• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Force Control of Electro-Hydraulic Servo System Based on Load Velocity Compensation

    2018-10-10 06:27:26ShoukunWangHuLiuJunzhengWangandDeyangZhang

    Shoukun Wang, Hu Liu, Junzheng Wang and Deyang Zhang

    (Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Abstract: In an electro-hydraulic servo control system, the force servo system is an important component. However, due to the nonlinear characteristic of hydraulic systems, traditional control methods cannot achieve satisfactory control performances. To deal with this issue, a load velocity compensation algorithm based on the structural invariant principle is proposed in this paper. First, the theoretical analysis of the hydraulic and cylindrical force control system is presented, and the mathematical model of the force control system is established. Then the open-loop frequency response characteristics of the system are analyzed, in which the Bode diagram shows that the bandwidth of the system is obviously expanded after adopting the load velocity compensation algorithm. Finally, a practical hydraulic and cylindrical force servo system is introduced to validate the feasibility of the proposed controller, the experimental results demonstrate that the proposed method can improve the performance of force control and eliminate the influence of load stiffness on the dynamic characteristics of the system through a set of comparative experiments with different elastic loads.

    Key words: electro-hydraulic servo control system; force servo control; load velocity compensation; elastic load

    Force servo control systems are widely used in various fields of industrial production, such as structural fatigue testing machine, rolling mill tension control system, load simulator and wheel brake device[1]. The advantage of the traditional PID control is that this method is easy to implement, and it has been widely used in the control of hydraulic systems[2]. However, due to the disadvantages such as small stability margin, high-order strong coupling and the existence of interference of the hydraulic servo force control system, the gain of the control parameters is greatly limited. These disadvantages make accurate servo control of the force control system difficult to achieve.

    The adaptive control method is equally a research hotspot[3-4], employing adaptation laws to compensate for uncertain parameters. Andrew and other researchers proposed a simplified algorithm, which is based on Lyapunov analysis of adaptive parameters to compensate for the uncertainty of the system parameters[5]; Lizalde combined a neural network based method with the sliding mode control method to design a controller for the electro-hydraulic servo force control system[6]. Yesser proposed a nonlinear system control method based on combination of adaptive control with offset error and sliding mode control[7]. However, the limitations of these methods cannot be ignored, for example, complicated calculation may be required, which cannot meet the real-time requirement in motion control systems. As the conventional PID regulator technology has been widely used in hydraulic systems for its simplicity, clear functionality and easy implementation. In this paper, the electro-hydraulic servo force control system can be controlled by adding the load velocity compensation on the basis of the conventional PID control algorithm[8].

    The structure of this paper is organized as follows: in Section 1, the principle of electro-hydraulic servo force control system and the mathematical model of the force control system are introduced; the design of high performance force controller is described in Section 2; Section 3 presents the experiment results; the results are discussed and some conclusions are drawn in Section 4.

    1 System Description and System Model

    1.1 Structure of the electro-hydraulic force servo system

    The typical electro-hydraulic force servo control system schematic diagram is shown in Fig.1.

    Fig.2 Structure of electro-hydraulic servo force control system

    Fig.1 Electro-hydraulic force servo control system

    The hardware of electro-hydraulic force servo control system includes the following parts: hydraulic modules, a controller, a driver and sensor modules[9]. When the force control signal and the feedback signal of force sensor are not equal, the servo amplifier output the bias current to control the electro-hydraulic servo. And the electro-hydraulic servo valve output the values of flow and pressure to promote the hydraulic cylinder. When the feedback signal of the sensor is equal to the input signal, the output force of the hydraulic cylinder is kept at a desired force[10].

    1.2 Model of the electro-hydraulic force servo system

    1.2.1Open-loop transfer function of the system

    According to the classical flow linearity, flow continuity and force balance equation, the block diagram of the symmetric valve control asymmetric cylinder can be obtained. In Fig.2[11], ΔUis the input for the control command,Fis the output force andXis the load displacement.xvis the servo valve spool displacement,Kais the amplifier gain, andKsvis a gain without considering servo valve dynamics.Kqis the servo valve flow gain.Kfis the force sensor gain,A,Vt,Kceare the effective area of the cylinder, the effective volume of the cylinder,the leakage coefficient, respectively.βeis hydraulic bulk modulus,mis the mass of moving parts,Blis load damping coefficient,klis the load elastic coefficient, andαis the effective area ratio of the rod cavity to the rodless cavity.

    As shown in Fig.2, the open-loop transfer function of the force control system can be expressed as

    (1)

    Eq.(1) shows that the electro-hydraulic force control system doesn’t only depend on the characteristics of valve drivers, but also depend on the load stiffness and other load characteristics. Then it can be simplified as

    (2)

    whereωmis the inherent mechanical frequency,ωris the turning frequency,ω0is the natural frequency of the hydraulic spring and the mechanical spring,ξmis the mechanical damping ratio,ξ0is the overall damping ratio of the hydraulics and mechanics,Kv=KaKsvKqA/Kceis the system whole open loop gain.

    1.2.2Open-loop frequency characteristics of the system

    At this time, a simulation model can be established to get the system frequency response characteristics in Simulink whenKv=30,ωm=90 rad/s,ω0=350 rad/s,ωr=1 rad/s,ξm=0.15,ξ0=0.1.

    Eq.(2) indicates that this system is a 0-type system with poor stability. And as shown in Fig.3, the amplitude margin of the open-loop system is at a relatively high level yet with the shear frequencyωc=4.37 Hz. According to the three-bands theory in automatic control principles, the biggerωcin the intermediate frequency band, the faster response speed of the servo hydraulic circuit. Because the shear frequency of the force control system is quite small in this paper, the whole dynamic characteristics are not ideal for control needs.

    But that evening when they got home Curdken went to the old King, and said: I refuse to herd17 geese any longer with that girl. For what reason? asked the old King. Because she does nothing but annoy me all day long, replied Curdken; and he proceeded to relate all her iniquities27, and said: Every morning as we drive the flock through the dark gate she says to a horse s head that hangs on the wall:

    1.2.3Pressure characteristics of the servo valve

    As the open-loop gainKvincludes the pressure gain of servo valveKp=Kq/Kce. The servo valve pressure characteristic curve obtained by ensuring the load flow is zero (i.e., the servo valves A and B are closed) and applying the sinusoidal current under the rated pressure.

    Fig.3 Open-loop frequency characteristics of the system

    Fig.4 Current-pressure curves of the servo valve

    As shown in Fig.4, the pressure gain of the flow-type servo valve is about 60 MPa/mA, and the controllable interval of the open-loop valve control system is about ±2 mA. If the input current exceeds this interval, the output of the load pressure will reach the saturation. However, the rated current of the servo valve used in this experiment is 40 mA, which means that the working range of the servo valve spool is very narrow. Therefore, the design for control gain should be conservative as to keep the system from instability. As a result, the way that improves the system response by a conventional PID feedback controller is restricted for such a dynamic force control system.

    2 Controller Design

    Through the frequency characteristic analysis in Fig.3, it is difficult to improve the dynamic response characteristics of the system by using the general correction method. Therefore, the load velocity compensation method is adopted to eliminate the influence of the load dynamic and improve the tracking characteristics of the force tracking system[10].

    Fig.5 Block diagram of the force control system corrected by velocity compensation

    The simplified open-loop transfer function of the system can be obtained as

    (3)

    whereω1=2(1+α2)βeKce/Vt.

    Fig.6 Open-loop frequency characteristic after velocity compensation

    As shown in Fig.6, adopting the velocity compensation in this paper, the crossover frequency of the system is expanded from the original 4.37 Hz to 47.7 Hz, and the overall bandwidth of the system has been greatly improved. As long as the frequency of the electro-hydraulic servo valve is large enough, the shear frequency of the system can be increased by increasing the open-loop gain of the system.

    Then when the dynamic force control subsystem is taken into account, the extra velocity compensation represents an extra flow that has to be supplied by the valve, and the extra flow is used to overcome the effect of friction and load movement[8]. Considering the influence of the noise from the force sensor, the differential term may cause the system instability, thus the feedback controller is simplified as a PI instead of the classic PID. Therefore, this paper considers to use the PI controller which is based on the principle of structural invariance to get a great control response. The principle of the whole controller is shown in Fig.7.

    As shown in Fig.7, Δfrefis the reference force signal, Δfis the feedback signal of the force sensor,efis the error force,uPIis the control signal of the PI controller,uvcis the control signal of the compensation controller, Δxis the load velocity. A compensator is set up according to the velocity compensation principle and the final servo valve control signal Δuis the sum ofuvcanduPI. Then by designing the parameters of the PI controller and the velocity compensator, a desired force control consequence can be obtained.

    Fig.7 Principle of the whole force controller

    3 Experiment and Results

    3.1 Hardware overview

    In order to verify the feasibility and effectiveness of this method, a single hydraulic cylinder servo force control system was built.

    Fig.8 Experimental platform

    As shown in Fig.8, the force sensor is installed at the end of the hydraulic cylinder rod. In order to verify the control effect of this algorithm on the elastic load, a spring (spring stiffness is 22 N/mm) is put into the iron tube and a hard object is placed on the left side of the iron tube. The hydraulic cylinder used in this experiment is designed by the lab independently. It adopts an asymmetric cylinder structure and a built-in high precision resistive displacement sensor. The servo valve adopts the electro-hydraulic servo valve FF101-16. The servo valve control cylinder system is convenient to install. The main parameters and performance indicators are shown in Tab.1.

    Tab.1 Main parameters of the servo system

    3.2 Experimental results

    In order to compare the control effects between this method and the traditional PI method, the response curves are experimentally measured under the given step and sinusoidal signal.

    Fig.9 Step signal response for different PI controller parameters

    Fig.9 shows that the step response curves with different PI controller parameters. Since there is a dead zone characteristic of the servo valve, the given signal value are set to 1 000 N and the initial value are set to 300 N. If the controller parameters are smaller, the response speed is slow; if the controller parameters are larger, it leads the system into oscillation. Although the final steady-state error can reach a small value in the response curves under the control of PI controller, the response speed of the system has reached its limit. In order to solve this problem, the load velocity compensation algorithm is proposed in this paper to accelerate the response and reduce the overshoot. Since the velocity sensor is not used in the test system, the velocity signal is obtained by differentiating the displacement. Generally, because the signal of the sensor has large noise, the tracking differentiator is used in this paper. By setting suitable parameters, the smoother velocity signal can be obtained by differentiating the displacement signal[12].

    The coefficients set in this paper are based on the theoretical value calculated in Section 2, and the compensation effect of different coefficients is analyzed by a large amount of experimental data. Finally, the range of velocity compensation coefficient is obtained.

    Fig.10 illustrates the load force curves under different methods, and Fig.11 shows the load velocity obtained by the tracking differentiator. As shown in Fig.10 and Fig.11, since the velocity of the load suddenly increases to nearly 30mm/s at the start of the movement, the response speed with the load velocity compensation is faster than that of the PI controller with the same proportional coefficient and integral coefficient.

    Fig.10 Step signal response of velocity compensation

    Fig.12 shows the tracking behavior of the given sinusoidal signal when the PI controller is used. The amplitude of the given force is 500 N and the frequency is only 0.25 Hz. It is obvious that the tracking effect of the sinusoidal force signal is poor when the PI control is used. If the gain of the controller is smaller, the large phase lag and amplitude attenuation will be generated. On the contrary, if the gain of the controller is larger, it will produce jitter and other unstable phenomena. These phenomena verify the difficulty of the force servo control system.

    Fig.11 Load velocity

    Fig.12 Sinusoidal response for PI controller

    Fig.13 Sinusoidal response for velocity compensation

    As shown in Fig.13, the sinusoidal signals are set with the amplitude of 500 N, frequency of 0.5 Hz and 1.0 Hz respectively. It can be found that the output force tracking deviation with the velocity compensation is smaller than that of the PI controller, and the phase lag is improved obviously both in low frequency and in high frequency. Although the lag is 30° at 1 Hz, the results of the force servo control system basically meet the control requirements.

    In order to show that this algorithm can improve the effect of load stiffness on the dynamic response, springs with different stiffness are chosen. In this paper, spring stiffness of 22 N/mm and 38 N/mm are selected to verify the step response.

    As shown in Fig.14, the response time of the two kinds of elastic loads is about 0.5 s when the step signal is 1 000 N. With the velocity compensation, it can overcome the influence of the different load stiffness, and finally can improve the response speed of the force tracking system. Fig.15 illustrates the load velocity curves of the different loads. It can be seen that the velocity of the larger stiffness load is smaller. If the PI controller is used, due to the large controller parameters, the overshoot of the step response may be too large. However, when the load velocity compensation is used, the smaller PI controller parameters can be select to reduce the overshoot.

    Fig.14 Step response of different elastic loads

    Fig.15 Load velocity of different elastic loads

    However, this algorithm also has some limitations. When the stiffness of the elastic load is great, because the displacement deformation is very small, the corresponding velocity will be very small, then the velocity compensation will be meaningless.

    4 Conclusion

    In this paper, a force controller with the velocity compenstation algorithm is designed to improve the tracking accuracy of output force trajectory. Firstly, the mathematical model of the hydraulic and cylinderical force control system is gestablished in the frequency domain, and the system bandwidth is obviously expanded through the proposed controller. Then experimental results demonstrate that the velocity compensation method can improve the tracking performance. Finally, the experiments of different stiffness show that this algorithm can improve the influence of load stiffness for the force control system.

    国产综合懂色| 国产视频一区二区在线看| 神马国产精品三级电影在线观看| 97超视频在线观看视频| 男女视频在线观看网站免费| 午夜福利视频1000在线观看| 日本一二三区视频观看| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 成熟少妇高潮喷水视频| 久久精品国产亚洲网站| 免费人成视频x8x8入口观看| 国产一区二区激情短视频| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线在线| av在线亚洲专区| 亚洲图色成人| 美女 人体艺术 gogo| 校园人妻丝袜中文字幕| 色噜噜av男人的天堂激情| av.在线天堂| 日韩在线高清观看一区二区三区| 啦啦啦啦在线视频资源| 99久国产av精品国产电影| 91久久精品国产一区二区成人| 免费高清视频大片| 床上黄色一级片| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 亚洲五月天丁香| 久久久色成人| 在线免费观看不下载黄p国产| 国产v大片淫在线免费观看| av在线老鸭窝| 亚洲精华国产精华液的使用体验 | 真实男女啪啪啪动态图| 18+在线观看网站| av天堂中文字幕网| 麻豆久久精品国产亚洲av| 国产三级在线视频| 不卡一级毛片| 精品熟女少妇av免费看| 在线观看免费视频日本深夜| 你懂的网址亚洲精品在线观看 | 欧美成人一区二区免费高清观看| 久久久色成人| 免费看日本二区| 久久精品国产亚洲av天美| 亚洲三级黄色毛片| 欧美绝顶高潮抽搐喷水| 高清午夜精品一区二区三区 | 国产一区二区三区av在线 | 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 美女高潮的动态| 日韩成人伦理影院| 此物有八面人人有两片| 亚洲成人中文字幕在线播放| 国产毛片a区久久久久| 啦啦啦观看免费观看视频高清| 成人综合一区亚洲| 欧美3d第一页| 亚洲成人久久爱视频| 久久天躁狠狠躁夜夜2o2o| 69人妻影院| 欧美性感艳星| 女生性感内裤真人,穿戴方法视频| 亚洲精品成人久久久久久| 日韩一本色道免费dvd| 高清午夜精品一区二区三区 | 国产成人a区在线观看| 免费在线观看成人毛片| 简卡轻食公司| 桃色一区二区三区在线观看| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 色综合色国产| 午夜福利在线在线| 一a级毛片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 我的老师免费观看完整版| 精品少妇黑人巨大在线播放 | 国产亚洲91精品色在线| 欧美性猛交╳xxx乱大交人| 日本a在线网址| 欧美在线一区亚洲| 国产一区二区在线av高清观看| 精品人妻视频免费看| 人人妻,人人澡人人爽秒播| 一区二区三区高清视频在线| 赤兔流量卡办理| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 亚洲av中文字字幕乱码综合| 中文字幕av在线有码专区| 久久久久久久久久久丰满| 插阴视频在线观看视频| 日韩强制内射视频| 日本精品一区二区三区蜜桃| 美女黄网站色视频| 99热网站在线观看| 国产精品一区二区性色av| 中文字幕av在线有码专区| 亚洲不卡免费看| 一边摸一边抽搐一进一小说| 3wmmmm亚洲av在线观看| 欧美不卡视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 99热6这里只有精品| 欧美精品国产亚洲| 亚洲中文字幕日韩| 男人和女人高潮做爰伦理| 成年女人看的毛片在线观看| 亚洲中文日韩欧美视频| 欧美高清性xxxxhd video| 久久99热6这里只有精品| 人妻少妇偷人精品九色| 欧美激情在线99| 搡老妇女老女人老熟妇| 69人妻影院| 一区二区三区四区激情视频 | 五月伊人婷婷丁香| av天堂在线播放| 搡老岳熟女国产| 97超碰精品成人国产| 女的被弄到高潮叫床怎么办| 国产人妻一区二区三区在| aaaaa片日本免费| 免费看av在线观看网站| 国产精品永久免费网站| 亚洲欧美日韩高清在线视频| 免费一级毛片在线播放高清视频| 人人妻人人看人人澡| 伦精品一区二区三区| 国产精品乱码一区二三区的特点| 日日摸夜夜添夜夜添av毛片| 91狼人影院| 熟妇人妻久久中文字幕3abv| 亚洲性久久影院| 91在线观看av| 国产免费男女视频| 91在线观看av| 日本一本二区三区精品| 天堂网av新在线| 午夜日韩欧美国产| 午夜日韩欧美国产| 黄色配什么色好看| 亚洲精华国产精华液的使用体验 | 亚洲四区av| 国内精品宾馆在线| 久久久久国内视频| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看 | 日本撒尿小便嘘嘘汇集6| 国产精品亚洲美女久久久| 美女免费视频网站| 毛片女人毛片| 熟妇人妻久久中文字幕3abv| 99热只有精品国产| 成人鲁丝片一二三区免费| 亚洲精品一卡2卡三卡4卡5卡| 日韩三级伦理在线观看| 国产日本99.免费观看| 人妻制服诱惑在线中文字幕| 亚洲av免费在线观看| 99热6这里只有精品| av在线亚洲专区| 又粗又爽又猛毛片免费看| 97在线视频观看| 美女cb高潮喷水在线观看| 内地一区二区视频在线| 欧美不卡视频在线免费观看| av天堂在线播放| 久久精品影院6| 俺也久久电影网| 九九爱精品视频在线观看| 国产成人freesex在线 | 久久人人爽人人片av| 国产欧美日韩精品一区二区| 不卡一级毛片| 精品乱码久久久久久99久播| 日韩高清综合在线| 欧美国产日韩亚洲一区| 国产白丝娇喘喷水9色精品| 色在线成人网| 中国国产av一级| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 国产亚洲91精品色在线| 女人被狂操c到高潮| 在线观看66精品国产| 欧美精品国产亚洲| 如何舔出高潮| 三级国产精品欧美在线观看| 一区二区三区四区激情视频 | 亚洲中文字幕日韩| 日韩成人av中文字幕在线观看 | 国产一区二区激情短视频| 免费看av在线观看网站| av.在线天堂| 俄罗斯特黄特色一大片| 精品久久久噜噜| 亚洲乱码一区二区免费版| 最后的刺客免费高清国语| 国产探花在线观看一区二区| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 综合色av麻豆| 国产综合懂色| www日本黄色视频网| 俺也久久电影网| 日日摸夜夜添夜夜添av毛片| 亚洲熟妇中文字幕五十中出| 亚洲精品乱码久久久v下载方式| 精品人妻偷拍中文字幕| 淫秽高清视频在线观看| 欧美另类亚洲清纯唯美| 在线观看av片永久免费下载| 99riav亚洲国产免费| 中国美白少妇内射xxxbb| 久久久久久久久大av| 热99re8久久精品国产| 婷婷精品国产亚洲av| 男女边吃奶边做爰视频| 国产在视频线在精品| 男女啪啪激烈高潮av片| 男女视频在线观看网站免费| 搡老熟女国产l中国老女人| 久久久成人免费电影| 在线看三级毛片| 国内精品一区二区在线观看| 亚洲精品粉嫩美女一区| 亚洲av不卡在线观看| 日本免费一区二区三区高清不卡| 卡戴珊不雅视频在线播放| 欧美潮喷喷水| 日韩欧美一区二区三区在线观看| a级毛色黄片| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 在线国产一区二区在线| 91麻豆精品激情在线观看国产| 亚洲成a人片在线一区二区| .国产精品久久| 成人av一区二区三区在线看| 欧美成人a在线观看| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片| 老熟妇仑乱视频hdxx| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线 | 国产黄片美女视频| 欧美一区二区亚洲| 赤兔流量卡办理| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 男插女下体视频免费在线播放| 不卡视频在线观看欧美| 中国国产av一级| 亚洲在线观看片| 午夜a级毛片| 午夜激情福利司机影院| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 看黄色毛片网站| 91麻豆精品激情在线观看国产| 国产单亲对白刺激| av在线观看视频网站免费| 日韩亚洲欧美综合| 免费av不卡在线播放| 免费观看人在逋| 天堂网av新在线| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 婷婷精品国产亚洲av在线| 99久久精品国产国产毛片| 国产精品一区二区三区四区免费观看 | 国产精品嫩草影院av在线观看| 色综合色国产| 亚洲无线在线观看| 亚洲在线自拍视频| 国产精品,欧美在线| 日本黄色片子视频| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 又黄又爽又免费观看的视频| 激情 狠狠 欧美| 真实男女啪啪啪动态图| 国产精品一及| 亚洲国产精品久久男人天堂| 久久精品久久久久久噜噜老黄 | 亚洲精品国产av成人精品 | 一本一本综合久久| 国产精品亚洲一级av第二区| 久久6这里有精品| 亚洲国产日韩欧美精品在线观看| 淫秽高清视频在线观看| 少妇的逼水好多| 十八禁网站免费在线| av黄色大香蕉| 99热网站在线观看| av黄色大香蕉| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 精华霜和精华液先用哪个| 在线看三级毛片| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 在线观看66精品国产| 久久6这里有精品| 伦精品一区二区三区| 综合色av麻豆| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 国产精品人妻久久久久久| 亚洲18禁久久av| 国产在视频线在精品| 日本 av在线| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 精品欧美国产一区二区三| 日本成人三级电影网站| videossex国产| 亚洲色图av天堂| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 激情 狠狠 欧美| 国产在线男女| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看 | 少妇熟女aⅴ在线视频| 免费观看人在逋| 色5月婷婷丁香| 听说在线观看完整版免费高清| 国产精品野战在线观看| 91久久精品国产一区二区三区| 国内精品久久久久精免费| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻偷拍中文字幕| 三级毛片av免费| 日韩人妻高清精品专区| 久久久国产成人免费| 亚洲一区二区三区色噜噜| 亚洲四区av| 欧美三级亚洲精品| 亚洲国产色片| 日韩精品青青久久久久久| 一进一出抽搐动态| 日韩精品青青久久久久久| 欧美xxxx性猛交bbbb| 在线观看av片永久免费下载| 久久人人爽人人片av| 男人舔奶头视频| 中文字幕精品亚洲无线码一区| 国产三级中文精品| 日本黄色片子视频| www日本黄色视频网| 欧美成人精品欧美一级黄| av国产免费在线观看| 国产精品久久久久久久久免| 一区福利在线观看| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 99久国产av精品| 日韩中字成人| 久久久久久久久久久丰满| www.色视频.com| 国产在视频线在精品| 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 精品久久久久久久久av| 亚洲成av人片在线播放无| 亚洲最大成人av| 日韩欧美在线乱码| 欧美一区二区亚洲| 国产毛片a区久久久久| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 久久九九热精品免费| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 欧美又色又爽又黄视频| 成年女人毛片免费观看观看9| 成人三级黄色视频| 午夜精品国产一区二区电影 | 亚洲成人久久性| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 一夜夜www| 看片在线看免费视频| 露出奶头的视频| 亚洲欧美成人精品一区二区| 最近中文字幕高清免费大全6| 亚洲最大成人中文| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在 | 成年女人永久免费观看视频| 麻豆国产av国片精品| 99久久精品一区二区三区| 91麻豆精品激情在线观看国产| 久久久久性生活片| 欧美区成人在线视频| 一个人免费在线观看电影| 99热这里只有精品一区| 国产高清视频在线播放一区| 少妇猛男粗大的猛烈进出视频 | 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 久久精品人妻少妇| 久久99热6这里只有精品| 亚洲美女黄片视频| 亚洲不卡免费看| av免费在线看不卡| 国产精品野战在线观看| 综合色丁香网| .国产精品久久| 99久久精品国产国产毛片| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 国产精品无大码| 免费黄网站久久成人精品| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 欧美+日韩+精品| 亚洲国产精品成人综合色| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9| 亚洲美女视频黄频| 亚洲欧美日韩高清在线视频| 中国国产av一级| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| 22中文网久久字幕| 国产69精品久久久久777片| 成人三级黄色视频| 级片在线观看| 国产一区二区在线av高清观看| 日韩成人伦理影院| 性插视频无遮挡在线免费观看| 成年女人看的毛片在线观看| 久久久久性生活片| 草草在线视频免费看| 亚洲在线自拍视频| 一边摸一边抽搐一进一小说| av在线亚洲专区| 久久国产乱子免费精品| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 国产高清三级在线| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 永久网站在线| 久久久久国内视频| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 免费看光身美女| 日本免费a在线| 国产亚洲精品av在线| 亚洲最大成人av| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 联通29元200g的流量卡| 成人三级黄色视频| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 亚洲色图av天堂| 露出奶头的视频| 99久久精品一区二区三区| 天堂动漫精品| 亚洲av成人精品一区久久| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 最新在线观看一区二区三区| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 波野结衣二区三区在线| 69av精品久久久久久| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 欧美潮喷喷水| 国产国拍精品亚洲av在线观看| 啦啦啦韩国在线观看视频| 黄色视频,在线免费观看| 亚洲经典国产精华液单| 乱系列少妇在线播放| www日本黄色视频网| 99热这里只有是精品50| 我要搜黄色片| 插逼视频在线观看| a级毛色黄片| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 日韩av在线大香蕉| 久久久久久九九精品二区国产| 成年女人毛片免费观看观看9| 久久中文看片网| 在线播放无遮挡| 国产精品久久久久久av不卡| 在线观看av片永久免费下载| 免费黄网站久久成人精品| 99在线人妻在线中文字幕| 亚洲,欧美,日韩| 一级毛片我不卡| 日日啪夜夜撸| 国产在视频线在精品| 噜噜噜噜噜久久久久久91| 亚洲av二区三区四区| 国产美女午夜福利| 亚洲美女视频黄频| 亚洲中文日韩欧美视频| 一区二区三区免费毛片| 神马国产精品三级电影在线观看| 久久久久精品国产欧美久久久| 久久久久久大精品| 三级经典国产精品| 三级毛片av免费| 99久久精品热视频| 久久久久久久久中文| 18禁在线无遮挡免费观看视频 | 插阴视频在线观看视频| 国产三级在线视频| 男女那种视频在线观看| 欧美性感艳星| 精品一区二区三区视频在线观看免费| 成人二区视频| 天堂√8在线中文| 亚洲最大成人中文| 成人av在线播放网站| avwww免费| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 国产精品综合久久久久久久免费| 午夜精品国产一区二区电影 | 我要搜黄色片| 寂寞人妻少妇视频99o| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 久久鲁丝午夜福利片| 亚洲国产精品成人久久小说 | 性插视频无遮挡在线免费观看| 久久精品人妻少妇| 又爽又黄a免费视频| 舔av片在线| 中文亚洲av片在线观看爽| 又爽又黄无遮挡网站| 国产欧美日韩精品亚洲av| 大香蕉久久网| 少妇人妻精品综合一区二区 | 国产一区二区亚洲精品在线观看| 波野结衣二区三区在线| 能在线免费观看的黄片| 亚洲乱码一区二区免费版| 校园春色视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产男人的电影天堂91| 国产成人一区二区在线| 好男人在线观看高清免费视频| 一a级毛片在线观看| 午夜免费男女啪啪视频观看 | 久久久午夜欧美精品| 国产 一区 欧美 日韩| 搡老妇女老女人老熟妇| 日本免费一区二区三区高清不卡| 久久久久精品国产欧美久久久| 偷拍熟女少妇极品色| 身体一侧抽搐| 欧洲精品卡2卡3卡4卡5卡区| 有码 亚洲区| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 99在线人妻在线中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有是精品在线观看| 亚洲国产欧洲综合997久久,| 看十八女毛片水多多多| 麻豆精品久久久久久蜜桃| 97超视频在线观看视频| 国产精品国产高清国产av| 99热6这里只有精品| 深夜精品福利| 免费av观看视频| 午夜老司机福利剧场| 搡老岳熟女国产| 麻豆一二三区av精品| 男插女下体视频免费在线播放| 精品久久久久久久久亚洲| 精品久久久久久久人妻蜜臀av| 最近手机中文字幕大全| 看非洲黑人一级黄片| 看黄色毛片网站| 99久国产av精品国产电影| 久久亚洲精品不卡| 成人永久免费在线观看视频|