• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast Near-duplicate Image Detection in Riemannian Space by A Novel Hashing Scheme

    2018-10-09 08:45:40LigangZhengandChaoSong
    Computers Materials&Continua 2018年9期

    Ligang Zheng and Chao Song

    Abstract: There is a steep increase in data encoded as symmetric positive definite (SPD)matrix in the past decade. The set of SPD matrices forms a Riemannian manifold that constitutes a half convex cone in the vector space of matrices, which we sometimes call SPD manifold. One of the fundamental problems in the application of SPD manifold is to find the nearest neighbor of a queried SPD matrix. Hashing is a popular method that can be used for the nearest neighbor search. However, hashing cannot be directly applied to SPD manifold due to its non-Euclidean intrinsic geometry. Inspired by the idea of kernel trick, a new hashing scheme for SPD manifold by random projection and quantization in expanded data space is proposed in this paper. Experimental results in large scale nearduplicate image detection show the effectiveness and efficiency of the proposed method.

    Keywords: Riemannian manifold, congruent transformation, hashing, kernel trick.

    1 Introduction

    A huge amount of multimedia (especially images, videos and photos) has been flooding websites such as YouTube, Facebook, Google video and many others. On one hand, the easy access to the multimedia big data gives a lot of fun to the public. On the other hand,the deluge of multimedia contents has undoubtedly created problems such as copyright infringements and wasteful usage of storage space and network bandwidth.

    Website owner can easily take measures to prevent the users from uploading the exactly same images or videos by using hash code (for example, MD5). According to some statistics, there are many images or videos on the Internet which are just the nearduplicates instead of the exactly same copies. Any auxiliary textual information associated with the image or video would be of no use when it came to determining if the image or video had been illegally copied. Therefore, it is very challenging to detect the near-duplicate images or videos.

    A promising approach to tackle this problem is to look directly into the visual content of the videos or images. This is the so-called content-based copy detection (CBCD)approach [Zheng, Lei, Qiu et al. (2012); Lei, Qiu, Zheng et al. (2014a)].

    Unlike watermarking, CBCD extracts a small number of features (called the fingerprint or signature) from the original image or video content instead of inserting some external information [Wang, Zhu and Shi (2018); Ma, Luo, Li et al. (2018); Li, Castilione and Dong (2018)] into the image or video content prior to the distribution of image or video content. It is based on content similarity and relies on the assumption that an image or video will share a significant amount of information with its copies and will be distinguishable from other non-copies. A major challenge of CBCD lies in the fact that a copy is not necessarily an identical or a near replication, but rather a photometric or geometric transformation of the original that remains recognizable [Poullot, Crucianu and Buisson (2008); Douze, Jegou, Sandhawalia et al. (2009); Lei, Qiu, Zheng et al.(2014a);Lei, Zheng and Huang (2014b)]. The transformations may include changing color/brightness, camera recording, blurring, inserting logos/subtitles, cropping, and flipping, etc.

    A key issue to the successful detection of a copied video or image lies in the design of an effective image or video content descriptor. These descriptors can be classified into global and local statistical descriptors [Zheng, Lei, Qiu et al. (2012)]. The global statistics are generally efficient to compute, and compact to store, but less accurate in terms of their retrieval quality. On the other hand, local descriptors (such as SIFT [Lowe (2004)])are relatively more robust to image transformations, such as occlusion, cropping, etc.

    Salient covariance (SCOV) [Zheng, Lei, Qiu et al. (2012)] is a kind of compact and robust descriptor based on visual saliency and region covariance matrices for near duplicate image and video detection. The salient covariance (SCOV) descriptor has shown its advantages of being compact, discriminative and robust over other state of the art global descriptors [Zheng, Qiu and Huang (2018)]. Like other region covariance based descriptors, SCOVs are symmetric positive defined (SPD) matrices, which is a kind of Riemannian manifold of non-positive curvature. Therefore, the Euclidean computation framework cannot directly applied to the SPD matrices. Instead the Riemannian computation framework should be adopted and the similarities of the descriptors have to be measured using the Riemannian metric such as affine invariant Riemannian metric(AIRM) [Pennec, Fillard and Ayache (2006)], log-Euclidean Riemannian metric (LERM)[Arsigny, Fillard, Pennec et al. (2006)] and Jensen-Bregman LogDet Divergence (JBLD)[Cherian, Sra, Banerjee et al. (2011)].

    As a result of the nonlinear computational framework of SPD manifold, it is usually very time-demanding to conduct nearest neighbor (NN) search in SPD manifold. Many papers have made effort to design efficient NN search algorithm [Cherian, Sra, Banerjee et al.(2011)]. In spite of the hashing’s success in visual similarity search, existing techniques have some important restrictions. Current methods generally assumed the data to be processed lie in multidimensional vector space. In this paper, we investigate the hashing based methods for NN search in SPD manifold. Inspired by the idea of kernel trick, this paper tries to map the SPD matrices into a high-dimensional Euclidean space and then using random projection and quantization to get the binary bits representation of SPD matrix. Experimental results show the effectiveness and efficiency of the proposed method.

    2 Preliminary

    2.1 Salient covariance

    In this part, we give a short introduction of a covariance matrix-based descriptor [Tuzel,Porikli and Meer (2006)] the salient covariance (SCOV), which is used for near-duplicate image/video detection. Given an imageand lettingbe a-dimensional feature image, there are many ways to derive the feature image. Usually,can be set as,

    The covariance matrix of the salient features is defined as

    2.2 Locality sensitive hashing

    Locality-sensitive hashing (LSH) reduces the dimensionality of high-dimensional data.LSH hashes input items so that similar items map to the same buckets with high probability (the number of buckets being much smaller than the universe of possible input items). LSH differs from conventional and cryptographic hash functions because it aims to maximize the probability of a collision for similar items. Locality-sensitive hashing has much in common with data clustering and nearest neighbor search.

    By using a set of hashing functions, we can easily get a binary code for the vector.

    2.3 Riemannian geometry

    The inner product between two vectorsandis written as. A matrixis called positive, iffor all. It is usually denoted by. Denoteas the symmetric space of allsymmetric matrix and denoteThus, any()is a SPD matrix. The spaceforms a convex subset of.is not closed under multiplication with a negative scalar. Therefore, the space of SPD matrices,although a subset of vector space, is not a vector space. Instead, the set of SPD matrices forms a differential Riemannian manifold of non-positive curvature [Zheng, Kim, Adluru et al. (2017); Bhatia (2007); Hiai and Petz (2009)] which is usually called the SPD manifold. This forms a quotient space, wheredenotes the general linear group (the group ofnonsingular matrices) andis the orthogonal group(the group oforthogonal matrices).

    The inner product of two tangent vectorsis as follows,

    This defines the Fisher-Rao metric (also known as affine-invariant Riemannian metric[Pennec, Fillard and Ayache (2006)]) in the statistical model of multivariate distributions,which givesthe structure of a Riemannian homogeneous space of negative curvature. This metric is the starting point of this paper.

    The geodesic distance with log-Euclidean Riemannian metric is as follows.

    The manifold exponential operatormaps the tangent vectorto the location on the manifold reached by geodesic starting atin the tangent direction. Its inverse, the Riemannian logarithm operatorgives the vectors incorresponding to the geodesic fromto. The matrix logarithmand matrix exponentialof SPD matrices are calculated as

    3 Proposed framework

    3.1 Randomized congruent transformation for SPD manifold

    The above formula means that the congruent transformation with unitary matrices (an element of orthogonal group) can preserve the geodesic distance of two SPD matrices.The unitary matrices can be seen as an element of special orthogonal group -.Therefore, the congruent transformation just changes the orientation of the original ellipsoid while preserving the shape.

    Since no single data structure can capture the diversity and richness of high-dimensional data, an ensemble strategy can be adopted to improve the diversity. Therefore we can get a set of randomized SPD matrices by choosing a set of stochastic unitary matrices.

    3.2 Random projection and quantization in high dimensional space

    Hashing techniques have achieved great success in visual similarity search. However, it only applied to the data which are assumed to lie in multidimensional vector space. Given that the data lying in the Riemannian manifold instead of linear vector space, it is usually embedding the manifold-valued data into the Reproducing kernel Hilbert space (RKHS)which is Euclidean while still honoring the manifold structure.

    The kernels usually have an infinite-dimensional embedding, making it seemingly impossible to build a random hyper-plane. Generally speaking, there are two methods to deal with the kernel mapping so far. One is to construct the hyper-plane as a weighted sum of a subset of the database items [Kulis and Grauman (2009)]. The other method is to use random feature map to approximate the kernel function [Mukuta and Harada(2016)].

    In this part, we propose a new method to deal with the kernel mapping, namely the data space expansion (DSE). We use a set of randomized congruent transformation to approximate the kernel embedding. The procedures are as follows.

    1). Create a set of random unitary matrices.

    3). Transform each new SPD matrix into the log-Euclidean space by LERM and combine them sequentially to get a new vector. The dimension ofis.

    Tearing herself away from the portrait at last, she passed through into a room which contained every musical instrument under the sun, and here she amused herself for a long while in trying some of them, and singing until she was tired

    We can formalize the procedure as the following mapping.

    For a single SPD matrix, we can get a very high-dimensional vector by sequentially concatenating the vectors in log-Euclidean space. This process is to mimic the kernel embedding. The new expanded space can be seen as an approximation to the kernel space.As the set of unitary matrices are randomly generated, the vector x is also a randomized vector in a high-dimensional space. Just as stated in Subsection 3.1, the congruent transformation preserves the geodesic distance. Therefore their vectorial combination will preserve the Euclidean distance. In the new space, a random Gaussian matrixis adopted as a projection matrix. The projection and quantization is conducted by,

    4 Experiments

    4.1 Dataset and evaluation criteria

    The proposed algorithm is used in near-duplicate image detection. The evaluation dataset contains 1) the INRIA Copydays dataset which contains 157 images [Douze, Jé gou,Sandhawalia et al. (2009)] as the testing dataset and 2) 25,000 Flickr images and another 40,000 images (65,000 total images) as the distracting image dataset. Examples of INRIA images are shown in Fig. 1. We create another 46 copies for each testing image.Therefore, there are totally 72222 (65,000+157×46) images. The transformations and parameters for creating the near-duplicate images please refer to [Zheng, Lei, Qiu et al.(2012)]. For each image, an(SPD matrix) [Zheng, Lei, Qiu et al. (2012)] is extracted to represent the image.

    Figure 1: Examples of testing images used in the paper

    Two well-known and widely used evaluation methods are adopted to evaluate the algorithm,including the receiver operating characteristic (ROC) and the mean average precision (mAP).The ROC curve is a graphical plot of the true positive rate versus the false positive rate. The mAP is the query’s average precision which can be defined as follows.mAP. For each query q,(in our experiments) images are returned. Then the average precision (AP) is calculated as

    4.2 Results and analysis

    4.2.1 Accuracy analysis

    In this part, the proposed method is compared with other kernel based methods such as KLSH [Kulis and Grauman (2009)] and Nystrom method. As we known the KLSH and Nystrom method both approximate the kernel by selecting a subset of data samples from the training dataset. On the contrary, the proposed method directly approximates the kernel by data space expansion (DSE). The brute-force method and LSH [Gionis, Indyk and Motwani (1999)] are used as a benchmark. LSH is conducted in the log-Euclidean space. The length of hashing code is set as 300 for all methods. In the DSE method, 10 congruent transformations are used.

    Fig. 2(a) gives the results of LSH, KLSH, Nystrom method and proposed data space expansion (DSE) method. From the results, we can see that brute force search using LERM undoubtedly gets the best results when compared with hashing based methods.Kernel based methods including Nystrom method and KLSH achieve better results than LSH. Hashing with data space expansion (DSE) achieves best results amongst all hashing based methods, which demonstrate the effectiveness of the proposed scheme.

    Besides ROC curve, the mAP of each method are also calculated and shown in Fig. 2(b).It can be seen from the figure that brute force method (LERM) gets the best performance while LSH method which is hashing in very low dimensional log-Euclidean space gets the worst performance. DSE method achieves the best results amongst all kernel related methods.

    Figure 2: Fig. 2(a) gives the ROC performance comparison of state of the art methods.Fig. 3(b) gives the mean average precision (mAP) performance comparison of state of the art methods. The length of hashing code is 300. The benchmark methods are kernelized LSH, LSH, Nystrom method and brute-force search using LERM

    4.2.2 Parameter analysis

    It is known that the length of hashing code has some effect on the precision of nearest neighbor search. In this part, we give a precision comparison of different state of the art methods while varying the bit length from 100 to 300. The results are given in Fig. 3(a).

    From the figure, we can see that almost all algorithms have better precision performance when increasing the length of hashing code. The DSE method has the best performance when the length of hashing code is greater than 150. In this comparison, 10 congruent transformation matrices are adopted.

    The number of the congruent transformation determines the dimension of the expansion space. This paper also investigates the effect of the number of congruent matrices to the precision. Fig. 3(b) gives a precision comparison of DSE with different number of congruent transformations. We can see from the figure that more congruent transformations get better precision performance. The length of hashing code together with the number of congruent transformations determines the precision performance of the near-duplicate image detection. But the precision doesn’t improve much when the number of congruent transformation gets to a certain number, for example 10 in this experiment.

    Figure 3: Fig. 3(a) gives a precision comparison of state of the art method with different bit length. Fig. 3(b) gives a precision comparison of DSE with different number of congruent transformations.

    4.2.3 Time efficiency

    In the large-scale near-duplicate image detection, we usually pay a lot of attention to the detecting efficiency. The SCOV and hashing code can be generated off-line, so we focus on the detecting time in this part. In the detecting stage, each image is finally represented with 300 bits binary code. As a comparison, the brute force LERM method is used as a benchmark. Tab. 1 shows the average time for 157 testing images. From the table, we can see it improves the time efficiency to more than 100 folds. As we know, some hashing algorithms improve time efficiency at the cost of bad searching accuracy. However, the accuracy degradation is not very large when using 300 hundred bits in our experiments,which can be seen from the Figs. 2(a) and 2(b).

    Table 1: Time comparison for hashing based method and brute force LERM

    5 Discussion

    Due to the non-Euclidean essence of the SPD manifold, hashing techniques designed for vector space can’t be directly used in SPD manifold. In this paper, a novel hashing scheme in SPD manifold is investigated. Inspired by the idea of kernel trick, the proposed scheme tries to map the SPD matrix into a high-dimensional Euclidean space and then use random projection and quantization to get the binary bits representation of SPD matrix. The congruent transformation which preserves the geodesic distance is used in this process. Experiments in large scale near-duplicate image detection show the effectiveness and efficiency of the proposed method.

    Acknowledgement:The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper. The authors also thank for Fufang Li for the valuable discussions. Part of the paper is supported by NSFC (61472092, 61300205), Guangzhou BEY (670230174).

    久久久水蜜桃国产精品网| 亚洲aⅴ乱码一区二区在线播放| 国产精华一区二区三区| 久久伊人香网站| 亚洲av成人一区二区三| 不卡一级毛片| 在线免费观看的www视频| 色播亚洲综合网| 在线免费观看不下载黄p国产 | 一区福利在线观看| 成人特级av手机在线观看| 亚洲成av人片免费观看| 精品久久久久久久久久久久久| 91九色精品人成在线观看| 91字幕亚洲| 黄片小视频在线播放| 日本 欧美在线| 99久久综合精品五月天人人| 不卡av一区二区三区| 女人高潮潮喷娇喘18禁视频| 极品教师在线免费播放| 欧美3d第一页| 熟妇人妻久久中文字幕3abv| 美女午夜性视频免费| 91av网站免费观看| 成年女人毛片免费观看观看9| 久久精品国产综合久久久| 一区二区三区高清视频在线| 国产午夜精品久久久久久| 性色avwww在线观看| svipshipincom国产片| 色老头精品视频在线观看| 久久久国产欧美日韩av| 观看美女的网站| 国产美女午夜福利| 中文字幕高清在线视频| 欧美又色又爽又黄视频| 亚洲国产欧美人成| 亚洲成a人片在线一区二区| 亚洲av中文字字幕乱码综合| 午夜福利高清视频| 一个人免费在线观看的高清视频| 国产69精品久久久久777片 | 18美女黄网站色大片免费观看| 欧美中文日本在线观看视频| 老司机深夜福利视频在线观看| 国产av在哪里看| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 91在线观看av| 美女免费视频网站| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 日韩高清综合在线| 免费观看精品视频网站| 欧美又色又爽又黄视频| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app | 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 免费看光身美女| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 久久热在线av| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| x7x7x7水蜜桃| 成人高潮视频无遮挡免费网站| 国产精品久久久av美女十八| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 亚洲最大成人中文| 久久精品aⅴ一区二区三区四区| 一个人观看的视频www高清免费观看 | 韩国av一区二区三区四区| 欧美一区二区精品小视频在线| 88av欧美| 后天国语完整版免费观看| 久久热在线av| 亚洲 国产 在线| a级毛片a级免费在线| 国内精品久久久久久久电影| 少妇熟女aⅴ在线视频| 啦啦啦免费观看视频1| 亚洲欧美日韩卡通动漫| www.熟女人妻精品国产| 日本黄大片高清| 久久久水蜜桃国产精品网| 黄色片一级片一级黄色片| 在线国产一区二区在线| 2021天堂中文幕一二区在线观| 香蕉丝袜av| 99久久综合精品五月天人人| 亚洲 欧美 日韩 在线 免费| a级毛片a级免费在线| 99久久精品国产亚洲精品| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 亚洲精品久久国产高清桃花| 怎么达到女性高潮| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 久久这里只有精品19| 亚洲国产日韩欧美精品在线观看 | 91av网站免费观看| 亚洲国产精品久久男人天堂| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| 免费看十八禁软件| 亚洲精品乱码久久久v下载方式 | 成人av一区二区三区在线看| 欧美性猛交╳xxx乱大交人| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 看黄色毛片网站| 亚洲乱码一区二区免费版| 日本a在线网址| 午夜成年电影在线免费观看| 999精品在线视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 成人国产综合亚洲| 岛国视频午夜一区免费看| 亚洲国产色片| 老司机深夜福利视频在线观看| 国产精品av视频在线免费观看| 在线观看午夜福利视频| 中文字幕av在线有码专区| 亚洲美女黄片视频| 桃红色精品国产亚洲av| netflix在线观看网站| 国产精品久久久av美女十八| 一本久久中文字幕| 亚洲国产日韩欧美精品在线观看 | 嫩草影院入口| 国内精品久久久久精免费| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 亚洲精品乱码久久久v下载方式 | 成在线人永久免费视频| 欧美中文综合在线视频| 成人av一区二区三区在线看| 日韩欧美免费精品| 成人18禁在线播放| 国产精品影院久久| 亚洲精华国产精华精| 两个人看的免费小视频| 亚洲精品一区av在线观看| 久久久久久久精品吃奶| 99热精品在线国产| 美女午夜性视频免费| 男人的好看免费观看在线视频| 丁香六月欧美| 欧美av亚洲av综合av国产av| 后天国语完整版免费观看| 中文资源天堂在线| 国产精品一及| 欧美色欧美亚洲另类二区| 亚洲午夜精品一区,二区,三区| 国产成年人精品一区二区| 日韩有码中文字幕| 亚洲精品乱码久久久v下载方式 | 久久久久免费精品人妻一区二区| 日本五十路高清| 51午夜福利影视在线观看| 99久久成人亚洲精品观看| 一区二区三区高清视频在线| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 99re在线观看精品视频| 男人和女人高潮做爰伦理| 亚洲av片天天在线观看| 一进一出好大好爽视频| 国产97色在线日韩免费| 精品一区二区三区视频在线观看免费| 噜噜噜噜噜久久久久久91| 精品99又大又爽又粗少妇毛片 | xxxwww97欧美| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 色av中文字幕| 悠悠久久av| 亚洲七黄色美女视频| 两个人看的免费小视频| 99re在线观看精品视频| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 国产黄色小视频在线观看| 精品一区二区三区av网在线观看| 美女大奶头视频| 男插女下体视频免费在线播放| 色综合婷婷激情| 国产免费av片在线观看野外av| 可以在线观看的亚洲视频| 又黄又粗又硬又大视频| 亚洲精品色激情综合| 成人鲁丝片一二三区免费| 99视频精品全部免费 在线 | 九九在线视频观看精品| 俄罗斯特黄特色一大片| 国产探花在线观看一区二区| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 99视频精品全部免费 在线 | 亚洲熟女毛片儿| 久久久久久大精品| www.熟女人妻精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 美女cb高潮喷水在线观看 | 中亚洲国语对白在线视频| 一级毛片女人18水好多| 悠悠久久av| 国产亚洲精品av在线| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 中文字幕熟女人妻在线| 男插女下体视频免费在线播放| www国产在线视频色| 亚洲专区字幕在线| 超碰成人久久| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 天堂影院成人在线观看| 亚洲中文字幕日韩| 精品国产美女av久久久久小说| 毛片女人毛片| 国产日本99.免费观看| 免费观看精品视频网站| 国产午夜福利久久久久久| 91麻豆精品激情在线观看国产| 黄片大片在线免费观看| 色老头精品视频在线观看| 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影| 久久精品国产清高在天天线| 国产真实乱freesex| 成人国产综合亚洲| 一个人免费在线观看电影 | 婷婷六月久久综合丁香| 欧美丝袜亚洲另类 | 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 免费观看人在逋| 国产成人av激情在线播放| 欧美在线黄色| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 哪里可以看免费的av片| 一本精品99久久精品77| 久久久国产欧美日韩av| 久久久久性生活片| 国产99白浆流出| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 亚洲自拍偷在线| 亚洲国产色片| 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 日韩国内少妇激情av| 国产午夜精品久久久久久| 国产高清videossex| 亚洲国产精品999在线| 麻豆国产av国片精品| 三级男女做爰猛烈吃奶摸视频| 久久中文字幕一级| 看片在线看免费视频| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 非洲黑人性xxxx精品又粗又长| 国产极品精品免费视频能看的| cao死你这个sao货| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 国产免费男女视频| 我要搜黄色片| 91九色精品人成在线观看| 变态另类丝袜制服| 脱女人内裤的视频| www.999成人在线观看| 蜜桃久久精品国产亚洲av| 午夜免费成人在线视频| x7x7x7水蜜桃| 嫩草影视91久久| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| a级毛片在线看网站| 欧美绝顶高潮抽搐喷水| 黄频高清免费视频| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 国产成人av激情在线播放| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 日本五十路高清| 国产精品美女特级片免费视频播放器 | 女生性感内裤真人,穿戴方法视频| 欧美大码av| 精品国产三级普通话版| 欧美日韩亚洲国产一区二区在线观看| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| 青草久久国产| 国产精品久久久久久久电影 | 欧美中文综合在线视频| 热99在线观看视频| 成熟少妇高潮喷水视频| 国产又色又爽无遮挡免费看| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| 别揉我奶头~嗯~啊~动态视频| 免费看光身美女| 五月玫瑰六月丁香| 禁无遮挡网站| 噜噜噜噜噜久久久久久91| 欧美日韩乱码在线| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 青草久久国产| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看| 国产精品久久电影中文字幕| 日韩欧美 国产精品| 51午夜福利影视在线观看| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 麻豆国产av国片精品| 日本成人三级电影网站| 一夜夜www| 国产伦精品一区二区三区四那| 午夜a级毛片| 很黄的视频免费| 中文亚洲av片在线观看爽| 日韩av在线大香蕉| 啦啦啦观看免费观看视频高清| 国产又色又爽无遮挡免费看| 99在线视频只有这里精品首页| 国产伦在线观看视频一区| 久久这里只有精品中国| 男插女下体视频免费在线播放| 日日夜夜操网爽| 久久欧美精品欧美久久欧美| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 岛国在线观看网站| 97超视频在线观看视频| 1024手机看黄色片| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 波多野结衣巨乳人妻| 最好的美女福利视频网| 日本 欧美在线| 看免费av毛片| 色噜噜av男人的天堂激情| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 淫秽高清视频在线观看| 欧美大码av| 无遮挡黄片免费观看| 成人av在线播放网站| 一二三四在线观看免费中文在| 一个人观看的视频www高清免费观看 | 999精品在线视频| 精品一区二区三区视频在线 | 久久久久久久久久黄片| 人妻久久中文字幕网| 波多野结衣高清无吗| 18禁观看日本| 动漫黄色视频在线观看| 岛国在线免费视频观看| 真人做人爱边吃奶动态| 国产伦精品一区二区三区视频9 | 制服丝袜大香蕉在线| 一级毛片精品| 热99在线观看视频| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播放欧美日韩| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 欧美高清成人免费视频www| 九九热线精品视视频播放| 看黄色毛片网站| 99国产综合亚洲精品| 亚洲无线观看免费| 久久久久久久精品吃奶| 亚洲va日本ⅴa欧美va伊人久久| 两个人视频免费观看高清| 手机成人av网站| 嫩草影院入口| 亚洲一区二区三区色噜噜| 欧美日韩一级在线毛片| 国产精品影院久久| 色综合欧美亚洲国产小说| 热99在线观看视频| 亚洲在线自拍视频| 久久久久久大精品| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影| 老熟妇乱子伦视频在线观看| 日本一二三区视频观看| 久久久久久九九精品二区国产| 国产成人av教育| 女人高潮潮喷娇喘18禁视频| 欧美极品一区二区三区四区| 香蕉av资源在线| 欧美一级a爱片免费观看看| 亚洲国产欧美人成| 免费在线观看视频国产中文字幕亚洲| 亚洲黑人精品在线| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| www.精华液| 丰满的人妻完整版| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 日韩欧美精品v在线| 一卡2卡三卡四卡精品乱码亚洲| 日本在线视频免费播放| 免费电影在线观看免费观看| 国产欧美日韩精品一区二区| 精品国产乱码久久久久久男人| 亚洲国产精品合色在线| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 18禁国产床啪视频网站| 精品久久久久久久人妻蜜臀av| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 丝袜人妻中文字幕| 12—13女人毛片做爰片一| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久久久久久久| 亚洲av成人av| 91在线观看av| 老鸭窝网址在线观看| 国产99白浆流出| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| 亚洲精品乱码久久久v下载方式 | 毛片女人毛片| 免费看a级黄色片| 99热这里只有精品一区 | 一卡2卡三卡四卡精品乱码亚洲| 美女黄网站色视频| 在线国产一区二区在线| 欧美在线一区亚洲| 三级国产精品欧美在线观看 | 99久久精品热视频| 美女被艹到高潮喷水动态| 日本免费a在线| 国产精品一区二区精品视频观看| 欧美色视频一区免费| 国产三级在线视频| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清作品| 欧美乱码精品一区二区三区| 日本 欧美在线| 人妻夜夜爽99麻豆av| 国产日本99.免费观看| 国产高清激情床上av| 国内精品久久久久精免费| av在线天堂中文字幕| 黄色日韩在线| 在线观看免费午夜福利视频| 美女午夜性视频免费| 亚洲av成人精品一区久久| 黄色视频,在线免费观看| 黄色日韩在线| 三级毛片av免费| 午夜福利欧美成人| 国产探花在线观看一区二区| 51午夜福利影视在线观看| 日韩中文字幕欧美一区二区| 99久久精品国产亚洲精品| 久久99热这里只有精品18| 国产av麻豆久久久久久久| 精品免费久久久久久久清纯| 精品一区二区三区视频在线观看免费| 国产亚洲欧美98| 欧美午夜高清在线| 9191精品国产免费久久| 欧美成人一区二区免费高清观看 | 欧美另类亚洲清纯唯美| 九色成人免费人妻av| 欧美绝顶高潮抽搐喷水| 欧美乱妇无乱码| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 国产精品精品国产色婷婷| 在线a可以看的网站| 午夜激情欧美在线| 国产免费av片在线观看野外av| 99国产精品99久久久久| 日本 欧美在线| 91字幕亚洲| 亚洲精品乱码久久久v下载方式 | 亚洲成a人片在线一区二区| 国产欧美日韩一区二区三| 亚洲国产欧美网| 欧美xxxx黑人xx丫x性爽| 男人舔奶头视频| 法律面前人人平等表现在哪些方面| 十八禁网站免费在线| 日韩国内少妇激情av| 一本一本综合久久| 久久久国产欧美日韩av| 亚洲在线观看片| 亚洲av第一区精品v没综合| 国内精品美女久久久久久| 久久久久国产一级毛片高清牌| 岛国视频午夜一区免费看| 国产精品99久久久久久久久| 国产亚洲精品久久久com| 亚洲国产精品999在线| 夜夜躁狠狠躁天天躁| 日本免费a在线| 日本黄大片高清| 亚洲欧美精品综合久久99| 国产av不卡久久| 曰老女人黄片| 国产美女午夜福利| 久久久成人免费电影| 9191精品国产免费久久| 嫁个100分男人电影在线观看| av中文乱码字幕在线| 最近最新中文字幕大全电影3| 免费看美女性在线毛片视频| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 麻豆国产97在线/欧美| 婷婷精品国产亚洲av| 美女 人体艺术 gogo| 婷婷六月久久综合丁香| netflix在线观看网站| 桃红色精品国产亚洲av| 搡老岳熟女国产| 国产欧美日韩精品一区二区| 最近最新免费中文字幕在线| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区av网在线观看| 两个人视频免费观看高清| 日韩免费av在线播放| 在线播放国产精品三级| 免费看美女性在线毛片视频| 麻豆久久精品国产亚洲av| 亚洲av电影不卡..在线观看| 亚洲中文av在线| 三级男女做爰猛烈吃奶摸视频| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 99国产精品一区二区三区| 日韩有码中文字幕| 免费av毛片视频| 国产亚洲精品一区二区www| 真人一进一出gif抽搐免费| 亚洲国产看品久久| 日韩欧美在线乱码| 国产亚洲av嫩草精品影院| 国产一区在线观看成人免费| 成人精品一区二区免费| 性色avwww在线观看| 97人妻精品一区二区三区麻豆| 一级毛片女人18水好多| 亚洲精华国产精华精| 亚洲美女黄片视频| 日日夜夜操网爽| 成人无遮挡网站| 日韩欧美精品v在线| 国产av麻豆久久久久久久| 国模一区二区三区四区视频 | 黑人欧美特级aaaaaa片| 欧美激情在线99| 婷婷精品国产亚洲av在线| 天堂网av新在线| 日本 欧美在线| 久久国产乱子伦精品免费另类| 日日夜夜操网爽| 日韩高清综合在线| 啦啦啦免费观看视频1| 午夜日韩欧美国产| 久久午夜亚洲精品久久| av欧美777| 国产熟女xx| 欧美日韩福利视频一区二区| 午夜免费观看网址| 亚洲国产精品合色在线| 亚洲欧美激情综合另类| 免费高清视频大片|