• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Driving Intention Based on EEG Signals

    2018-10-10 06:27:26MinLiWuhongWangXiaobeiJiangTingtingGaoandQianCheng

    Min Li, Wuhong Wang, Xiaobei Jiang Tingting Gao and Qian Cheng

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.School of Automobile & Transportation, Qingdao University of Technology, Qingdao 266520, Shandong, China)

    Abstract: The driver’s intention is recognized by electroencephalogram(EEG) signals under different driving conditions to provide theoretical and practical support for the applications of automated driving. An EEG signal acquisition system is established by designing a driving simulation experiment, in which data of the driver’s EEG signals before turning left, turning right, and going straight, are collected in a specified time window. The collected EEG signals are analyzed and processed by wavelet packet transform to extract characteristic parameters. A driving intention recognition model, based on neural network, is established, and particle swarm optimization (PSO) is adopted to optimize the model parameters. The extracted characteristic parameters are inputted into the recognition model to identify driving intention before turning left, turning right, and going straight. Matlab is used to simulate and verify the established model to obtain the results of the model.The maximum recognition rate of driving intention is 92.9%. Results show that the driver’s EEG signal can be used to analyze the law of EEG signals. Furthermore, the PSO-based neural network model can be adapted to recognize driving intention.

    Key words: wavelet packet; electroencephalogram(EEG) signal; driving intention; neural network model

    This research explores electroencephalogram (EEG) signals in different zones of the brain by combining theoretical analysis and experiments. In particular, the development of automatic driving has led to in-depth research on driving intention. Foreign research on driving began in the mid-1930s. General motors developed an identification method based on characteristic parameters to identify driving intention by using the change rate of the acceleration pedal, which is used to assist shift control[1]. Tarek Taha et al. identified an operator’s intention by using a partially observable Markov decision process, which was applied to a novel assistant wheelchair driving system[2]. Takuya Mizushima et al. used a hidden Markov model combined with probability and statistics theory to model the deflection angle of a vehicle’s steering wheel. Existing studies also focused on the development of a driver intention estimation model using Bayesian method[3]. In 2013, Liebner Martin et al.[4]assessed driving intention at urban intersections by estimating vehicular speed and inferred driver intention through the parametric model of vehicles’ following and steering behaviors. Rodemerk C et al.[5]proposed a prediction system for drivers’ steering at intersections. They used vehicle, driver, and road parameters as input parameters to obtain the prediction result.

    Meanwhile, local research on driver intention and driving assistance system is still in its infancy. This is partly because the development of a mathematical model for the identification of a driver’s intention is challenging. Vehicle driving state and driver’s operation are used as the bases for evaluation by combining these factors with the driving experience.

    The selection and extraction of the characteristic parameters of driving intention are crucial in this field of research. Traditionally, steering wheel angle, pedal distance, throttle acceleration, and other parameters are used as characteristic parameters to identify driving intention. In the current study, wavelet packet technology is used to perform the decomposition and characteristic extraction of EEG signals acquired in the driving process. Then, the characteristics of the extracted EEG signals are input into the recognition model as parameters to identify driving intention. The current study not only provides theoretical support for future research on automatic driving but also provides a reference for assisted vehicle driving.

    1 Experimental Analysis

    The experimental equipment consists of two parts: a virtual unit for driving and an EEG signal acquisition device. The virtual unit for driving is used to help the driver turn left, turn right, go straight, and perform other operations. The acquisition device is used to acquire the EEG signals of the driver when turning left, turning right, going straight, and performing other operations.

    The purpose of the experiment was to test the driver’s EEG signals when turning left, turning right, going straight, and performing other conditions in a typical urban environment. The EEG device, g.USBamp, was used to test the driver’s EEG signals, and to save and analyze this data in order to extract EEG characteristics. These characteristic values were inputted into the neural network identification model, based on particle swarm optimization (PSO) algorithm, to identify the driver’s intentions of turning left, turning right, or going straight. The results of this experiment can provide theoretical support for the automatic driving of vehicles.

    Ten test subjects(9 males, 1 female, since hair density would affect the intensity of EEG signal) participated in the experiment. The subjects, aged 26 to 36,were in good physical condition and consisted of doctoral and postgraduate students at Auckland University , and were holders of driver license C with 1-10 years of driving experience.

    The experimental process and method were as follows: the EEG device, g.USBamp, was used to test the driver’s EEG signals. Using a virtual simulator and typical sections of an urban road, 10 drivers performed normal driving operations in virtual and simulated road conditions by means of hardware devices, such as a steering wheel, transmission lever, accelerator pedal, and brake pedal. In this experiment, 16 electrodes on top of the driver’s head were tested. The virtual driving unit and EEG signal acquisition device are shown in Fig.1.

    A total of 16 channels on top of the driver’s head were tested to acquire EEG signals. These 16 channels were F3, FC3, C3, F1, FC1, C1, Fz, FCz, Cz, F2, FC2, C2, F4, FC4, C4, and CPz.

    Fig.1 Virtual driving unit and EEG signal acquisition device

    2 Wavelet Packet Analysis

    Wavelet packet has a strong ability to analyze signals, and it can improve the frequency localization of the high-frequency part of signals.The decomposition formula of the wavelet packet is given below as

    (1)

    (2)

    Eq.(1) shows that the signal has 2jwavelet packets on layerj, and the 2iwavelet packet is the result of interval sampling afteriwavelet packet decomposition filter H convolution on layerj-1. Eq.(2) shows that the 2i+1 wavelet packet is the result of sampling afteriwavelet packet decomposition filter G convolution on layerj-1.

    The wavelet base functions with high classification efficiency were chosen from several wavelet bases used for classification. The graph of db1 is similar to an EEG pattern. Therefore, the db1 function was used in this study as a wavelet base function.

    The node graph for wavelet packet decomposition in this study is given in Fig.2.

    Fig.2 Wavelet packet decomposition

    θwave: 4-8 Hz, corresponds to Node 32.αwave: 8-13 Hz, corresponds to Nodes 33 and 139.βwave: 13-30 Hz, corresponds to Nodes 140, 70, 37, and 77.γwave: 30-60 Hz, corresponds to Nodes 78, 9, 21, and 45. According to the frequency range of the three waves, the nodes must be decomposed into seven layers. In other unnecessary frequency ranges, the decomposition of nodes does not need to be shown on the graph.

    With wavelet packet decomposition, based on the energy characteristics ofθ,α,β, andγwaves in EEG signals, the driver can evidently extract the energy of waves in these four frequencies in the driving process. The energy ratio of each waveform was used as the parameter to be inputted into the recognition model to identify driving intention.

    3 Particle Swarm Optimization (PSO)-Based Neural Network

    3.1 Particle swarm optimization

    The basic idea of PSO is that a group of random particles follows the current optimal particle to search the solution space to find the optimal solution by iteration. The particle updates its position and velocity according to two optimal solutions.The first is the optimal solution of the particle itself, and the other is the optimal solution of the population.

    When the particle renews itself, the PSO model is used as

    (3)

    whereωrefers to inertia weight,d=1,2,…,D;i=1,2,…,n,krefers to the current iterations;Vidrefers to the velocity of the particle,c1andc2are acceleration factors, andr1andr2refer to random numbers.

    3.2 Neural network

    Back propagation (BP) neural network was used in this study for recognition. This model is designed according to the problem-solving principle of the brain and is a multi-layer network that generalizes the W-H learning rule and realizes the weight training of nonlinear differentiable functions. It is a kind of gradient descent search method. The BP neural network is a multi-layer network with three or more layers, each having several neurons. Its left and right neurons are fully connected, whereas the upper and lower neurons are not connected, as shown in Fig.3.

    Fig.3 Structure of the BP neural network

    The S function is used as the activation function since it is continuously differentiable and closer to the signal output form of biological neurons than other functions. The S function can be expressed as

    (4)

    3.3 PSO-based neural network

    The weight and thresholds of the input and output layers of the neural network were determined randomly. The weights and thresholds of the input and output layers significantly influence the classification or prediction of the neural network[6-9]. These four parameters cannot be determined as optimal parameters through random determination.Thus, to determine the optimal weights and thresholds of the input and output layer,the accuracy of neural network training was used as the fitness value. To obtain a good accuracy rate, PSO[10-11]was used to determine the optimal weights and thresholds of the input and output layers. Using the weights and thresholds of the input and output layers as particles and the accuracy rate of the neural network as the fitness value, the principle and formula of PSO were continuously updated to determine the optimal weights and thresholds. The neural network model with optimal weights and thresholds was used to identify driving intention.

    The brain’s functional area is divided into three zones to ensure that the study is based on 16 electrodes of the driver. The channel with the highest recognition rate obtained in each zone was then used as the indicator, as shown in Fig.4.(taking channel F1on the left as an example).

    Fig.4 Confusion graph for recognition of turning-left and going-straight intentions

    Driving intention is identified through the PSO-based neural network. As shown in Figs.4-5, the recognition rate of the going straight and turning left intentions is the highest at 92.9%. Training recognition rate is 85.1%, and total recognition rate is 84.2%. The recognition rates of driving intention in all three zones are shown in Tab.1.

    Fig.5 ROC graph for recognition of turning-left and going-straight intentions

    Tab.1 Recognition rates of driving intention

    The maximum recognition rate of driving intention obtained through the PSO-based neural network is 92.9%.

    4 Conclusions

    In this study, the characteristic extraction of the waveform of EEG signals to be used as input parameters are carried out through wavelet packet decomposition and reconstruction. The upper part of the driver’s brain is divided into three zones (left hemisphere, right hemisphere, and central area). The ratios of energies to the energy of a channel in the three zones are used as input parameters, which are input into the PSO-based neural network for identification. The results are obtained as follows.

    ① In the left hemisphere (F1), the recognition rate of turning left and turning right is 85.7%, the recognition rate of turning right and going straight is 90.5%, and the recognition rate of turning left and going straight is 92.9%.

    ② In the right hemisphere (FC2), the recognition rate of turning left and turning right is 85.7%, the recognition rate of turning right and going straight is 90.5%, and the recognition rate of turning left and going straight is 92.9%.

    ③ In the central area of the brain (Cz), the recognition rate of turning left and turning right is 85.7%, the recognition rate of turning right and going straight is 85.7%, and the recognition rate of turning left and going straight is 92.9%.

    The results lead to the conclusion that the built model of neural network based on PSO can be used to recognize driving intentions through EEG signals under different driving conditions, with high recognition accuracy, providing theoretical and practical support for the applications of automated driving.

    另类亚洲欧美激情| 色精品久久人妻99蜜桃| 777米奇影视久久| 人人妻人人添人人爽欧美一区卜| 午夜两性在线视频| 免费看不卡的av| 亚洲欧美精品自产自拍| 桃花免费在线播放| 国产在视频线精品| 99久久人妻综合| a级片在线免费高清观看视频| 最近最新中文字幕大全免费视频 | 男人爽女人下面视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 考比视频在线观看| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 又黄又粗又硬又大视频| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 美女福利国产在线| 男女高潮啪啪啪动态图| 黄色毛片三级朝国网站| 欧美国产精品va在线观看不卡| 国产精品成人在线| 日本五十路高清| 青春草视频在线免费观看| videos熟女内射| 自线自在国产av| 欧美成人精品欧美一级黄| 免费在线观看影片大全网站 | 国产又爽黄色视频| 一二三四社区在线视频社区8| 波野结衣二区三区在线| 一级片免费观看大全| 69精品国产乱码久久久| av又黄又爽大尺度在线免费看| 黄片播放在线免费| 亚洲国产欧美网| 五月天丁香电影| 欧美亚洲日本最大视频资源| 国产在线观看jvid| 亚洲,欧美,日韩| 欧美激情高清一区二区三区| 在线精品无人区一区二区三| 首页视频小说图片口味搜索 | 少妇 在线观看| 999精品在线视频| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 亚洲五月色婷婷综合| 国产免费又黄又爽又色| 久久天躁狠狠躁夜夜2o2o | 免费在线观看完整版高清| 亚洲国产欧美一区二区综合| 久久影院123| 国产亚洲av高清不卡| kizo精华| 亚洲精品久久久久久婷婷小说| www.熟女人妻精品国产| 亚洲专区国产一区二区| 国产精品国产av在线观看| 一级片免费观看大全| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 熟女av电影| 精品国产乱码久久久久久男人| 日本a在线网址| 亚洲av电影在线进入| 亚洲精品美女久久av网站| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费| 一区在线观看完整版| 免费av中文字幕在线| 91九色精品人成在线观看| 少妇 在线观看| 丝袜在线中文字幕| 成年av动漫网址| 国产国语露脸激情在线看| 国产成人av教育| √禁漫天堂资源中文www| 免费av中文字幕在线| 男女国产视频网站| 久久热在线av| 天天躁日日躁夜夜躁夜夜| 免费在线观看视频国产中文字幕亚洲 | videosex国产| 亚洲精品久久久久久婷婷小说| 18禁国产床啪视频网站| 亚洲九九香蕉| 18在线观看网站| 在线观看国产h片| 亚洲专区国产一区二区| 国产精品二区激情视频| 老司机午夜十八禁免费视频| 一本久久精品| 午夜免费男女啪啪视频观看| 久9热在线精品视频| 校园人妻丝袜中文字幕| 精品亚洲成国产av| 中国美女看黄片| 久久午夜综合久久蜜桃| av天堂在线播放| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 狂野欧美激情性bbbbbb| 大香蕉久久网| 中文字幕色久视频| 午夜两性在线视频| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 美女午夜性视频免费| 日韩av不卡免费在线播放| av天堂久久9| 亚洲国产欧美日韩在线播放| 成年美女黄网站色视频大全免费| 伦理电影免费视频| 999精品在线视频| 1024香蕉在线观看| h视频一区二区三区| 亚洲欧美清纯卡通| 一边摸一边抽搐一进一出视频| 久久国产精品影院| 国产一级毛片在线| kizo精华| 国产成人一区二区在线| 国产精品.久久久| 久久精品亚洲av国产电影网| 可以免费在线观看a视频的电影网站| 国产精品欧美亚洲77777| 91九色精品人成在线观看| 国产日韩欧美视频二区| 国产成人欧美| 99久久人妻综合| 亚洲av美国av| 大香蕉久久成人网| 国产精品三级大全| 不卡av一区二区三区| 午夜免费成人在线视频| 在线天堂中文资源库| 18在线观看网站| 首页视频小说图片口味搜索 | www日本在线高清视频| 久久久精品区二区三区| tube8黄色片| 成在线人永久免费视频| 麻豆国产av国片精品| 欧美另类一区| 一区在线观看完整版| 日本vs欧美在线观看视频| 国产1区2区3区精品| 亚洲三区欧美一区| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 一级毛片电影观看| 精品久久久精品久久久| 亚洲伊人色综图| 国产欧美日韩一区二区三 | 精品国产超薄肉色丝袜足j| 国产又爽黄色视频| 男女免费视频国产| 桃花免费在线播放| 亚洲国产最新在线播放| 自线自在国产av| 啦啦啦 在线观看视频| 一区二区三区精品91| 男女边吃奶边做爰视频| 亚洲精品日本国产第一区| 99久久人妻综合| 美女高潮到喷水免费观看| 日本午夜av视频| 脱女人内裤的视频| 新久久久久国产一级毛片| a级毛片在线看网站| 色视频在线一区二区三区| videos熟女内射| 丝袜人妻中文字幕| 高清欧美精品videossex| 91麻豆精品激情在线观看国产 | 真人做人爱边吃奶动态| 国产av一区二区精品久久| 美女主播在线视频| 一二三四在线观看免费中文在| 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| 乱人伦中国视频| 一级片免费观看大全| 中文字幕av电影在线播放| 免费少妇av软件| 中文欧美无线码| 好男人视频免费观看在线| 国产精品香港三级国产av潘金莲 | 涩涩av久久男人的天堂| 午夜av观看不卡| av电影中文网址| 午夜免费男女啪啪视频观看| 精品久久蜜臀av无| www.自偷自拍.com| 久久久亚洲精品成人影院| 午夜福利视频精品| 深夜精品福利| 国产亚洲午夜精品一区二区久久| 午夜免费成人在线视频| 成年人免费黄色播放视频| 国产伦人伦偷精品视频| 久久这里只有精品19| 精品久久久久久电影网| 日日摸夜夜添夜夜爱| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人爽人人夜夜| e午夜精品久久久久久久| 一级黄片播放器| 免费高清在线观看日韩| 黄色a级毛片大全视频| 乱人伦中国视频| 婷婷色麻豆天堂久久| 黄片播放在线免费| 精品久久久精品久久久| 激情视频va一区二区三区| 久久精品熟女亚洲av麻豆精品| av有码第一页| 永久免费av网站大全| 国产一区二区在线观看av| 国产成人a∨麻豆精品| 黄色 视频免费看| 国产欧美亚洲国产| 亚洲人成电影免费在线| 高清不卡的av网站| 18禁观看日本| 看十八女毛片水多多多| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 亚洲少妇的诱惑av| 黄频高清免费视频| 在线av久久热| 国产老妇伦熟女老妇高清| 美女中出高潮动态图| 亚洲国产欧美一区二区综合| 久久久精品94久久精品| 亚洲午夜精品一区,二区,三区| 亚洲成av片中文字幕在线观看| 大码成人一级视频| 久久精品国产a三级三级三级| 日韩大码丰满熟妇| 成年人午夜在线观看视频| 久久鲁丝午夜福利片| 可以免费在线观看a视频的电影网站| 另类精品久久| 亚洲国产欧美一区二区综合| 五月天丁香电影| www.av在线官网国产| 日韩av免费高清视频| 男人舔女人的私密视频| 一级,二级,三级黄色视频| 精品国产国语对白av| 午夜福利,免费看| 狂野欧美激情性xxxx| 蜜桃国产av成人99| 久久久亚洲精品成人影院| 女人爽到高潮嗷嗷叫在线视频| www.999成人在线观看| 成人三级做爰电影| 91成人精品电影| 最黄视频免费看| 97精品久久久久久久久久精品| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片| 精品人妻一区二区三区麻豆| 黄色片一级片一级黄色片| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 91麻豆av在线| 天堂俺去俺来也www色官网| 久久亚洲国产成人精品v| cao死你这个sao货| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 久久免费观看电影| 午夜91福利影院| 91精品三级在线观看| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 一区二区av电影网| 亚洲专区中文字幕在线| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 日韩一区二区三区影片| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| www.av在线官网国产| 精品第一国产精品| 国产91精品成人一区二区三区 | 免费观看人在逋| 欧美久久黑人一区二区| 午夜影院在线不卡| 成人国产av品久久久| 国产片内射在线| 少妇精品久久久久久久| 操美女的视频在线观看| 午夜免费成人在线视频| 亚洲伊人久久精品综合| 亚洲 国产 在线| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 啦啦啦视频在线资源免费观看| 国产伦理片在线播放av一区| 国产人伦9x9x在线观看| kizo精华| 成人18禁高潮啪啪吃奶动态图| 国产在线观看jvid| 久久久久国产一级毛片高清牌| 老熟女久久久| 免费不卡黄色视频| 亚洲图色成人| 精品久久久久久电影网| 自线自在国产av| 最黄视频免费看| 亚洲精品国产区一区二| 久久九九热精品免费| 欧美日韩av久久| 51午夜福利影视在线观看| 亚洲欧美一区二区三区久久| 大香蕉久久网| 亚洲成人手机| 国产av精品麻豆| 中文字幕高清在线视频| 性高湖久久久久久久久免费观看| 91精品伊人久久大香线蕉| 国产欧美日韩精品亚洲av| 久久影院123| 另类亚洲欧美激情| 欧美大码av| 热99久久久久精品小说推荐| 男女国产视频网站| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 深夜精品福利| 精品少妇久久久久久888优播| 国产成人一区二区在线| 久久99热这里只频精品6学生| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 国产又色又爽无遮挡免| 国产一区二区 视频在线| 久久久欧美国产精品| 夫妻午夜视频| 在线观看免费视频网站a站| 婷婷丁香在线五月| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 国产真人三级小视频在线观看| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 国产成人欧美| bbb黄色大片| 午夜精品国产一区二区电影| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 国产亚洲av片在线观看秒播厂| 桃花免费在线播放| 巨乳人妻的诱惑在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 巨乳人妻的诱惑在线观看| xxx大片免费视频| 巨乳人妻的诱惑在线观看| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区黑人| 中文乱码字字幕精品一区二区三区| 在线看a的网站| 热99国产精品久久久久久7| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国产在线观看jvid| 国产精品欧美亚洲77777| 考比视频在线观看| 91老司机精品| 性高湖久久久久久久久免费观看| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| 老司机在亚洲福利影院| 欧美日韩成人在线一区二区| 亚洲国产欧美日韩在线播放| 亚洲国产av新网站| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 80岁老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 99国产综合亚洲精品| 我要看黄色一级片免费的| 久久99一区二区三区| 丝袜脚勾引网站| 视频在线观看一区二区三区| 婷婷色av中文字幕| 在线观看免费午夜福利视频| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 免费看不卡的av| 黄片播放在线免费| 色94色欧美一区二区| av电影中文网址| 成在线人永久免费视频| 高清不卡的av网站| 国产精品国产三级国产专区5o| 国产在线观看jvid| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| 尾随美女入室| 国产男女内射视频| 日韩制服丝袜自拍偷拍| 丝袜人妻中文字幕| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av涩爱| 在线av久久热| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 97精品久久久久久久久久精品| 精品国产一区二区三区久久久樱花| 午夜久久久在线观看| 亚洲 国产 在线| 香蕉国产在线看| 一二三四在线观看免费中文在| 亚洲九九香蕉| 一区二区三区四区激情视频| 久久久欧美国产精品| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 亚洲国产欧美网| 国产三级黄色录像| 色视频在线一区二区三区| 亚洲av美国av| 国产精品一区二区在线不卡| 两个人免费观看高清视频| 777米奇影视久久| 久久久国产欧美日韩av| 亚洲欧洲国产日韩| 欧美日韩亚洲高清精品| 成人国语在线视频| 少妇被粗大的猛进出69影院| 国产精品三级大全| 一二三四社区在线视频社区8| 亚洲国产欧美网| 满18在线观看网站| 亚洲三区欧美一区| 国产麻豆69| 少妇精品久久久久久久| 久久午夜综合久久蜜桃| 国产免费现黄频在线看| 五月天丁香电影| 丝袜人妻中文字幕| 国产高清视频在线播放一区 | 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| 亚洲情色 制服丝袜| 美女高潮到喷水免费观看| 我要看黄色一级片免费的| 男女边摸边吃奶| 飞空精品影院首页| 狂野欧美激情性xxxx| 国产又色又爽无遮挡免| 91精品伊人久久大香线蕉| 久久精品国产亚洲av高清一级| 国产视频一区二区在线看| 精品国产乱码久久久久久小说| 国产精品麻豆人妻色哟哟久久| √禁漫天堂资源中文www| 在线精品无人区一区二区三| 一级毛片我不卡| 久久久亚洲精品成人影院| 久久久久久久大尺度免费视频| 女人精品久久久久毛片| 国产不卡av网站在线观看| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 日韩一区二区三区影片| 少妇人妻久久综合中文| 另类亚洲欧美激情| 亚洲成人手机| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久av网站| 咕卡用的链子| 丝袜人妻中文字幕| 亚洲国产精品国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人天堂网一区| 久久精品国产综合久久久| 男的添女的下面高潮视频| 老司机靠b影院| 一本—道久久a久久精品蜜桃钙片| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 一级片免费观看大全| 久久久久久久国产电影| 各种免费的搞黄视频| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区久久| 这个男人来自地球电影免费观看| 久久精品国产a三级三级三级| 爱豆传媒免费全集在线观看| 欧美精品高潮呻吟av久久| 少妇的丰满在线观看| 一个人免费看片子| 日韩大片免费观看网站| 午夜福利视频在线观看免费| 久久久精品国产亚洲av高清涩受| 人人妻,人人澡人人爽秒播 | 一级毛片女人18水好多 | 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 青青草视频在线视频观看| 国产欧美日韩精品亚洲av| av在线播放精品| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 精品国产国语对白av| 精品国产乱码久久久久久男人| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频 | 欧美精品人与动牲交sv欧美| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 飞空精品影院首页| 精品国产一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 一本—道久久a久久精品蜜桃钙片| 国产真人三级小视频在线观看| 亚洲欧洲日产国产| 久久久精品免费免费高清| 精品第一国产精品| 亚洲av日韩精品久久久久久密 | 国产主播在线观看一区二区 | 亚洲一码二码三码区别大吗| 欧美 日韩 精品 国产| 国产男女内射视频| 国产免费现黄频在线看| 麻豆乱淫一区二区| 国产成人欧美在线观看 | 真人做人爱边吃奶动态| 日韩av不卡免费在线播放| 午夜免费成人在线视频| 欧美成狂野欧美在线观看| 精品亚洲成国产av| 伦理电影免费视频| 亚洲久久久国产精品| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 我的亚洲天堂| 最近最新中文字幕大全免费视频 | 国产男人的电影天堂91| 五月开心婷婷网| 亚洲五月色婷婷综合| 成人国语在线视频| 成年人免费黄色播放视频| 黄色视频在线播放观看不卡| 欧美日韩福利视频一区二区| 久久久精品免费免费高清| 午夜91福利影院| 两性夫妻黄色片| 男女无遮挡免费网站观看| 亚洲中文日韩欧美视频| 久久精品成人免费网站| 中文字幕制服av| 大码成人一级视频| 国产伦理片在线播放av一区| 丝袜美足系列| www.av在线官网国产| 观看av在线不卡| 一边摸一边做爽爽视频免费| 日本色播在线视频| 欧美成人精品欧美一级黄| 七月丁香在线播放| 久久精品aⅴ一区二区三区四区| 久久影院123| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 国产av精品麻豆| 亚洲精品日本国产第一区| 一级片免费观看大全| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 亚洲免费av在线视频| 亚洲第一av免费看| 国产精品人妻久久久影院| 少妇被粗大的猛进出69影院| xxxhd国产人妻xxx| 99国产综合亚洲精品| 狂野欧美激情性bbbbbb| 最黄视频免费看| 免费少妇av软件|