲,欧美精品.| 精品一区二区三区av网在线观看 | 蜜桃国产av成人99| 欧美日韩一级在线毛片| 国产xxxxx性猛交| 777米奇影视久久| av在线app专区| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产精品一区二区三区在线| 精品久久久精品久久久| 国产免费福利视频在线观看| 9热在线视频观看99| 久久久久久久国产电影| 国产精品成人在线| 老司机亚洲免费影院| 久久精品国产亚洲av涩爱| 美女扒开内裤让男人捅视频| 免费少妇av软件| 最近最新中文字幕免费大全7| 热re99久久精品国产66热6| 中文天堂在线官网| 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 大香蕉久久网| 精品一区在线观看国产| 美女午夜性视频免费| 美女主播在线视频| 18禁观看日本| 亚洲美女黄色视频免费看| 下体分泌物呈黄色| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 一区福利在线观看| www.熟女人妻精品国产| 精品一区二区三卡| 成人国产av品久久久| 亚洲精品,欧美精品| 亚洲av综合色区一区| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 少妇人妻 视频| 国产亚洲精品第一综合不卡| 国产男女内射视频| 午夜福利,免费看| 亚洲国产欧美网| 欧美日韩成人在线一区二区| 韩国精品一区二区三区| 一边亲一边摸免费视频| 亚洲久久久国产精品| 色婷婷久久久亚洲欧美| 这个男人来自地球电影免费观看 | 久久免费观看电影| 在线观看www视频免费| 亚洲欧洲国产日韩| 久久久久久人妻| 国产视频首页在线观看| 国产欧美亚洲国产| 美国免费a级毛片| 电影成人av| 婷婷成人精品国产| 亚洲美女视频黄频| 精品国产一区二区三区四区第35| 日本猛色少妇xxxxx猛交久久| 国产成人一区二区在线| 亚洲av男天堂| 老司机亚洲免费影院| 悠悠久久av| 中文天堂在线官网| 黄色毛片三级朝国网站| 国产探花极品一区二区| 久久午夜综合久久蜜桃| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 最近最新中文字幕大全免费视频 | 丝袜美腿诱惑在线| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 日韩人妻精品一区2区三区| 新久久久久国产一级毛片| 免费不卡黄色视频| 1024香蕉在线观看| 久久久国产一区二区| 亚洲精品美女久久av网站| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区 | 丝袜喷水一区| 国产视频首页在线观看| 天堂中文最新版在线下载| 日韩中文字幕欧美一区二区 | 精品少妇黑人巨大在线播放|