• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In Situ Synthesis of Cuprous Oxide/Cellulose Nanofibers Gel and Antibacterial Properties

    2018-10-09 08:45:40YingHuQinfeiKeZheLiWanliHanandZhiyongYan
    Computers Materials&Continua 2018年9期

    Ying Hu, Qinfei Ke, Zhe Li, Wanli Hanand Zhiyong Yan,

    Abstract: Cellulose nanofibers were synthesized by acetobacter xylinum (xylinum 1.1812). The cellulose nanofibers with 30-90 nm width constructed three-dimension network gel, which could be used as a wound dressing since it can provide moist environment to a wound. However, cellulose nanofibers have no antimicrobial activity to prevent wound infection. To achieve antimicrobial activity, the cellulose nanofibers can load cuprous oxide (Cu2O) particles on the surface. The cuprous oxide is a kind of safe antibacterial material. The copper ions can be reduced into cuprous oxides by reducing agents such as glucose, N2H4 and sodium hypophosphite. The cellulose nanofibers network gel was soaked in CuSO4 solution and filled with copper ions. The cuprous oxide nanoparticles were in situ synthesized by glucose and embedded in cellulose nanofibers network. The morphologies and structure of the composite gel were analyzed by FESEM, FTIR, WAXRD and inductively coupled plasma (ICP). The sizes of Cu2O embedded in cellulose nanofibers network are 200-500 nm wide. The peak at 605 cm?1 attributed to Cu(I)-O vibration of Cu2O shits to 611 cm?1 in the Cu2O/ cellulose composite. The Cu2O/ cellulose nanofibers composite reveals the obvious characteristic XRD pattern of Cu2O and the results of ICP show that the content of Cu2O in the composite is 13.1%. The antibacterial tests prove that the Cu2O/ cellulose nanofibers composite has the high antibacterial activities which is higher against S. aureus than against E. coli.

    Keywords: Cellulose nanofiber, cuprous oxide, in situ synthesis, antibacterial.

    1 Introduction

    Above 15 million people died of the infectious diseases every year in the world [Sunada,Minoshima and Hashimoto (2012)]. The bacteria infect the patients from person-toperson on their surface of organs and skins. It is very necessary to kill the bacteria on the skins and the surrounding environment by using antibacterial materials. The antibacterial materials exposed to the surface can inactivate viral particles in the environment, prevent viral transmitting and thereby lower the risks of infections. A number of inorganic materials such as zinc, copper, silver and their oxides could be often used as antiviral and antibacterial materials [Khatami, Heli, Jahani et al. (2017); Ma, Guo, Guo et al. (2015);Rezaie, Montazer, Rad et al. (2017)]. The silver nanoparticles are cytotoxic and genotoxic, and should be limited to use in materials contacted with human organs.Copper has been used as antibacterial materials since ancient times, however, some experiment results reveal that the cuprous oxides (Cu2O) have superior antibacterial activities because of their activity mechanism different from silver nanoparticles,moreover, the cuprous oxides have no toxic to human organs and low-cost in manufacture [She, Wan, Tang et al. (2016); Yang, Li, Lin et al. (2016)].

    Cu2O has unique physical and chemical properties and has attracted extensive interest to use as solar energy conversion, catalysis, gas sensors, photocatalysts and antibacterial materials. Many methods are created to synthesize different morphology and size Cu2O and a series of different Cu2O shapes including cubes, octahedrons, polyhedrons,nanocubes, hollow structures, nanowires, flower-like, hex-pod-like and hexapods have been synthesized [Xu, Chen, Jiao et al. (2007); Xu, Yi, Fen et al. (2003)]. The sizes of Cu2O have a great influence on their properties. The research results show that the antibacterial properties depend on the morphologies and sizes [Li, Ni, Yu et al. (2014);Pang, Gao and Lu (2009)]. The cuprous oxide nanoparticles are prone to aggregate, due to an der Waals forces between nanoparticles and highly surface energy, which decreases their specific surface area and antibacterial activities. It is necessary to disperse the cuprous oxide nanoparticles in order to enlarge their superiorities of high specific surface area and antibacterial activities. It is a good method to fix the cuprous oxide nanoparticles on the solid surface. Cellulose nanofibers are the excellent materials to load the inorganic nanoparticles, due to a large number of hydrophilic hydroxyl groups on the surface of cellulose nanofibers, which can interact with the electrons on the inorganic nanoparticles and absorb firmly the nanoparticles [Khalid, Khan, Ul-Islam et al. (2017); Xiang and Acevedo (2017); Zhang, Tang, Yang et al. (2016)].

    Cellulose nanofibers can be used as medical tissues and received extensive attention.Several bacteria includingGluconacetobacter,Sarcina and Agrobacteriumcan metabolism and secrete cellulose nanofibers named bacterial cellulose (BC) [Keskin,Urkmez and Hames (2017); Pita, Pinto and Lira (2015); Sepulveda, Valente, Reis et al.(2016)]. The nanofibers interwoven into three-dimensional network gel, resulting in numerous micropores with porosity and high water-holding ability. The microporous network can provide place to load the cuprous oxide particles. In order to disperse uniformly the nanoparticles, it is a very efficient method to in situ synthesize using the precursors of nanoparticles.

    In this work, the cuprous oxide particles were in situ synthesized in the cellulose nanofibers three-dimensional network gel. The sizes and morphologies of cuprous oxide particles were controlled by adjusting the pH of solution, temperature and glucose concentration. The chemical and physical structure was characterized by FTIR, XRD and SEM. The composite gel showed the higher antibacterial activities.

    2 Materials and methods

    2.1 Culture methods and cellulose nanofibers biosynthesis

    G. xylinum 1.1812(ATCC 23767) strains were given by the Institute of Microbiology,Chinese Academy of Sciences. The lyophilized strains powder was fi rst dissolved in pH=6.0 nutrient medium (0.5 w/v% peptone, 0.5 w/v% yeast extract, 0.2 w/v% sodium phosphate dibasic, 5 w/v% glucose, 0.1 w/v% citric acid and 0.1w/v% potassium dihydrogen phosphate). After cultivated for 24 h at 28°C, a layer of pellicle floated on surface. The clear solution centrifugated was then inoculated into square culture dish (13 cm*13 cm) with the volume of 50 mL nutrient ingredients medium which was sterilized at 121°C for 30 min by autoclaving. 7 days later, the culture medium was changed into a gel. The gel was boiled in 1% sodium hydroxide solution for 30 min to remove the cells and medium embedded in the cellulose, then rinsed with deionized water for 3 days until pH=7 of the rinsed solution and freeze-dried at -30°C.

    2.2 Preparation of the Cu2O /cellulose nanofibers composite gel

    The rinsed cellulose gel (5 cm×10 cm) were dried in the air for 1 day. 25 g copper sulfate(CuSO4?5H2O) was dissolved in 250 mL in deionized water to get copper sulfate solution,20 g glucose was dissolved in 100 deionized water to get glucose solution and 40 g NaOH was dissolved in 100 deionized water to get NaOH solution. The composite gel samples were prepared as following: first, measuring copper sulfate solution and glucose solution, mixing them into uniform and transparent solution; then the cellulose gels were soaked in the CuSO4/glucose solution and ultrasound for 24 h in order to make CuSO4and glucose fill the pores among nanofibers; then the above solution was laid in heated water bath and added NaOH solution dropwise, stirring for 1 h. The reaction parameters were listed in Tab. 1. The red gel was taken out of the solution and cut into 5 cm*10 cm sheet, stored at 4°C until further usage. After the remaining solution was centrifuged, the brick red precipitate was obtained and freeze-dried.

    Table 1: The experimental parameters of the samples

    2.3 Field emission scanning electron microscopy (FESEM)

    Field emission scanning electron microscopy (FE-SEM, Hitachi S-4800) was performed at 10 kV to determine the microstructures and morphologies of the composites. All the samples were freeze-dried and sputter-coated with a thin layer of gold power before microscopic observation.

    2.4 Fourier transform infrared (FTIR) spectroscopy

    The freeze-dried cellulose nanofibers samples were placed across a hole in a magnetic holder. FTIR spectra were recorded on a Nicolet model 6000C equipped with a MCT detector in the absorption mode with a resolution of 2 cm-1in the range of 4000~400 cm-1.

    2.5 Wide-angle X-ray diffractometry (WAXRD)

    X-ray diffraction (XRD) (EQuniox 3000, INEL) with Cu Kα radiation source (λ=1.5418 ?) was used to evaluate the presence and phases of nanoparticles loaded on the cellulose nanofibers. The diffraction pro fi le was processed by computer-aided fi tting analysis and transformed to basic crystallographic features: D-spaces of equatorial lattice planes. The crystalline siz (D(hkl)) could be calculated according to the each corresponding peaks in XRD patterns (Eq. (1)) [Oh, Yoo, Shin et al. (2005)]:

    where β, λ and θ are full width at half maximum,X-ray wavelength and the diffraction angle, respectively.

    2.6 Antibacterial activity test

    In order to investigate the antimicrobial ability of composite gel, the gel was punched into circle gels of the diameter of 1.0 cm. S. aureus as representative of Gram-positive bacterium and E. coli and as representative of Gram-negative bacterium were selected as test strains. All the disks and materials were sterilized in an autoclave before experiments,and experimental operations were conducted in the super clean bench. Firstly, the melted sterilized LB agar medium was poured into petri dishes and then solidi fi ed. Secondly, the medium containing bacteria (108CFU/mL) was uniformly layered over LB agar plates.Thirdly, the circle composite gels were gently placed on the lawn of bacteria in LB agar plates. To compare the antibacterial properties, one piece of pure cellulose gel and two pieces of composite gels were placed on the same LB agar plates. After the plates were cultivated at 28°C for 24 h, the morphologies of bacteria in and out of inhibition zone were observed by SEM.

    2.7 Inductively coupled plasma optical emission spectrometer (ICP-OES) test

    To determine the content of Cu2O in composite gel, the composite gels were vacuumdried. Then the samples were dissolved in a mixed solution of concentrated HNO3/H.Inductively coupled plasma optical emission spectrometer (ICP-OES) (Optima 5300 DV),was used to analyze the concentration of the Cu element.

    3 Result and discussion

    3.1 Morphology of cellulose nanofibers gel

    The photograph of the cellulose gel produced at 28°C is shown in Fig. 1. It is a milky white gel membrane with the thickness of about 10 mm. The surface and bottom of the gel are smooth.

    Figure 1: Photograph of cellulose nanofibers gel

    3.2 Reactional mechanism

    The color of the solution gradually turn to light turbid blue, dark blue, and brick red from blue clarification with the increase of the heating time, shown as Fig. 2. Fig. 2a shows the gel soaked in the blue CuSO4solution and the cellulose gel filled by Cu2+and SO42-ions is light blue. Fig. 2b shows the brick red suspension after heating 1 h and the cellulose gel is yellowish red, shown as Fig. 2c.

    Figure 2: Photographs of cellulose nanofibers/CuSO4 mixture solution (a), brick red solution after heated 1 h (b) and the brick red composite gel (c)

    The change of the color of the gel is attributed to the Cu2+induced gradually by glucose,which can be described as the chemical Eqs. (1), (2) and (3) [Yang, Li, Lin et al. (2016)]:

    The dark blue Cu(OH)2suspension is changed into brick red precipitate which may be Cu2O according to the chemical reaction equations.

    The shapes and sizes of Cu2O depend on the reaction conditions. Fig. 3a illustrates that the Cu2O particles reduced from the Cu2+ions in the CuSO4solution are the quasioctahedron with the width of 600-900 nm. Fig. 3b reveals that the cellulose nanofibers are 30-90 nm wide and assemble into three-dimensional network layer-by-layer, which leaves a lot of micropores in the network. The sizes of Cu2O embedded in cellulose nanofibers network are 200-500 nm wide and irregular, as shown in Fig. 3c. The Cu2O particles and cellulose nanofibers interpenetrate, indicating that the Cu2+ions are adsorbed in the cellulose nanofibers before reduced. The reactional processing can be manifested as Fig. 4. The copper ions were uniformly filled with the whole cellulose gel,then reduced into the precipitate of Cu2O which were uniformly dispersed in the gel.

    Figure 3: SEM images of Cu2O reduced from Cu2+ in the CuSO4 solution (a), cellulose nanofibers (b) and Cu2O/cellulose nanofiber composites (c)

    Figure 4: The schematic representation of the Cu2O/cellulose nanofibers composite via in situ synthesis

    3.3 FTIR

    The FTIR spectra of Cu2O, cellulose nanofibers and Cu2O/cellulose nanofibers composite are presented in Fig. 5. A weak band at 458 cm?1is assigned to the metal-oxygen vibrational bond. Cellulose nanofibers and Cu2O/cellulose nanofibers composite both reveal the characteristic peaks of cellulose molecules. The strong peak at 3349 cm-1attributed to the intra-molecular hydrogen bonds for (3)O-H-O(5), as shown in Fig. 5a,however, the intensity of peak at 3349 cm-1in nanofibers is higher and sharper than that in the composite, which may be ascribed to the Cu2O particles in the network disrupting the interaction between the cellulose nanofibers. Fig. 5b brings out the spectra from 700 cm-1to 400 cm-1. The difference is very obvious near 600-620 cm-1. The peak at 605 cm?1is related to Cu(I)-O vibration of Cu2O particles [Sedighi, Montazer and Samadi (2014)].In the Cu2O/cellulose nanofibers composite, the peak shifts from 605 cm-1to 611 cm-1and the peak at 619 cm-1disappear, which exists in cellulose. The change of wavenumber near 605 cm-1manifest the Cu-O and cellulose molecules interact, as the change of peaks at 3349 cm-1.

    Figure 5: FTIR spectra of 4000-400 cm-1(a) and 700-400 cm-1 (b)

    3.4 XRD

    The WAXRD patterns of BC nanofibers, Cu2O and Cu2O/BC nanofibers composites are shown in Fig. 6. The Cu2O samples reduced from the Cu2+ions in the CuSO4solution reveal the sharp characteristic diffraction peaks of Cu2O at 29.2°, 36.0°, 41.9°, 61.1°,73.3° and 77.3° corresponding to the (110), (111), (200), (220), (311) and (222) planes,respectively [Chen, Chen, Xue et al. (2002)], which indicates that the Cu2O samples are pure, no CuO and Cu. The pattern of cellulose nanofibers reveals the diffraction peaks at 14.4°, 16.6° and 22.7°, corresponding to the crystallographic plane of (11-0), (110) and(200), respectively. The patter of Cu2O/cellulose nanofibers composite only reveals the characteristic diffraction peaks of cellulose at 22.7°, and the peaks at 14.4° and 16.6°disappear. However, the characteristic peaks of Cu2O are obviously shown in the pattern of Cu2O/cellulose nanofibers composite, which may be related to a large number of Cu2O particles deposited on the surface of composite, as the brick red color is displayed.According to Eq. (1) at 36.5°, the D(hkl)of Cu2O reduced from the Cu2+ions in the CuSO4solution is 28.6 nm, while the value of the composite is 11.8 nm. The crystalline size of Cu2O reduced from the Cu2+ions in the CuSO4solution is larger than that of Cu2O embedded in the composite, which is consistent with the results of SEM images. The difference of crystalline size between Cu2O and the composite demonstrates that Cu2O in the CuSO4solution could grow freely; Cu2O embedded in the network are constricted by limited space and the interaction of chemical bands between Cu2O and -OH groups in cellulose molecules, difficult to grow freely.

    Figure 6: WAXRD patterns of BC nanofibers, Cu2O and Cu2O/BC nanofibers composites

    3.5 Antibacterial activity test

    The antibacterial properties of Cu2O/cellulose nanofibers composite was examined against both E. coli and S. aureus bacteria using disc diffusion method (zone of inhibition test). In order to reduce the test error, every disc is placed two pieces of Cu2O/cellulose composite gels. Figs. 7a and 7b present the shapes and size of the inhibition zone of E.coli and S. aureus, respectively. The halo diameter of nanofibers/Cu2O composite is 38 mm against E. coli while 43 mm against S. aureus. The composite exhibits ef fi cient antibacterial activity due to their large surface area loaded on the surface of cellulose nanofibers. Relatively, the composite reveals higher antibacterial efficient against S.aureus than E. coli. Moreover, the color of composite becomes very light than that before antibacterial test and the brick red color of Cu2O vanishes. It may be reasonable that the Cu2O particles are changed into Cu2+ions which diffuse into the agar medium. The color of composite against S. aureus is lighter than against E. coli, indicating that the more Cu2O particles against S. aureus diffuses into the medium, which demonstrates higher antibacterial activity than those against E. coli.

    Figure 7: Inhibition zone test of Cu2O/cellulose nanofibers composite and cellulose nanofibers against E. coli (a) and S. aureus (b)

    Fig. 8 shows the SEM images of E. coli and S. aureus before and after antibacterial test.Fig. 8b reveals that the E. coli is seriously destroyed and half of the cell wall vanishes comparing to the Fig. 8a, indicating that the Cu2O/cellulose composite gel has excellent antibacterial efficiency. Comparing to the morphologies of S. aureus before and after antibacterial test, Fig. 8d presents that the S. aureus is completely ruined. The SEM images demonstrates that the Cu2O/cellulose nanofibers composite is more efficient against S. aureus than E. coli.

    Figure 8: SEM images of E. coli before (a) and after (b) antibacterial test, and S. aureus before (c) and after (d) antibacterial test

    3.6 Inductively coupled plasma (ICP)

    The CuSO4in solution could not absorbed by the cellulose nanofibers, and it is necessary to determine the content of Cu2O/cellulose nanofibers composite. The test results of ICPOES show that the content of Cu elementary is 11.6 w/w%, is to say that the content of Cu2O in composite is 13.1 w/w%, while the content of Cu2+ions in the solution is 1.25 w/w%, suggesting that the cellulose nanofibers can efficiently absorb the Cu2+ions and load high content Cu2O particles.

    Acknowledgement:The authors are grateful to the financial support provided by the National key R&D Program of China (2017YFB0309400-2017YFB0309405) and Natural Science Foundation of China (Grant No. 51506075) and financial support from China Scholarship Council.

    亚洲精品乱久久久久久| 操美女的视频在线观看| 肉色欧美久久久久久久蜜桃| www.精华液| 大片电影免费在线观看免费| 亚洲精品国产一区二区精华液| 亚洲人成伊人成综合网2020| 热99re8久久精品国产| 日本一区二区免费在线视频| 人人妻人人澡人人看| 操出白浆在线播放| 中文字幕色久视频| 欧美中文综合在线视频| 丁香欧美五月| kizo精华| 日韩三级视频一区二区三区| 天天添夜夜摸| 男女之事视频高清在线观看| 国产成人精品无人区| 这个男人来自地球电影免费观看| 国产欧美日韩综合在线一区二区| 日韩大片免费观看网站| 免费av中文字幕在线| 久久热在线av| 真人做人爱边吃奶动态| 一本久久精品| 黑人操中国人逼视频| netflix在线观看网站| 一级毛片精品| 一区二区三区乱码不卡18| 精品一区二区三区av网在线观看 | 国产激情久久老熟女| 亚洲五月婷婷丁香| 一级片免费观看大全| 亚洲av电影在线进入| 成人亚洲精品一区在线观看| 91成年电影在线观看| 色94色欧美一区二区| 国产av精品麻豆| 欧美激情高清一区二区三区| 久久中文字幕一级| cao死你这个sao货| 国产精品 国内视频| 久久亚洲真实| 99国产精品一区二区蜜桃av | 青草久久国产| 亚洲综合色网址| 免费在线观看日本一区| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区mp4| 午夜免费成人在线视频| 精品人妻在线不人妻| 亚洲精品美女久久久久99蜜臀| 91成年电影在线观看| 麻豆av在线久日| 国产欧美日韩一区二区精品| 亚洲伊人久久精品综合| 老司机福利观看| 欧美久久黑人一区二区| 一本综合久久免费| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 超色免费av| 美女扒开内裤让男人捅视频| 9热在线视频观看99| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 久久精品国产99精品国产亚洲性色 | 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 日本wwww免费看| 亚洲精品av麻豆狂野| 丰满饥渴人妻一区二区三| 一区二区日韩欧美中文字幕| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区mp4| 精品人妻在线不人妻| 久久久久久久精品吃奶| 国产精品 欧美亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 欧美一区二区三区| 午夜两性在线视频| 精品人妻熟女毛片av久久网站| 最新的欧美精品一区二区| 亚洲国产中文字幕在线视频| 在线观看66精品国产| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| svipshipincom国产片| 成年人午夜在线观看视频| 精品一区二区三区视频在线观看免费 | 怎么达到女性高潮| 午夜视频精品福利| 国产在线免费精品| 女人精品久久久久毛片| 国产成+人综合+亚洲专区| 久久精品国产a三级三级三级| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 久久青草综合色| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 黄片大片在线免费观看| 中文字幕最新亚洲高清| 另类精品久久| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 一本综合久久免费| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 亚洲第一青青草原| 免费在线观看黄色视频的| 国产99久久九九免费精品| 美女视频免费永久观看网站| 久久精品人人爽人人爽视色| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 亚洲欧美色中文字幕在线| 国产有黄有色有爽视频| 国产成人欧美| 日韩三级视频一区二区三区| 69精品国产乱码久久久| 色播在线永久视频| av线在线观看网站| 亚洲精品中文字幕一二三四区 | 免费在线观看完整版高清| a在线观看视频网站| 国产精品一区二区在线不卡| 悠悠久久av| 国产三级黄色录像| 欧美黄色淫秽网站| 国产精品熟女久久久久浪| 精品亚洲乱码少妇综合久久| 欧美黑人欧美精品刺激| 精品福利永久在线观看| 免费不卡黄色视频| 中文字幕av电影在线播放| 亚洲专区国产一区二区| 精品亚洲成国产av| 久久亚洲精品不卡| 露出奶头的视频| 亚洲一码二码三码区别大吗| 一进一出抽搐动态| 高清av免费在线| 精品一区二区三区av网在线观看 | 啦啦啦免费观看视频1| 国产欧美日韩一区二区三| 老司机影院毛片| a在线观看视频网站| 两人在一起打扑克的视频| 午夜久久久在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品1区2区在线观看. | 天天添夜夜摸| 熟女少妇亚洲综合色aaa.| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 99香蕉大伊视频| 国产免费视频播放在线视频| 国产野战对白在线观看| a级毛片在线看网站| 美女扒开内裤让男人捅视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 一二三四社区在线视频社区8| 欧美成狂野欧美在线观看| 欧美另类亚洲清纯唯美| 欧美国产精品va在线观看不卡| 97在线人人人人妻| 色94色欧美一区二区| 久9热在线精品视频| 首页视频小说图片口味搜索| 精品第一国产精品| 国产亚洲精品一区二区www | 中文字幕制服av| 精品视频人人做人人爽| 人人妻人人爽人人添夜夜欢视频| 精品免费久久久久久久清纯 | 精品国产一区二区久久| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 免费少妇av软件| 亚洲黑人精品在线| 国产成人免费无遮挡视频| 精品亚洲乱码少妇综合久久| 亚洲精华国产精华精| 最新美女视频免费是黄的| 悠悠久久av| 大陆偷拍与自拍| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲真实| 美女福利国产在线| 成年动漫av网址| 超色免费av| 美女福利国产在线| 久久久欧美国产精品| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频 | 国产精品欧美亚洲77777| 丰满饥渴人妻一区二区三| 19禁男女啪啪无遮挡网站| 十分钟在线观看高清视频www| 欧美日韩av久久| 一本一本久久a久久精品综合妖精| 日韩有码中文字幕| 下体分泌物呈黄色| 人人妻人人澡人人爽人人夜夜| 精品久久蜜臀av无| 国产高清视频在线播放一区| 欧美精品一区二区大全| 热re99久久国产66热| 亚洲国产看品久久| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 十八禁网站免费在线| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| 中文字幕最新亚洲高清| www.自偷自拍.com| 国产黄色免费在线视频| 91精品国产国语对白视频| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲| 一二三四社区在线视频社区8| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区精品视频观看| 精品人妻熟女毛片av久久网站| 国产精品亚洲av一区麻豆| 精品少妇一区二区三区视频日本电影| 久久中文字幕一级| 久久99热这里只频精品6学生| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 99国产精品一区二区三区| 亚洲,欧美精品.| aaaaa片日本免费| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| xxxhd国产人妻xxx| 久久精品aⅴ一区二区三区四区| av电影中文网址| av视频免费观看在线观看| av福利片在线| 麻豆成人av在线观看| 女性生殖器流出的白浆| 欧美大码av| 99久久人妻综合| a级毛片在线看网站| 少妇猛男粗大的猛烈进出视频| 国产xxxxx性猛交| 制服诱惑二区| 热99国产精品久久久久久7| 亚洲av美国av| 人妻久久中文字幕网| 另类精品久久| 一级片免费观看大全| 成人精品一区二区免费| 亚洲精品一二三| 国产一区二区在线观看av| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 亚洲成人手机| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 国产亚洲av高清不卡| 亚洲av电影在线进入| 国产高清videossex| 狠狠精品人妻久久久久久综合| 日本a在线网址| 久久ye,这里只有精品| 亚洲精品在线观看二区| 1024视频免费在线观看| 91九色精品人成在线观看| 热99久久久久精品小说推荐| 亚洲国产av新网站| 久久久久久免费高清国产稀缺| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 伦理电影免费视频| 午夜精品国产一区二区电影| 视频在线观看一区二区三区| 亚洲av成人一区二区三| 国产精品国产av在线观看| 黄色片一级片一级黄色片| 国产精品国产高清国产av | 俄罗斯特黄特色一大片| 久久人人爽av亚洲精品天堂| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 午夜激情av网站| 十八禁网站网址无遮挡| 老司机福利观看| 蜜桃国产av成人99| 大型av网站在线播放| 91大片在线观看| 久久精品国产a三级三级三级| 电影成人av| 黄色毛片三级朝国网站| 蜜桃在线观看..| aaaaa片日本免费| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 国产精品一区二区免费欧美| 丁香欧美五月| 免费在线观看黄色视频的| 亚洲午夜精品一区,二区,三区| 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 午夜视频精品福利| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 大型av网站在线播放| 大片免费播放器 马上看| 亚洲视频免费观看视频| 夫妻午夜视频| 天天影视国产精品| 操美女的视频在线观看| 自线自在国产av| 中文欧美无线码| 精品福利观看| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| 人人澡人人妻人| 久久狼人影院| 国产单亲对白刺激| 午夜免费成人在线视频| 无人区码免费观看不卡 | 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| 欧美人与性动交α欧美精品济南到| 黄色成人免费大全| 久久亚洲真实| 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 一级毛片电影观看| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女 | 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 曰老女人黄片| 男女免费视频国产| 欧美性长视频在线观看| 亚洲九九香蕉| 美国免费a级毛片| 亚洲av日韩精品久久久久久密| 黄色a级毛片大全视频| 国产欧美日韩一区二区三| 精品欧美一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 成人国产av品久久久| 岛国毛片在线播放| 日日夜夜操网爽| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| 色综合欧美亚洲国产小说| 丁香六月天网| 性少妇av在线| av天堂在线播放| 人人妻人人澡人人看| 免费在线观看影片大全网站| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 汤姆久久久久久久影院中文字幕| 一二三四在线观看免费中文在| 久久精品国产亚洲av高清一级| 香蕉久久夜色| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 男女床上黄色一级片免费看| 我的亚洲天堂| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区 | 国产一区二区三区综合在线观看| 青青草视频在线视频观看| 一进一出好大好爽视频| 制服人妻中文乱码| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 美女扒开内裤让男人捅视频| av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月天网| 久久久久视频综合| tube8黄色片| 国产精品亚洲av一区麻豆| 国产日韩欧美亚洲二区| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 精品熟女少妇八av免费久了| 午夜精品国产一区二区电影| 精品国产一区二区久久| 97在线人人人人妻| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 色在线成人网| 嫁个100分男人电影在线观看| 97人妻天天添夜夜摸| 国产福利在线免费观看视频| 高清欧美精品videossex| 大陆偷拍与自拍| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 夜夜骑夜夜射夜夜干| 免费观看av网站的网址| 超碰成人久久| 亚洲av欧美aⅴ国产| 亚洲一区中文字幕在线| 欧美精品人与动牲交sv欧美| 麻豆成人av在线观看| 最新的欧美精品一区二区| 国产视频一区二区在线看| 午夜福利在线观看吧| 成年版毛片免费区| 午夜福利在线观看吧| 亚洲欧美日韩另类电影网站| 久久九九热精品免费| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 99久久人妻综合| 国产成人免费观看mmmm| 日本欧美视频一区| 免费av中文字幕在线| 欧美午夜高清在线| 精品少妇内射三级| 自线自在国产av| 国产一区二区在线观看av| 日本五十路高清| 99精品久久久久人妻精品| 亚洲全国av大片| 亚洲伊人久久精品综合| 国产成人系列免费观看| 高清av免费在线| 一区二区日韩欧美中文字幕| www.精华液| 亚洲视频免费观看视频| 久久99热这里只频精品6学生| 国产精品九九99| 国产1区2区3区精品| 国产精品九九99| 亚洲国产欧美网| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 久久久国产欧美日韩av| 亚洲精品国产一区二区精华液| 人妻 亚洲 视频| 国产高清国产精品国产三级| 中文字幕人妻丝袜一区二区| 黄色毛片三级朝国网站| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 亚洲中文字幕日韩| 久9热在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品乱久久久久久| 久久精品国产亚洲av香蕉五月 | 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 新久久久久国产一级毛片| 91麻豆av在线| 91麻豆精品激情在线观看国产 | 男女高潮啪啪啪动态图| 免费在线观看完整版高清| av国产精品久久久久影院| 一个人免费在线观看的高清视频| 免费日韩欧美在线观看| 丝袜人妻中文字幕| 美女视频免费永久观看网站| aaaaa片日本免费| 免费少妇av软件| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 色播在线永久视频| 18禁美女被吸乳视频| 久热爱精品视频在线9| 香蕉国产在线看| 999久久久国产精品视频| 久久久久久亚洲精品国产蜜桃av| 男女无遮挡免费网站观看| 国产aⅴ精品一区二区三区波| 久久久久精品人妻al黑| 亚洲av片天天在线观看| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| 一区在线观看完整版| www.自偷自拍.com| 午夜激情久久久久久久| 国产一卡二卡三卡精品| 美女福利国产在线| 亚洲国产精品一区二区三区在线| 亚洲熟女毛片儿| 久久久国产成人免费| 免费看a级黄色片| 国产精品久久电影中文字幕 | 精品国产一区二区三区久久久樱花| 女性被躁到高潮视频| 免费看十八禁软件| 女人被躁到高潮嗷嗷叫费观| 一本色道久久久久久精品综合| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 久久人妻福利社区极品人妻图片| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 黄色丝袜av网址大全| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| 一级,二级,三级黄色视频| 12—13女人毛片做爰片一| 18禁裸乳无遮挡动漫免费视频| 国产免费av片在线观看野外av| 99精品在免费线老司机午夜| 欧美日韩亚洲综合一区二区三区_| 老司机在亚洲福利影院| 香蕉国产在线看| 精品亚洲成a人片在线观看| 美女扒开内裤让男人捅视频| 天堂动漫精品| 亚洲专区字幕在线| 欧美日韩成人在线一区二区| 日韩欧美国产一区二区入口| 国产成人啪精品午夜网站| 深夜精品福利| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 12—13女人毛片做爰片一| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 色综合婷婷激情| 久久亚洲真实| 在线亚洲精品国产二区图片欧美| 国产单亲对白刺激| 久久av网站| 久久精品国产综合久久久| 亚洲精华国产精华精| 午夜精品国产一区二区电影| 一级片'在线观看视频| 深夜精品福利| 日韩免费高清中文字幕av| a在线观看视频网站| 乱人伦中国视频| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 国产精品熟女久久久久浪| 欧美成狂野欧美在线观看| 亚洲少妇的诱惑av| 中文字幕最新亚洲高清| 国产精品自产拍在线观看55亚洲 | 一进一出好大好爽视频| 精品少妇内射三级| 中亚洲国语对白在线视频| 好男人电影高清在线观看| 欧美中文综合在线视频| 99在线人妻在线中文字幕 | 国产又色又爽无遮挡免费看| 久久青草综合色| 黄频高清免费视频| 日本黄色视频三级网站网址 | 一本综合久久免费| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 搡老乐熟女国产| 成在线人永久免费视频| 欧美成人午夜精品| 两人在一起打扑克的视频| a级片在线免费高清观看视频| 色综合婷婷激情| 一边摸一边抽搐一进一小说 | 香蕉丝袜av| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 18禁国产床啪视频网站| 国产免费视频播放在线视频| 国产精品av久久久久免费| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 国产成人欧美| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕|