• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simplified Method for Joint Calibration of 3D Ladar and Monocular Camera

    2018-10-10 06:27:26JingLiLiuzhiYuandJunzhengWang

    Jing Li, Liuzhi Yu and Junzheng Wang

    (Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Abstract: To address the problem of data fusion between monocular camera image with 3D data from laser detection and ranging (LADAR) sensor, this paper proposes a novel simplified scheme based on the planar feature method, which can meet the accuracy requirements of the joint calibration with fewer checkerboard calibration plate (CP) positions than traditional methods. First, a mathematical model of the joint calibration is established to obtain the calibration parameters. Secondly, the selection of positions and orientations of the CP are introduced and the corresponding influence to the calibration is analyzed. Then, the calibration result is optimized by using a nonlinear Levenberg-Marquardt (LM) optimization approach, and the distance residual method is utilized to estimate the accuracy. Finally, experimental results conclude that the minimum number of positions required to meet the joint calibration accuracy in the proposed method is 5, which is less than 12 in traditional methods.

    Key words: 3D LADAR; monocular camera; joint calibration; plane calibration method; distance residual

    Multi-sensor data fusion technology in unmanned platforms can play an important role to reduce the impact on the system performance caused by sudden changes of environments, thus improving the reliability, robustness and fault-tolerance ability of the system. Multi-sensor joint calibration is the prerequisite of information fusion. Although a monocular camera can get a wealth of physical information[1], it is particularly vulnerable to external disturbances, such as weather, illumination changes, and lack of three-dimensional data object information and so on. On the contrary, 3D LADAR can obtain the polar coordinates of the target object quickly, but it cannot get the color, texture and other information of the target object[2]. As a result, the performance of 3D LADAR and monocular camera can be complementary to each other. Since the data of the two kinds of sensors are collected in their respective coordinate system, the uniform representation of the two kinds of data is the key of data fusion. It needs the coordinates conversion between the two kinds of coordinate systems, which is aimed to obtain the relevant rotation matrix and translation vector.

    In recent years, the information fusion of visual sensors and 3D LADAR has become a hot research topic[3]. At present, there are mainly two sorts of methods for joint calibration, including the feature point space registration method[4]and plane calibration plate method[5].

    In Ref.[4], the spatial registration of feature points is based on the spatial constraints of the corresponding points in the depth map of the radar image and the camera image to get the spatial transformation of the two coordinate systems. However, the spatial feature points are difficult to extract accurately, and the number is small and the calibration results are easily influenced by the mixed pixels. Plane calibration method is first proposed in 2004 by Zhang and Pless[6], which indicates that the angle between the calibration target plane and the LADAR scan plane will affect the accuracy of the joint calibration results. Xiang Zhiyu[7]also proposed a calibration plate (CP) method based on the principle of correspondence between the sensor origin and the target distance of the target CP, but the method requires the target placed at more than 18 locations without the analysis of influence of targets quantity and position on calibration accuracy.

    Taking into account the previous points of view of related work, this paper studies the influence of the position, orientation and number of target CPs on the results and accuracy of the joint calibration. In particular, the minimum number of target positions required to meet the joint calibration accuracy in the proposed method is 5, and the reliability is verified by experiments. However, traditional methods usually need at least more than 12 positions. At the same time, the result of joint calibration is optimized by using the nonlinear LM optimization approach, and the evaluation method of distance residual is put forward to estimate the calibration accuracy. Therefore, this method can simplify the calibration process and improves the efficiency of the joint calibration under the premise of ensuring the accuracy.

    1 Joint Calibration Algorithm Description

    1.1 Joint calibration model

    The essence of the joint calibration of 3D LADAR and monocular camera is to determine the rigid transformation between the two coordinate systems, namely the rotation matrix and the translation vector. Then the coordinate relationship of the joint calibration is shown in Fig.1.

    Fig.1 Relationship among the three coordinate systems of the monocular camera, 3D LADAR and calibration plate

    In this case, without loss of generality, we assume that the world coordinate systemOwXwYwZwis coincident with the target CP coordinates.OcXcYcZcandOlXlYlZlrespectively represents the camera and LADAR coordinate system. Besides,the distances from the two coordinate system origins to target CP plane are respectively dcand dl. Denote Pcand Plrespectively as the normal vectors of the target CP in the monocular camera coordinates and the 3D LADAR coordinates.

    The expression of transformation between the camera coordinate system and the 3D LADAR coordinate system is formulated as follows:

    (1)

    where R and T are, respectively, the rotation matrix and the translation vector that converts the LADAR coordinate system to the monocular camera coordinate system. (Xc,Yc,Zc) is the point in the camera coordinate systemOcXcYcZc, and (Xl,Yl,Zl) is the corresponding one in the 3D LADAR coordinate systemOcXcYcZc.

    1.2 Calculate parameters for joint calibration

    Before conducting joint calibration of the two sensors, first we calculate Pcand dcfor the camera, and Pland dlfor the LADAR. Then, the results are applied to deduce the aforementioned R and T for the coordinate conversion.

    On one hand, the parameters of the monocular camera are calibrated with Zhang’s calibration method[8]. Then, the normal vector of the target CP in the camera coordinates and the distance from the pointOcto the plane CP are calculated.

    Suppose that Pcmstands for the normal vector in them-th target CP plane, and dcmfor the distance fromOcto the target plane, where,m∈{1,2,…,n},nis the total number of target CP positions needed. According to the results of monocular camera calibration, namely, R3,mand Tm, we can obtain

    (2)

    dcm=pcmTm

    (3)

    where R3,mdenotes the third column of the orthogonal rotation matrix, which is obtained in the camera calibration process using them-th target CP picture, and Tmis the corresponding translation vector.

    On the other hand, for them-th target CP position, the 3D point cloud data set {x,y,z}mcollected by LADAR is used to carry out the planar fitting, and the plane equation is expressed as:

    U3,l,1x+U3,l,2y+U3,l,3z+D=0

    (4)

    whereU3,lis the vector that represents the third column in the analytical solution of the singular value decomposition. SinceU3,ldenotes the normal vector of the fitting plane in the 3D LADAR coordinate system, we can obtain Plmas

    (5)

    Assuming {xc,yc,zc}mis the average coordinate of {x,y,z}m,dlmcan be obtained as

    dlm=‖-D‖=
    ‖-U3,l,1xc-U3,l,2yc-U3,l,3zc‖

    (6)

    Afterwards, {Pcm,dcm,Plm,dlm},m∈{1,2,…,n}, can be applied to deduce the aforementioned R and T for the coordinate conversion. Let

    (7)

    From the perspective of geometry, dlcan also be calculated as

    (8)

    According to Eqs.(7) (8), the optimal solution to T could be obtained by minimizing an objective function[8], which is defined as follows

    (9)

    Then the objective function fortis equivalent to

    (10)

    which has an analytical solution of least squares given by

    (11)

    (12)

    Such that R is a rotation matrix with RTR=I3and det(R)=1. This is equivalent to

    (13)

    This problem is an instance of the well-studied orthogonal procrustes problem (OPP)[10]and has the closed-form solution given by

    R1=VUT

    (14)

    1.3 Target calibration plate position selection

    With Zhang’s plane calibration method[8], we assume that the target CP is the planez=0 in the world coordinate system, and matrix K is the inner parameter matrix of the camera, [XY1]Tis the homogeneous coordinates of point on the target CP, and [uv1]Tis the homogeneous pixel coordinates of point projected in the correspondence image, and [r1r2r3] andTare respectively the rotation matrix and translation vector from the camera coordinates converting to the world coordinates. And then we can obtain

    (15)

    (16)

    Since the camera has six unknown internal parameters, the inner parameter matrix K can be uniquely and linearly solved when the number of images captured by the camera is 3 or more.

    During the procedure of the joint calibration, the monocular camera is calibrated with at least three positions needed to solve the calibration parameters. In addition, according to the method of PNP (perspective-N-point) problem, whenN=3, the constraint condition is the same as the unknown quantity. Consequently we can in advance place the approximate position between the control points and the camera to avoid the false solution in the P3P problem, as shown in Fig.2.

    Fig.2 Distribution of control points into isosceles triangles in P3P problem

    WhereOis the optical center of the camera, and the three connecting lines between the control pointsA,B,Cand the optical centerOareα,β,γ, and |AB|=c, |AC|=b,|BC|=a, the equation is described as

    (17)

    According to the investigation, when the three control points are placed in an isosceles triangle distribution, we can uniquely solve the real solution of the current P3P problem.

    However, in the actual joint calibration process, when the target CP is placed at three positions, especially in an isosceles triangle distributing, it is difficult to operate and is also easy to induce random errors. It is well known that placing the target CP in 3 or 4 positions would result in a low calibration accuracy since that they are too small to cover the entire camera field of view. And a conclusion is that a valid solution of rotation R and translation vector T requires aN≥5 calibration plate. Therefore, five calibration positions can be used to place evenly the target CP in the front of camera, and the five planar normal vectors are symmetrical distributed on the optical axis in the camera fields of view, that is to say, make the orientations of the target CP in these five locations are different with each other, as shown in Fig.3.

    Fig.3 Target CP with five locations in the front of camera

    1.4 Optimization of calibration results

    To obtain better R and T for joint calibration, the result obtained in Section 2.1 is optimized using the nonlinear LM (Levenberg-Marquardt) optimization method.

    We select the distance from the point cloud data on the target CP to the corresponding image as the objective function to be minimized, take the R and T obtained in Section 2.1 as an initial value into the following equation. And then the iterative optimization process is executed to minimize the objective function as follows

    (18)

    Finally, the optimal solutionR′ andT′ can be obtained through the iterative process.

    1.5 Accuracy evaluation method of joint calibration

    In this paper, a method is proposed to evaluate the joint calibration accuracy by using the distance residual, which is defined by the correspondence principle of the distance pairs between the two sensors original points and the target CP. To be more specific, we firstly substitute the 3D data of LADAR into the joint calibration model and solve the values of R and T. Then the theoretical distance from the origin to the target CP in the camera coordinates is obtained through multiplying calculated convert pixel coordinates value by the correspondence normal vector transpose. Next, the theoretical distance is used to subtract from the actual distance from the origin to the target CP in the camera coordinates. Finally, we can derive the distance residual through the formulation in the following equation

    (19)

    2 Experiments and Results Analysis

    The joint calibration experiment system is shown in Fig.4. The monocular camera is fixed about 20 cm below the 3D LADAR. The checkerboard CP is placed in front of the experimental platform and we change its location and orientation several times in each experiment where the LADAR and camera collect distance-image data pairs in the target CP area. In our experiment, we use a checkerboard of 9×7 black and white cells with a size of 30 mm×30 mm. And the target CP is placed about 1 m to 3 m in front of the experimental platform.

    Fig.4 Joint calibration experimental platform

    The monocular camera is calibrated by Zhang’s calibration method[8], and we can obtain the inner parameter matrix M (unit: pixel) is

    2.1 Calibration results and accuracy analysis

    In order to verify that accomplishing the joint calibration needs the CP to be placed at least 5 different orientations and locations, we have separately carried out two sets of experiments with the target placed at 3, 4, 5,18 locations with different or identical orientations. In addition, the re-projection method is utilized to display the joint calibration results.

    The data collected in the experiments with different locations and orientations is substituted into the mathematical model of joint calibration. Subsequently, the rotation matrix R and translation vector T are solved respectively, and then the method in Section 1.5 above is used to calculate the accuracy of each pair of R and T. The results are listed in Tab.1.

    Tab.1 Contrast of grouping experiment

    From the above experimental results, it can be observed that the calibration errors with 3 or 4 different positions of the target CP are too large, while the error with 5 can meet the practical application requirements and approximate to that of 18. Hence, the target CP needs to be placed at least 5 different positions to accomplish the joint calibration.

    According to the above results, we can use the re-projection method to project the 3D LADAR point cloud of the target CP to the corresponding image. The projected points are draw in the image with red dots, and the re-projection results are shown in Fig.5.

    Fig.5 Projection results in camera coordinate

    2.2 Optimization of joint calibration results

    In this section, the optimization method for joint calibration results in Section 2.1 is used to optimize the experimental results, and the distance residuals method is employed to evaluate the calibration accuracy. According to the experimental results in the previous section, it can be known that the minimal target positions to meet the accuracy of joint calibration is 5. Therefore, we only optimize the calibration results in the case that the target CP is placed in 5 different positions, and then compare the optimized result with the original one in terms of calibration error, which is defined in Eq. (16).The result of error comparison shows that the original error is 0.046 m and the corresponding optimized error is 0.013 7 m.

    Besides, the re-projection results using the original and optimized calibration parameters are shown in Fig.6.

    Fig.6 Re-projection results using original and optimized calibration parameters

    2.3 Color point cloud by data fusion

    In order to test the effect of the calibration algorithm in this paper, the color image data captured by the camera and the distance data scanned by the 3D LADAR is fused according to the joint calibration results, and then the fused data is displayed in the form of color point cloud. Fig.7a is a picture captured by a calibrated monocular camera, and Fig.7b is a color point cloud image of the scene reconstruction with the fusion information. It can be seen in the final color point cloud image that the yellow, blue and white points are clearly distinguishable, which demonstrates that the color and distance information match well and the joint calibration method is reliable and robust. (The red, green and dark blue lines in Fig.7 are axes of the point cloud coordinates.)

    Fig.7 Color point cloud by data fusion

    3 Conclusion

    This paper presents a method for joint calibration based on the planar feature with the principle of the correspondence distance pairs between the two original points and the target CP. The target CP is freely placed at different locations in front of the camera’s field of view, and all the orientations of the target CP (plane normal vectors) can cover the whole field of view in the camera coordinates. Finally, experimental results validate that accomplishing the joint calibration needs the target CP to be minimally placed at 5 different orientations and locations. In other words, the joint calibration of the two sensors can be realized by placing symmetrically the target CP in 5 different orientations in front of the joint calibration device. Generally, this method can simplify the calibration process, shorten the calibration time and improve the calibration efficiency.

    男人舔女人的私密视频| 日本猛色少妇xxxxx猛交久久| 男男h啪啪无遮挡| 日韩一区二区三区影片| 少妇被粗大的猛进出69影院| 大话2 男鬼变身卡| 性少妇av在线| 久久精品国产综合久久久| 热re99久久精品国产66热6| 天天影视国产精品| 国产欧美日韩精品亚洲av| 1024视频免费在线观看| 伦理电影免费视频| 久久人人爽人人片av| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 高潮久久久久久久久久久不卡| 久久久久国产精品人妻一区二区| 国产亚洲精品第一综合不卡| 19禁男女啪啪无遮挡网站| 国产成人影院久久av| 国产男人的电影天堂91| 老司机影院成人| 在线观看人妻少妇| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区四区五区乱码 | a 毛片基地| 国产日韩欧美亚洲二区| 亚洲九九香蕉| 一本—道久久a久久精品蜜桃钙片| 国产1区2区3区精品| 另类精品久久| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 在线观看国产h片| 国产精品一区二区精品视频观看| 热99久久久久精品小说推荐| 久久99精品国语久久久| 亚洲欧美日韩高清在线视频 | 99国产精品99久久久久| 男女午夜视频在线观看| 欧美xxⅹ黑人| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区 | 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 欧美日韩亚洲综合一区二区三区_| 99香蕉大伊视频| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 久久av网站| 欧美日韩成人在线一区二区| 亚洲,一卡二卡三卡| 欧美 日韩 精品 国产| 久久久久精品人妻al黑| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看 | 久久人妻福利社区极品人妻图片 | 考比视频在线观看| 亚洲av国产av综合av卡| 国产99久久九九免费精品| 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 91字幕亚洲| 国产精品.久久久| 又大又黄又爽视频免费| 久久精品国产综合久久久| 亚洲少妇的诱惑av| 精品福利永久在线观看| 欧美国产精品一级二级三级| 亚洲av综合色区一区| 高清视频免费观看一区二区| 国产成人av教育| 亚洲av片天天在线观看| 午夜影院在线不卡| 亚洲av日韩在线播放| 婷婷丁香在线五月| 亚洲成人免费电影在线观看 | 99久久综合免费| 丝瓜视频免费看黄片| 老司机影院毛片| 成人国产av品久久久| 少妇的丰满在线观看| 一本久久精品| 青春草视频在线免费观看| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| 亚洲一区二区三区欧美精品| 久久青草综合色| 纯流量卡能插随身wifi吗| av有码第一页| 成人三级做爰电影| 欧美成人午夜精品| 国产成人一区二区在线| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 亚洲av美国av| 亚洲伊人久久精品综合| 一二三四在线观看免费中文在| 熟女av电影| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| av在线老鸭窝| 免费高清在线观看视频在线观看| 午夜福利视频精品| 国产精品香港三级国产av潘金莲 | 中文字幕亚洲精品专区| 免费观看av网站的网址| 国产高清videossex| 久久精品久久久久久久性| 国产欧美亚洲国产| 大码成人一级视频| 久久久久国产精品人妻一区二区| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 精品少妇内射三级| 青草久久国产| 在线观看免费高清a一片| av在线app专区| 大话2 男鬼变身卡| 精品少妇久久久久久888优播| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 黄色视频不卡| 国产精品亚洲av一区麻豆| 成年人午夜在线观看视频| 午夜福利一区二区在线看| 91国产中文字幕| 国产1区2区3区精品| 无遮挡黄片免费观看| 国产女主播在线喷水免费视频网站| 久久久精品94久久精品| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 精品一区二区三区四区五区乱码 | 成人免费观看视频高清| 亚洲国产欧美在线一区| 精品少妇一区二区三区视频日本电影| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 捣出白浆h1v1| 欧美日韩亚洲国产一区二区在线观看 | 人妻人人澡人人爽人人| 久久天堂一区二区三区四区| 亚洲伊人久久精品综合| 手机成人av网站| 欧美黄色片欧美黄色片| 婷婷色综合大香蕉| 午夜激情av网站| 欧美黑人欧美精品刺激| 大码成人一级视频| 亚洲精品国产av蜜桃| 久久中文字幕一级| 亚洲欧美日韩高清在线视频 | 韩国高清视频一区二区三区| 丝袜美腿诱惑在线| 国产一区二区 视频在线| 日韩制服丝袜自拍偷拍| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频| 99国产精品免费福利视频| 亚洲伊人久久精品综合| 亚洲精品一卡2卡三卡4卡5卡 | 天天添夜夜摸| 制服人妻中文乱码| 新久久久久国产一级毛片| 老鸭窝网址在线观看| 免费在线观看日本一区| av欧美777| 男人操女人黄网站| 亚洲国产精品成人久久小说| 波野结衣二区三区在线| 亚洲av电影在线观看一区二区三区| 国产高清视频在线播放一区 | 一本色道久久久久久精品综合| 久热爱精品视频在线9| 国产精品九九99| 国产精品亚洲av一区麻豆| 国产视频一区二区在线看| 看十八女毛片水多多多| 中文字幕最新亚洲高清| 巨乳人妻的诱惑在线观看| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 久久av网站| 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 国产成人av激情在线播放| 男人舔女人的私密视频| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| www.精华液| 国产成人欧美| 一级,二级,三级黄色视频| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 亚洲黑人精品在线| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区| 国产精品秋霞免费鲁丝片| 9热在线视频观看99| 欧美激情极品国产一区二区三区| 免费久久久久久久精品成人欧美视频| 新久久久久国产一级毛片| 亚洲精品日韩在线中文字幕| 91九色精品人成在线观看| 国产91精品成人一区二区三区 | 日韩av在线免费看完整版不卡| 一区二区三区四区激情视频| 久久毛片免费看一区二区三区| 久久这里只有精品19| a 毛片基地| 成人免费观看视频高清| 久久热在线av| 精品一品国产午夜福利视频| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 国产精品三级大全| 波多野结衣av一区二区av| 欧美精品一区二区免费开放| a 毛片基地| 成人免费观看视频高清| 亚洲情色 制服丝袜| 国产亚洲av片在线观看秒播厂| 十八禁人妻一区二区| 丰满少妇做爰视频| 黄色一级大片看看| 青春草亚洲视频在线观看| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 亚洲av在线观看美女高潮| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 涩涩av久久男人的天堂| 午夜老司机福利片| 悠悠久久av| 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 91精品三级在线观看| 国产精品免费大片| 免费少妇av软件| 99精品久久久久人妻精品| 国产黄色视频一区二区在线观看| 最近最新中文字幕大全免费视频 | 男女下面插进去视频免费观看| 欧美日韩视频高清一区二区三区二| 一个人免费看片子| 亚洲国产av新网站| 999久久久国产精品视频| 又大又爽又粗| 日韩 亚洲 欧美在线| 成人亚洲精品一区在线观看| 欧美久久黑人一区二区| 黑丝袜美女国产一区| 制服人妻中文乱码| 考比视频在线观看| 国产精品免费大片| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 老熟女久久久| 视频区图区小说| 亚洲欧美激情在线| 免费看十八禁软件| 黄色视频在线播放观看不卡| 永久免费av网站大全| 99久久综合免费| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 亚洲人成电影观看| 99热全是精品| 又大又爽又粗| 亚洲精品第二区| 亚洲av日韩在线播放| 99久久99久久久精品蜜桃| 人妻一区二区av| √禁漫天堂资源中文www| 精品亚洲成a人片在线观看| 美女主播在线视频| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 亚洲国产毛片av蜜桃av| 免费不卡黄色视频| www.自偷自拍.com| 精品国产一区二区久久| 中文字幕亚洲精品专区| 欧美日韩一级在线毛片| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看 | 观看av在线不卡| 麻豆乱淫一区二区| 国产成人影院久久av| 丝袜脚勾引网站| 肉色欧美久久久久久久蜜桃| 无限看片的www在线观看| 五月开心婷婷网| 精品少妇久久久久久888优播| 免费看不卡的av| 午夜激情久久久久久久| 亚洲国产看品久久| 少妇的丰满在线观看| 亚洲国产精品国产精品| 国产成人91sexporn| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 欧美激情高清一区二区三区| 精品久久久精品久久久| 亚洲成色77777| 高清不卡的av网站| 捣出白浆h1v1| 日日摸夜夜添夜夜爱| www.999成人在线观看| 制服人妻中文乱码| 国产成人一区二区在线| 亚洲欧美日韩高清在线视频 | 精品人妻一区二区三区麻豆| 七月丁香在线播放| 少妇精品久久久久久久| 一区二区三区精品91| 国产精品一区二区精品视频观看| 亚洲激情五月婷婷啪啪| av电影中文网址| 亚洲av电影在线进入| 美女福利国产在线| www.999成人在线观看| 欧美久久黑人一区二区| 中文字幕人妻丝袜一区二区| 久久久精品94久久精品| kizo精华| 激情五月婷婷亚洲| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 91麻豆精品激情在线观看国产 | 制服人妻中文乱码| 一本一本久久a久久精品综合妖精| 在线观看国产h片| 成年动漫av网址| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 精品熟女少妇八av免费久了| 超碰97精品在线观看| 亚洲人成电影观看| 另类精品久久| 精品熟女少妇八av免费久了| 韩国精品一区二区三区| e午夜精品久久久久久久| 韩国精品一区二区三区| e午夜精品久久久久久久| av在线app专区| 两人在一起打扑克的视频| 成人国产一区最新在线观看 | 国产日韩欧美在线精品| 日韩av免费高清视频| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 国产xxxxx性猛交| 亚洲综合色网址| 国产一区有黄有色的免费视频| 桃花免费在线播放| 少妇精品久久久久久久| 亚洲精品国产一区二区精华液| 日韩电影二区| svipshipincom国产片| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 中国国产av一级| 人妻一区二区av| 高潮久久久久久久久久久不卡| 精品人妻熟女毛片av久久网站| 脱女人内裤的视频| 波野结衣二区三区在线| 老司机深夜福利视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美97在线视频| 国产男女内射视频| 精品人妻在线不人妻| 美女扒开内裤让男人捅视频| 欧美变态另类bdsm刘玥| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲av涩爱| 亚洲 欧美一区二区三区| 性高湖久久久久久久久免费观看| 国产免费一区二区三区四区乱码| 男女之事视频高清在线观看 | 波野结衣二区三区在线| 欧美 亚洲 国产 日韩一| 男女之事视频高清在线观看 | 亚洲人成77777在线视频| av国产久精品久网站免费入址| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区| 国产精品二区激情视频| 精品高清国产在线一区| 久久中文字幕一级| 97人妻天天添夜夜摸| 亚洲精品自拍成人| 悠悠久久av| 国产精品秋霞免费鲁丝片| 91成人精品电影| 啦啦啦在线观看免费高清www| avwww免费| 国产高清国产精品国产三级| 日韩,欧美,国产一区二区三区| 99久久综合免费| 少妇裸体淫交视频免费看高清 | a 毛片基地| 国产成人影院久久av| 999精品在线视频| 亚洲欧洲国产日韩| 天天影视国产精品| 久久影院123| 在线天堂中文资源库| 99国产精品99久久久久| 欧美xxⅹ黑人| 麻豆乱淫一区二区| 黄色片一级片一级黄色片| 男女午夜视频在线观看| 国产精品三级大全| 国产欧美日韩精品亚洲av| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 亚洲午夜精品一区,二区,三区| 视频在线观看一区二区三区| 中国国产av一级| 亚洲av美国av| 午夜日韩欧美国产| 日本a在线网址| 亚洲欧美一区二区三区国产| 久9热在线精品视频| 午夜免费成人在线视频| 亚洲国产中文字幕在线视频| 亚洲成av片中文字幕在线观看| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产av新网站| 国产精品香港三级国产av潘金莲 | 老司机影院毛片| www日本在线高清视频| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 亚洲人成电影观看| 亚洲专区国产一区二区| 久久女婷五月综合色啪小说| 国产成人精品久久久久久| 免费在线观看视频国产中文字幕亚洲 | 久久久久国产精品人妻一区二区| 亚洲精品自拍成人| 亚洲三区欧美一区| 国产精品成人在线| 亚洲av综合色区一区| 婷婷色综合大香蕉| 18禁观看日本| 制服诱惑二区| 一边摸一边做爽爽视频免费| 电影成人av| 精品少妇一区二区三区视频日本电影| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 超色免费av| 老司机靠b影院| 69精品国产乱码久久久| 亚洲图色成人| 各种免费的搞黄视频| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 午夜福利视频在线观看免费| 亚洲av男天堂| 乱人伦中国视频| 国产极品粉嫩免费观看在线| 亚洲国产精品国产精品| 免费不卡黄色视频| 欧美精品高潮呻吟av久久| 十分钟在线观看高清视频www| 少妇精品久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 老汉色∧v一级毛片| 婷婷色综合大香蕉| 国产一级毛片在线| 香蕉国产在线看| 婷婷成人精品国产| 观看av在线不卡| 亚洲av成人不卡在线观看播放网 | 一本色道久久久久久精品综合| www.自偷自拍.com| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产一区二区精华液| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 91成人精品电影| 777米奇影视久久| av欧美777| 久久影院123| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 你懂的网址亚洲精品在线观看| 不卡av一区二区三区| 色网站视频免费| 男人爽女人下面视频在线观看| 电影成人av| 韩国高清视频一区二区三区| 日本色播在线视频| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 人人妻,人人澡人人爽秒播 | 五月天丁香电影| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 99精品久久久久人妻精品| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 美女视频免费永久观看网站| 亚洲五月婷婷丁香| 亚洲精品国产区一区二| 波多野结衣一区麻豆| 飞空精品影院首页| 亚洲av成人精品一二三区| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 久久久国产一区二区| 考比视频在线观看| 久久热在线av| 国产欧美亚洲国产| 色播在线永久视频| 你懂的网址亚洲精品在线观看| www日本在线高清视频| 美女大奶头黄色视频| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 国产爽快片一区二区三区| 亚洲免费av在线视频| 亚洲成人免费av在线播放| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 真人做人爱边吃奶动态| 国产黄色免费在线视频| 国产野战对白在线观看| 色视频在线一区二区三区| 最近最新中文字幕大全免费视频 | 777米奇影视久久| 岛国毛片在线播放| 97精品久久久久久久久久精品| 两人在一起打扑克的视频| 亚洲男人天堂网一区| 免费日韩欧美在线观看| 日本色播在线视频| 久久精品aⅴ一区二区三区四区| 好男人视频免费观看在线| 久久99精品国语久久久| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 久久精品成人免费网站| tube8黄色片| av在线播放精品| 亚洲激情五月婷婷啪啪| 亚洲成人免费av在线播放| 看免费av毛片| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 午夜免费鲁丝| 精品福利永久在线观看| 精品亚洲乱码少妇综合久久| 久久久久久久久免费视频了| 国产女主播在线喷水免费视频网站| 黑人巨大精品欧美一区二区蜜桃| 国产高清国产精品国产三级| 亚洲欧美精品自产自拍| 好男人电影高清在线观看| 青春草亚洲视频在线观看| 在线看a的网站| 亚洲图色成人| 黄色a级毛片大全视频| av网站免费在线观看视频| 亚洲专区中文字幕在线| 在线观看国产h片| 亚洲一码二码三码区别大吗| 久久精品国产a三级三级三级| 久久久久久久久免费视频了| av网站免费在线观看视频| 精品亚洲成a人片在线观看| 啦啦啦中文免费视频观看日本|