• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation in the Effects of Configuration Parameters on the Thermal Behavior of Novel Conical Friction Plate in Continuously Sliding Condition

    2018-10-09 08:45:26YanzhongWangandXiangyuWu
    Computers Materials&Continua 2018年9期

    Yanzhong Wang and Xiangyu Wu, *

    Abstract: To investigate the effects of configuration parameters and operation condition on the thermal behavior of novel conical friction plate, a three-dimensional finite element model of conical friction plate is established for numerical simulation. The conical surface configuration and friction heat generation of novel conical friction surfaces are discussed. The results indicate that the thermal behavior of the conical friction plate during continuously sliding period is influenced by the conical surface configuration.Maximum temperature occurs in the conical friction plate with cone angle of 24°. The maximum temperature value of friction plate is increased 7.4°C, when cone depth increases from 3 mm to 4 mm. Thermal behavior investigation should be carried out when optimize conical surface configuration.

    Keywords: Transmission, wet clutch, conical configuration, surface configuration,thermal behavior.

    1 Introduction

    Wet friction clutch is an important component of a transmission. The frictional clutch is designed to provide enough torque. The traditional wet clutch is composed of series of plain separator plates and friction plates. The novel friction plate consists of a series of conical surfaces. As shown in Fig. 1, the single cone friction pair is designed with two conical friction surfaces. The friction torque is generated by the conical interfaces and directly depends on the friction coefficient and the conical structure.

    Torque capacity is critical for the overall behavior of the transmission. Thermal effects have significant influence on the torque transfer process. The overheating failure of wet multi-plate friction clutches is concerned widely in the engineering practice. During the continuously sliding period, a large amount of heat is generated due to the rough surface contact between the friction plate and the separate plate. The high surface temperature can lead to friction hot spots on separator plate, thermal deformation, oil breakdown of its properties and other thermal failure of the clutch. The temperature should be taken into account when we determine the transferred torque.

    Figure 1: Two-dimensional model of single cone friction pair

    In order to design and analysis clutch performance, the effect of interface temperature has been investigated by many researchers. Marklund et al. [Marklund, M?ki, Larsson et al.(2007)] used a temperature dependent model to evaluate the torque transfer for wet clutches. Marklund et al. [Marklund and Larsson (2008)] developed a test method to simulate the clutch plate friction behavior. The effect of interface temperature on the friction coefficient was investigated in a pin on disc test.

    With the development of numerical method, numerical computations have become one of major ways to analysis the friction behavior of wet clutch. Jen et al. [Jen and Nemecek(2008)] conducted a theoretical model to simulate the temperature rise of the clutch and the temperature rise was measured with thermocouples. Jang et al. [Jang and Khonsari(1999); Jang, Khonsari and Maki (2011)] developed a three-dimensional model to investigate the effect of grooves on the performance of a wet clutch. Tatara et al. [Tatara and Parviz (2002)] constructed a two dimensional thermal model to simulate the heat transfer in a grooved wet clutch. The model is valid for continuously sliding process with experimental data. The surface groove geometry also influences the temperature distribution. Li et al. [Li, Khonsari, Mccarthy et al. (2014)] presented a three-dimensional thermo-hydrodynamic model to study the groove geometry parameters. The study shows that the triangular profile shows the smallest engagement time. Xie et al. [Xie, Tong, Wu et al. (2016)] simulated the oil groove forms on thermal behavior of friction pair. The result shows that the circumferential oil groove got the highest temperature.

    In conclusion, the previous studies are concentrated on oil groove,friction material property and torque characteristic. It is difficult to measure the conical surface temperature and the thermal gradient when the frictional clutch is working. As the conical friction plate is a novel component, to obtain the optimal conical configuration, thermal behavior investigation should be carried out. In this paper, the three dimension finite element model is used to evaluate the effect of surface configuration parameters on thermal behavior. Based on the friction heat principle and conical surface configuration,the pressure, heat flux, heat distribution coefficient on the friction surface and the convection were calculated. The thermal gradients and conical surface temperature during continuously sliding period were given.

    2 The friction heat generation

    The frictional heat generated by the relative sliding process between the friction pair. The energy is regarded as a total heating of the friction pair. The heat flux generated by friction is determined by following simplified formula (1).

    Where qtis heat flux due to the friction (W/m2), μ is the friction coefficient, p is the contact pressure (Pa), ω is the relative angular speed (rad/s) and r is the radius of the friction plate (m).

    As shown in Fig. 2, ri,rois the inner and the outer radii, respectively, r1,r2,r3,r4is the vertex of the conical surface. The normal force is applied on the back of the friction plate.

    Figure 2: Simplified model of the equivalent pressure

    The equivalent pressure of the conical friction plate was calculated as follows.

    Where F is the normal force (N).

    The distribution of heat flux between the friction plate and separate plate was decided by the physical properties of the material. Thermal distribution coefficient K of the contact pair can be calculated from the following formula (3).

    Where qfrepresent the heat flux of friction plate, qsrepresent the heat flux of separate plate, λf,ρf,cfrepresent thermal conductivity, density, specific heat of friction material, and λs,ρs,csrepresent thermal conductivity, density, specific heat of separator plate.

    3 Finite element model of the conical friction plate

    The heat transfer process of friction plates includes the heat conduction, convection and radiation. We make some assumptions before the analysis of heat transfer process.

    ● The lost mechanical energy is transformed into frictional heat.

    ● The heat radiation is generally ignored in analysis.

    ● The pressures on the cone surface of the friction plate are distributed uniformly.

    ● The physical properties of the material are constant and the material of friction plate is isotropic.

    In the Cartesian coordinate system, the transient heat conduction equation of friction plate is given as follows:

    Where T represent the temperature, ρ,c ,λ represent density, specific heat and the thermal conductivity of the material, respectively.

    Transient thermal analysis process is shown in Fig. 3. The geometry model, establishment of finite element model, boundary condition and post processing are required in the transient thermal analysis of the conical friction plate.

    Figure 3: Flow diagram of transient thermal analysis

    3.1 Geometrical model of the conical friction plate

    Geometrical model of conical friction plate is shown inFig. 4. Fig. 5 is a diagram of cross-sectional shape of the surface configuration. The cross-sectional shape of the conical friction surface is triangular. The inner radius, outer radius and thickness of friction plate are ri,ro,b, respectively. The surface configuration depends on the cone angle α and the cone depth ?.

    Figure 4: Conical friction plate

    Figure 5: Surface configuration

    As shown in Tab. 1, the inner radius, outer radius and thickness of a plate are 0.0325 m,0.0425 m and 0.01 m, respectively.

    Table 1: Dimensions

    3.2 Finite element model of conical friction plate

    The temperature in the conical surface depends on the surface configuration parameters,boundary condition and operation parameters. The finite element formulation of transient heat can be written in the following matrix form as

    Where [CT] respects the capacity matrix, [K] respects the conductivity matrix, and T and R respect the nodal temperature and heat source vector, respectively.

    The finite element model of friction plate is shown in Fig. 6. Hexahedral elements are used to mesh the friction plate. After partition operation, the grids are more regular.

    Figure 6: Finite element model of friction plate

    In this paper, 10 s continuous sliding friction conditions are designed to evaluate the thermal gradient and the effects of the conical configuration on the temperature.Operation parameters were listed in Tab. 2. Normal forceF, rotating speed v, cone depth ? and cone angle α are the variable. Coefficient of friction is set to 0.04. The time step is 1 s. When the normal force and rotating speed is given, the pressure is calculated by formula (2).

    Table 2: Operation conditions

    3.3 Boundary conditions of finite element model

    In constant sliding period, the frictional heat is generated by the conical surfaces. The heat generated will exchange with the lubricating oil by convection and the conduct heat inside the plate. As shown in Fig. 7, the conical friction plate consists of four conical surfaces BC, CD, DE, EF, two circumferential grooves AB and FG and the inner ring surface AI , the outer ring surface GH and the back of the friction plate HI.

    The boundary conditions of conical friction plate are listed in Tab. 3. Heat flux q1, q2, q3,q4is applied on the surface BC, CD, DE, EF of the friction plate. The heat flux is increased with the increasing radius from r1to r2,that is q1<q2<q3<q4.The convective heat transfer include two parts, convection on the annular oil groove AB and FG, and convection on ring surface AI and GH. The inner and outer surfaces of the friction plate are applied with heat convection ?1, ?2. The annular oil groove surfaces of the friction plate are applied with heat convection ?avg. The initial temperature is T0=30℃ in this study. Temperature of the back surface is T0.

    Figure 7: Boundary conditions for the transient thermal analysis

    Table 3: Boundary conditions

    The friction material of Friction plate is copper alloy and the separator plates is generally made of steel 30 Cr. The values of physical properties of materials are presented in Tab. 4.Then the heat flux could be obtained by formulas (1) and (3).

    Table 4: Material properties

    The properties of lubricating oil are listed in Tab. 5. The convective heat transfer coefficient of friction pairs is related to the oil supply mode and the configuration of the friction plate.

    Table 5: Oil properties

    In order to investigate the temperature distribution on the plate surface, 14 nodes are chosen to form the surface temperature distribution. As shown in Fig. 8, the nodes are distributed along the radial direction. Node 4 to node 11 is the conical surface region.Node 1-3 and node 12-14 is annular oil groove region.

    Figure 8: Diagram of node position

    4 Results and discussion

    4.1 Temperature variation and distribution under different normal force and speed

    Fig. 9(a) is the variation of maximum temperatures under different rotating speed. The cone angle α is 30° and the cone depth ? is 0.003 m. The normal force is 500 N. The temperature increases with time and the growth rate slows down obviously. The heat flux in 1000 r/min conditions is twice times larger than that in 500 r/min conditions and the rise in temperature is 1.22 times larger than that in 500 r/min conditions. When the rotating speed is 1000 r/min,the peak temperature is up to 48.61°C .

    Fig. 9(b) shows the variation of maximum temperatures under different normal force. The rotating speed is 1000 r/min. The heat flux for 700 N is 1.4 times larger than that of 500 N, and the rise in temperature is 1.13 times larger than that for 500 N. The maximum value increases with the increase of the load.

    Figure 9: Variation of maximum temperature with time

    Fig. 10(a) shows the temperature distribution of conical friction plate. The cone angle α is 30° and the cone depth ? is 0.003 m. The normal force is 500 N. The temperature gradient increases with the increase of the rotating speed variation in conical surface region. Fig. 10(b) shows the temperature distribution of conical friction under different normal force. The rotating speed is 1000 r/min. The temperature gradient increases with the increase of the load variation in conical surface region.

    Figure 10: Temperature distribution of conical friction plate

    4.2 Effect of cone angle on temperature field of conical friction plate

    The temperature contours of the conical friction plate with different cone angle are shown in Fig. 11, the axial force is set to 500 N and the rotating speed is 1000 r/min. The temperature on the conical surface is higher than the annular oil groove surface. The highest temperature of conical friction plate with 24° cone angle is 52.94°C, and the highest temperature value of conical friction plate with 30°, 45°, 60° cone angle is 48.65°C, 42.74°C, 39.38°C, respectively.

    The temperature distributions of the friction plate are shown in Fig. 12. The cone depth is 0.003 m, rotating speed is 1000 r/min and normal force is 500 N. The friction plate with 24° cone angle has the highest average temperature in conical friction surface and the temperature difference of friction plate with 24° cone angle is largest (about 3.93°C).Temperature difference decreases with the increase of cone angle. The temperature difference friction plate with 45° and 60° cone angle is very small.

    Figure 12: Temperature distribution of conical friction plate with different cone angle

    4.3 Effect of cone depth on temperature field of conical friction plate

    The variation of maximum temperature for different cone depth is shown in Fig. 13. The temperature increases with time. The maximum temperature value of friction plate with 4 mm cone depth is larger than that of 3 mm cone depth. The maximum temperature of conical friction plate with 4 mm cone depth is 56.01°C. Fig. 14 shows the temperature distribution of conical friction plate with different cone depth. The maximum temperature difference of conical friction plate with 4 mm cone angle is larger than that of 3 mm cone angle. The maximum temperature difference with 4 mm cone angle is 4.18°C.

    Figure 13: Temperature distribution of conical friction plate with different cone depth

    Figure 14: Variation of maximum temperature for different cone depth

    5 Conclusions

    The summary of the effects of conical configuration and operation condition on thermal behavior is as follows.

    1. Rotating speed and load have great impact on the temperature rise in friction plate. The maximum temperature value increases with the increase of the rotating speed and load.High load and rotating speed could change the contact condition and create more heat.

    2. The operation condition determines the energy level. High load rotating speed can increase the temperature gradient in friction plate. The temperature gradient is insensitive to the rotating speed and high load in conical surface region.

    3. The effects of different cone angle on temperature field were investigated. The conical friction plate with 24° cone angle has the highest temperature. When the cone angle is 45°or 60°, the temperature rise is not obvious.

    4. The cone depth could affect the maximum temperature and increase the temperature difference. As the cone depth increases from 3 mm to 4 mm, the maximum temperature value of friction plate is increased 7.4°C, and the maximum temperature difference is increased.

    5. The smaller cone angle and greater cone depth may improve the torque transfer capability, but the temperature behavior is also required design. With proper surface configuration design, the thermal behavior can be improved.

    国内毛片毛片毛片毛片毛片| 美女主播在线视频| 男女高潮啪啪啪动态图| 99国产精品一区二区三区| 婷婷成人精品国产| 在线永久观看黄色视频| 亚洲国产欧美一区二区综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线精品亚洲第一网站| av免费在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 99在线人妻在线中文字幕 | 久久人妻福利社区极品人妻图片| 亚洲熟女精品中文字幕| 一级毛片电影观看| 黄色视频在线播放观看不卡| 久久狼人影院| 久久中文字幕一级| 亚洲人成伊人成综合网2020| 王馨瑶露胸无遮挡在线观看| 飞空精品影院首页| 久久久精品免费免费高清| 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| 国产伦理片在线播放av一区| 超色免费av| 午夜久久久在线观看| 国产在视频线精品| 丁香欧美五月| 亚洲国产精品一区二区三区在线| 在线av久久热| 99国产精品一区二区三区| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区| 无人区码免费观看不卡 | 极品教师在线免费播放| 别揉我奶头~嗯~啊~动态视频| 国产高清videossex| 女人爽到高潮嗷嗷叫在线视频| 999久久久国产精品视频| 欧美日本中文国产一区发布| 国产av又大| 久久国产精品人妻蜜桃| 美女国产高潮福利片在线看| 亚洲成人免费电影在线观看| 亚洲伊人久久精品综合| 久久久久国内视频| 久久久国产成人免费| 中文字幕人妻丝袜制服| 热re99久久精品国产66热6| 午夜两性在线视频| 99re在线观看精品视频| 一区福利在线观看| 欧美激情极品国产一区二区三区| 大型av网站在线播放| 在线观看免费午夜福利视频| 亚洲综合色网址| 9191精品国产免费久久| 日韩中文字幕欧美一区二区| 少妇精品久久久久久久| 午夜福利,免费看| 51午夜福利影视在线观看| 免费人妻精品一区二区三区视频| 欧美黄色淫秽网站| 精品少妇久久久久久888优播| 亚洲欧美精品综合一区二区三区| 日本五十路高清| 91精品三级在线观看| 久久久久久久久久久久大奶| 首页视频小说图片口味搜索| 国精品久久久久久国模美| 亚洲五月色婷婷综合| 日本欧美视频一区| 美女高潮到喷水免费观看| 在线看a的网站| e午夜精品久久久久久久| 看免费av毛片| www日本在线高清视频| 999久久久国产精品视频| 男女床上黄色一级片免费看| 亚洲av欧美aⅴ国产| e午夜精品久久久久久久| 国产激情久久老熟女| 大片免费播放器 马上看| 999精品在线视频| 男女无遮挡免费网站观看| 国产男女超爽视频在线观看| 免费人妻精品一区二区三区视频| 女人精品久久久久毛片| 窝窝影院91人妻| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 中亚洲国语对白在线视频| 午夜激情久久久久久久| 美国免费a级毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一av免费看| 少妇粗大呻吟视频| 午夜激情av网站| 午夜视频精品福利| 丁香欧美五月| 十八禁网站网址无遮挡| 男女下面插进去视频免费观看| 纵有疾风起免费观看全集完整版| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 国产黄频视频在线观看| 人人妻人人澡人人看| 国产男女内射视频| 脱女人内裤的视频| 真人做人爱边吃奶动态| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 黄色毛片三级朝国网站| www.熟女人妻精品国产| 人妻久久中文字幕网| 男女高潮啪啪啪动态图| 国产男女内射视频| 老司机午夜福利在线观看视频 | 大香蕉久久成人网| 亚洲国产精品一区二区三区在线| 18禁美女被吸乳视频| 成在线人永久免费视频| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久5区| 亚洲人成77777在线视频| 满18在线观看网站| 国产精品 欧美亚洲| 麻豆成人av在线观看| 国产免费av片在线观看野外av| cao死你这个sao货| 国产区一区二久久| 日本黄色视频三级网站网址 | 91精品三级在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 极品少妇高潮喷水抽搐| 精品免费久久久久久久清纯 | svipshipincom国产片| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 99精国产麻豆久久婷婷| 国产激情久久老熟女| 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 亚洲色图 男人天堂 中文字幕| 成人18禁在线播放| 亚洲国产成人一精品久久久| 久久中文字幕一级| 大码成人一级视频| 一二三四在线观看免费中文在| 亚洲国产看品久久| 亚洲国产精品一区二区三区在线| 脱女人内裤的视频| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| 国产成人免费无遮挡视频| 免费看a级黄色片| 久久中文字幕一级| av一本久久久久| 久热爱精品视频在线9| 91精品三级在线观看| 天天添夜夜摸| 午夜激情久久久久久久| 91字幕亚洲| 国产成人精品无人区| 国产一区二区 视频在线| 韩国精品一区二区三区| 一边摸一边抽搐一进一小说 | 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲| 电影成人av| 黄色丝袜av网址大全| 国产乱人视频| 精品免费久久久久久久清纯| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| 免费av毛片视频| 欧美日韩福利视频一区二区| 可以在线观看毛片的网站| av国产免费在线观看| 国产成人精品久久二区二区91| 老司机福利观看| 日本黄色视频三级网站网址| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 国产一区在线观看成人免费| 制服丝袜大香蕉在线| 成人三级做爰电影| 一级黄色大片毛片| 成年女人永久免费观看视频| 日韩欧美国产在线观看| 久久久久久九九精品二区国产| 国产黄色小视频在线观看| 精品日产1卡2卡| 亚洲成人久久性| 欧美在线黄色| 国产成人影院久久av| 国产激情久久老熟女| 免费一级毛片在线播放高清视频| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 这个男人来自地球电影免费观看| 一级作爱视频免费观看| 精品一区二区三区四区五区乱码| 桃红色精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 真实男女啪啪啪动态图| 国产亚洲精品综合一区在线观看| 网址你懂的国产日韩在线| 亚洲自偷自拍图片 自拍| 一二三四在线观看免费中文在| 嫩草影视91久久| 亚洲激情在线av| 淫秽高清视频在线观看| 欧美在线一区亚洲| 午夜激情欧美在线| 在线播放国产精品三级| 午夜影院日韩av| 俄罗斯特黄特色一大片| 一本精品99久久精品77| www日本黄色视频网| 丝袜人妻中文字幕| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 三级毛片av免费| netflix在线观看网站| 国产91精品成人一区二区三区| 精品一区二区三区视频在线 | 综合色av麻豆| 久久人妻av系列| 日韩欧美 国产精品| 日本免费a在线| 国产久久久一区二区三区| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 国产又黄又爽又无遮挡在线| 此物有八面人人有两片| 高清毛片免费观看视频网站| 久久精品国产综合久久久| 亚洲真实伦在线观看| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 色综合婷婷激情| 在线视频色国产色| 精品欧美国产一区二区三| 少妇的逼水好多| 村上凉子中文字幕在线| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 久9热在线精品视频| 国产精品99久久99久久久不卡| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 国内精品美女久久久久久| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清| 成人欧美大片| 亚洲自拍偷在线| 日本 欧美在线| 午夜精品一区二区三区免费看| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全免费视频| 亚洲av成人精品一区久久| 在线观看一区二区三区| 亚洲成av人片免费观看| 成人高潮视频无遮挡免费网站| 国产精品一及| 夜夜夜夜夜久久久久| 搞女人的毛片| 国产又色又爽无遮挡免费看| 久久九九热精品免费| 国产亚洲精品综合一区在线观看| av欧美777| 欧美丝袜亚洲另类 | 美女黄网站色视频| 国产麻豆成人av免费视频| 搞女人的毛片| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 九九热线精品视视频播放| 免费在线观看亚洲国产| 99久久久亚洲精品蜜臀av| 欧美性猛交黑人性爽| 国产精品美女特级片免费视频播放器 | 成人18禁在线播放| 日韩免费av在线播放| 亚洲av日韩精品久久久久久密| 欧美大码av| 亚洲 国产 在线| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 黄色成人免费大全| 免费搜索国产男女视频| 小蜜桃在线观看免费完整版高清| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 国产亚洲精品综合一区在线观看| 亚洲18禁久久av| 欧美色欧美亚洲另类二区| 国产乱人伦免费视频| 久久天堂一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 97超视频在线观看视频| 亚洲男人的天堂狠狠| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 亚洲无线观看免费| 精品久久久久久久毛片微露脸| 黄色丝袜av网址大全| 国产乱人视频| 成人性生交大片免费视频hd| 免费av不卡在线播放| 亚洲熟妇中文字幕五十中出| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 久久欧美精品欧美久久欧美| 亚洲人成电影免费在线| 女同久久另类99精品国产91| 欧美激情在线99| 中文字幕高清在线视频| 国产精品综合久久久久久久免费| 国产成人精品无人区| 看免费av毛片| 久久欧美精品欧美久久欧美| 听说在线观看完整版免费高清| 亚洲男人的天堂狠狠| 淫妇啪啪啪对白视频| 一个人看视频在线观看www免费 | 黑人欧美特级aaaaaa片| 无限看片的www在线观看| 我的老师免费观看完整版| 国产精品久久久久久精品电影| 亚洲成人中文字幕在线播放| 亚洲精品粉嫩美女一区| 91麻豆精品激情在线观看国产| 久久天躁狠狠躁夜夜2o2o| 免费看日本二区| 天堂av国产一区二区熟女人妻| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| a级毛片在线看网站| 国产乱人伦免费视频| 听说在线观看完整版免费高清| 欧美大码av| 色吧在线观看| 成人亚洲精品av一区二区| 美女午夜性视频免费| bbb黄色大片| 久久久久久人人人人人| 久久久色成人| av福利片在线观看| 免费观看的影片在线观看| 日本熟妇午夜| 亚洲欧美一区二区三区黑人| 日韩欧美在线乱码| 天堂动漫精品| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 日韩有码中文字幕| 色哟哟哟哟哟哟| 亚洲欧美日韩高清专用| 白带黄色成豆腐渣| 在线观看美女被高潮喷水网站 | 久久精品夜夜夜夜夜久久蜜豆| 久久这里只有精品19| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 黄色日韩在线| 亚洲欧美一区二区三区黑人| 欧美激情久久久久久爽电影| 视频区欧美日本亚洲| 制服人妻中文乱码| 亚洲国产看品久久| 亚洲精品乱码久久久v下载方式 | 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 亚洲国产欧美一区二区综合| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添小说| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 在线观看日韩欧美| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 最近最新免费中文字幕在线| 国产视频一区二区在线看| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式 | 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 成人av在线播放网站| 黄色日韩在线| 欧美黑人巨大hd| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 国产综合懂色| 亚洲片人在线观看| www国产在线视频色| 嫩草影视91久久| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 午夜免费激情av| 岛国在线观看网站| av国产免费在线观看| av片东京热男人的天堂| 亚洲 国产 在线| tocl精华| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 亚洲电影在线观看av| 国模一区二区三区四区视频 | 一本久久中文字幕| 成人国产综合亚洲| 琪琪午夜伦伦电影理论片6080| 欧美zozozo另类| 免费在线观看日本一区| 亚洲中文av在线| 久久久精品大字幕| 精品乱码久久久久久99久播| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 色老头精品视频在线观看| 1024香蕉在线观看| 日本三级黄在线观看| www日本黄色视频网| 国模一区二区三区四区视频 | 日本免费a在线| 波多野结衣巨乳人妻| 国产午夜精品久久久久久| 99国产精品99久久久久| 99在线人妻在线中文字幕| xxx96com| 久久99热这里只有精品18| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 欧美中文综合在线视频| 男人舔女人下体高潮全视频| 国产v大片淫在线免费观看| 成人av一区二区三区在线看| 国产成人欧美在线观看| 精品人妻1区二区| 日韩有码中文字幕| www.自偷自拍.com| 中出人妻视频一区二区| av国产免费在线观看| 亚洲国产色片| 一个人看的www免费观看视频| 亚洲精品粉嫩美女一区| 香蕉国产在线看| 国产精品野战在线观看| 丁香欧美五月| 夜夜爽天天搞| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 一本一本综合久久| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 美女cb高潮喷水在线观看 | 欧美三级亚洲精品| 九色成人免费人妻av| 婷婷丁香在线五月| www.自偷自拍.com| 午夜福利视频1000在线观看| 91九色精品人成在线观看| 极品教师在线免费播放| 国产成人av激情在线播放| 少妇丰满av| 成人无遮挡网站| 在线观看舔阴道视频| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 香蕉久久夜色| 国产精品日韩av在线免费观看| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 九九热线精品视视频播放| 一卡2卡三卡四卡精品乱码亚洲| 日韩免费av在线播放| 老鸭窝网址在线观看| 国内精品久久久久精免费| 成人av一区二区三区在线看| 制服丝袜大香蕉在线| 中文字幕久久专区| 天堂动漫精品| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 久久这里只有精品中国| 亚洲国产中文字幕在线视频| 亚洲美女视频黄频| 日本三级黄在线观看| 国产主播在线观看一区二区| 看片在线看免费视频| 90打野战视频偷拍视频| 国产精品99久久久久久久久| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 久久精品91蜜桃| 麻豆成人午夜福利视频| 亚洲av成人不卡在线观看播放网| 久久久久性生活片| 国产av在哪里看| 色综合欧美亚洲国产小说| 亚洲精品色激情综合| 搞女人的毛片| 亚洲欧美日韩高清专用| 国产一区二区在线观看日韩 | 亚洲av成人一区二区三| 久久精品91无色码中文字幕| 亚洲 国产 在线| 两人在一起打扑克的视频| 丰满的人妻完整版| 99热这里只有是精品50| 国产精品久久久久久精品电影| xxx96com| 男女床上黄色一级片免费看| 丝袜人妻中文字幕| 欧美日韩一级在线毛片| 亚洲精品一区av在线观看| 国产一区二区激情短视频| 久久精品国产综合久久久| 久久天躁狠狠躁夜夜2o2o| 9191精品国产免费久久| 日韩三级视频一区二区三区| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 欧美三级亚洲精品| 色播亚洲综合网| 91九色精品人成在线观看| 九色成人免费人妻av| 在线看三级毛片| 不卡一级毛片| 中亚洲国语对白在线视频| 特级一级黄色大片| 五月玫瑰六月丁香| 亚洲欧洲精品一区二区精品久久久| 老汉色∧v一级毛片| 制服丝袜大香蕉在线| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 免费看日本二区| 身体一侧抽搐| 又大又爽又粗| 欧美日韩瑟瑟在线播放| 噜噜噜噜噜久久久久久91| 国产免费男女视频| 国产精品爽爽va在线观看网站| 日本在线视频免费播放| www.自偷自拍.com| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 国产亚洲av嫩草精品影院| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 国产精品久久久久久久电影 | а√天堂www在线а√下载| 国产精品久久久久久精品电影| 99热精品在线国产| 极品教师在线免费播放| 成人高潮视频无遮挡免费网站| 黄色片一级片一级黄色片| 成人三级黄色视频| 色尼玛亚洲综合影院| 天堂动漫精品| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区三区视频在线 | 最好的美女福利视频网| 色av中文字幕| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 中国美女看黄片| 国产爱豆传媒在线观看| 国产真实乱freesex| 1024香蕉在线观看| 中文字幕av在线有码专区| 欧美成人性av电影在线观看| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 国产欧美日韩一区二区三| 一个人看视频在线观看www免费 | 久久久国产精品麻豆| 亚洲在线观看片| 无限看片的www在线观看|