• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subsonic impulsively starting flow at a high angle of attack with shock wave and vortex interaction

    2018-09-27 07:08:02ChenyuanBAIJuanLIZiniuWU
    CHINESE JOURNAL OF AERONAUTICS 2018年9期

    Chenyuan BAI,Juan LI,Ziniu WU

    School of Aerospace Engineering,Tsinghua University,Beijing 100084,China Institute of Aeroengine,Tsinghua University,Beijing 100084,China

    KEYWORDS Advance of stall;Compressible vortex;High angle of attack;Subsonic starting flow;Unsteady shock waves

    Abstract Impulsively starting flow,by a sudden attainment of a large angle of attack,has been well studied for incompressible and supersonic flows,but less studied for subsonic flow.Recently,a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5,when compared to other Mach numbers.To see what happens in this special case,we conduct here in this paper a further study for this case,to display and analyze the full flow structures.We find that for a Mach number around 0.5,a local supersonic flow region repeatedly splits and merges,and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge.The flow evolution during the formation of shock waves is displayed in detail.The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory.The existence of this shock pair inside the vortex,for a Mach number only close to 0.5,may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.

    1.Introduction

    Starting flow is caused by a sudden change of the angle of attack or forward speed of an airfoil,and is of primary importance in aeroelasticity(which involves step motion1),vehicle maneuverability2,3(which involves fast movement of command surfaces),and wing-gust interaction4(which is equivalent to attain a finite angle of attack).

    For a small angle of attack,a linear theory has been developed for incompressible staring flow by Wagner4and Walker5,for supersonic starting flow by Heaslet and Lomax6,and for subsonic flow by Lomax et al.7A time-dependent analytical lift force coefficient has been obtained for these cases.For the incompressible case,Wagner’s solution shows that the initial lift is one half of its steady state value and increases monotonically with time following a curve known as the Wagner function.This force variation is due to a gradual build-up of the boundary vorticity and a free vortex sheet from the trailing edge.For supersonic flow,the solution of Heaslet and Lomax predicts a force plateau for small time,and this force then increases in time,reaching to the steady state value for large time.This force variation comes from interaction between steady and unsteady Mach waves below and above the airfoil.

    For incompressible staring flow at a large angle of attack,vortex spirals form from both the sharp leading edge and the trailing edge,which,by close interaction with the airfoil,cause an initial singularity of lift8,and this singularity is then released when the vortex spirals are blown off the airfoil.After a force-increasing stage,stall occurs due to interaction between leading and trailing edge vortices.

    An analytical solution has been found by Bai and Wu9,10for supersonic and hypersonic starting flows at a large angle of attack.In this case,a steady shock wave and an unsteady shock wave form on the windward side of an airfoil,and their interaction leads to a secondary wave which grows in time.A steady Prandtl-Meyer wave and an unsteady rarefaction wave form on the leeward side of the airfoil,and their interaction also forms a secondary wave growing in time.A further study shows that inside the secondary wave on the leeward side,there is a left-going shock wave.11

    If we look at the connection between the flow structure and the force behavior for starting flow at a high angle of attack,it may be concluded that for incompressible flow,the force behavior is dominated by vortex flows,while for supersonic flow,this is dominated by compressible flows.However,it is special for subsonic starting flow where both vortices and compressible waves may be important.The subsonic flow problem may be further complicated by interaction between compressible waves and vortices.This interaction may be pronounced at an intermediate Mach number between zero and one.

    Indeed,a preliminary study for subsonic starting flow at a large angle of attack12shows that stall is advanced at one Mach number,i.e.,stall for a large angle of attack occurs at a time earlier than other Mach numbers.It is therefore required to look at what happens at this particular Mach number.

    We therefore display in this paper the flow details for subsonic starting flow at that Mach number and at an angle of attack.The particular flow structure will be analyzed.Notably,we will examine whether there are shock waves embedded in the vortex flow structure that may be responsible for the observed lift evolution behavior with advance of stall.

    Such a study not only enriches knowledge about the flow structure of subsonic starting flow at a high angle of attack,but also offers a possibility to observe in real applications whether shock waves appear inside a compressible vortex,a phenomenon anticipated using a simple vortex pair model.13,14The simple vortex pair model is for steady flow,and here in the present case,the flow is unsteady,so the phenomenon is more complex.

    In Section 2,we will demonstrate numerical results of the flow structure.In Section 3,we will perform an analysis of the flow structure observed.Section 4 shows the detailed history of shock formation.Conclusions are provided in Section 5.

    2.Numerical results of subsonic starting flow

    As usual for study of starting flow,we use the nondimensional time defined by

    This non-dimensional time measures the number of chords traveled at time t by an airfoil of a chord length cAand travelling at a constant speed V∞.

    Fig.1 displays the lift force evolutions in time for subsonic starting flow at various Mach numbers and for an angle of attack α =20°.For incompressible flow(zero Mach number),stall occurs after the airfoil travels about 4 chord lengths,i.e.,at τ≈ 4.For a Mach number Ma∞=0.8,stall occurs at τ≈ 3.4.For a Mach number of 0.5,stall occurs at τ≈ 3.0.Thus,for a Mach number around 0.5,stall occurs earlier than for other Mach numbers,whether they are higher or lower than 0.5.This would mean that something new appears in the flow structure for a Mach number around 0.5.

    To see what happens,we display the streamlines,Mach contours,and pressure contours for several typical instants and computed numerically by CFD,for Ma∞=0.5 and α =20°.

    The flow is computed using a body- fixed frame,in which the airfoil is held fixed.A uniform flow with the given angle of attack is set initially.Once computation is started,the application of a non-penetrating condition along the wall of the airfoil builds vorticity and compressible waves near the wall.

    The present study only considers inviscid flow.We thus solve the full set of nonlinear Euler equations in gas dynamics.For numerical simulation,we use the same approach as used before for a similar problem.9,10The grid is refined as before to have a grid-converged solution(see Appendix C in Ref.10for details).Precisely,we use the well-known Roe scheme based on finite difference approximation and second-order upwinding for the flux.The Fluent code incorporating these CFD approaches is used.This approach has been quantitatively verified using known analytical solutions,including the linear solution of Heaslet-Lomax supersonic starting flow problem in Ref.10and the Wagner incompressible flow model in Refs.15,16.

    Fig.1 Lift curves for starting flow of flat plate at several Mach numbers(angle of attack α =20°),showing that stall occurs earlier at a Mach number of 0.5(The data comes from Ref.12).

    Fig.2 displays streamlines at instants τ=0.5,τ=3.0,and τ=3.75.We observe that the leading edge vortices continu-ously grow and then get detached.A concentrated trailing edge vortex starts to form at τ=3.0.The appearance of a new concentrated trailing edge vortex has been explained to be the reason of stall.15,16According to Fig.2,a trailing edge vortex occurs at the same instance(τ≈ 3.0)as that of the stall.Hence,stall can still be associated with the appearance of the concentrated trailing edge vortex,as for incompressible flow.This means that the advance of stall is due to the advance of the appearance of the concentrated trailing edge vortex.This indicates that the leading edge vortex should have some particular properties,since it is the approaching of the leading edge vortex to the trailing edge that triggers out the trailing edge vortex.

    Fig.3 displays the Mach number and pressure contours for τ=0.5,τ=3.0,and τ=3.75.We observe two shock waves at τ=3.0.The detailed history of the appearance of the shock waves will be studied in the next section.At τ=3.75,the lower shock becomes a lambda shock.

    To see the relative positions of these two shock waves with respect to the leading edge vortex,we display in Fig.4 the Mach number contours and streamlines for τ=3.0,3.75.Hence,for τ=3.0,the lower shock(Sb)is at the bottom left part of the vortex,and the upper shock(Su)is at the top right part of the vortex.The lambda shock at τ=3.75 comes from the merging of the original shock Suwith a similar upper shock created at the top of the trailing edge vortex.

    This observation has the following significances.

    (1)First of all,a shock wave inside a compressible vortex has been theoretically predicted by previous model studies.13,14However,the previous model studies used a simple vortex pair model for steady flow.Here in the present case,the flow is unsteady,so the phenomenon is more complex.

    (2)Previous studies predicted only one shock wave.For instance,Heister et al.14only showed a shock wave on the top of the vortex.Here,we observe two unsteady shock waves,one on the top as predicted by Heister et al.14and the other on the bottom(Sb).In the next section,we will explain the reason why the bottom shock wave appears.

    (3)The observation of the formation of a lambda shock wave between the main vortex and the trailing edge vortex is also new here.

    (4)The appearance of shock waves certainly changes the position and strength of the leading edge vortex,compared to a case without shock waves.This may be the cause that the appearance of the trailing edge vortex is advanced at Ma∞=0.5,which then advances the stall.

    3.Analysis of shock waves inside compressible vortex

    In this section,we present the shock expressions for left-and right-going shock waves,and check which family the two shock waves belong to.Then we discuss the reason for the formation of the shock waves.

    The shock phenomenon observed here is essentially onedimensional,so we only consider a one-dimensional study.Let ρ,p,u,a,Ma be the density,pressure,velocity,sound speed,and Mach number.We use subscripts l and r to denote status left and right to the shock wave,respectively.The basic expressions for an unsteady shock wave can be found in the paper of Gottlieb and Groth.17

    For a left-going shock wave(also called the first family),the shock speed is given by

    and the velocity and pressure are related by

    For a right-going shock wave(also called the second family),the shock speed is given by

    and the velocity and pressure are related by

    To check which family each shock embedded in the vortex belongs to,we pick up the data pl,pr,al,ulfrom the CFD solutions,and compute urand φ using the theoretical expressions above.If urand φ predicted by Eq.(1)and Eq.(2)match the CFD results,then that shock wave belongs to the first family(left-going shock wave).If urand φ predicted by Eq.(3)and Eq.(4)match the CFD results,then that shock wave belongs to the second family(right-going shock wave).

    Fig.2 Streamlines at several instants(τ=0.5,3.0,3.75)displaying the evolutions of leading and trailing edge vortices for subsonic starting flow at Ma∞ =0.5 and α=20°.

    Fig.3 Mach contours at several instants displaying two shock waves for subsonic starting flow at Ma∞ =0.5 and α =20°.

    Fig.4 Mach contours and streamlines displaying the positions of shock waves inside the leading edge vortex,for subsonic starting flow at Ma∞ =0.5 and α=20°.

    Table 1 Shock types for the bottom and top shock waves embedded in the vortex,τ=3.0.

    A comparison is given in Table 1.Since the theory used is one-dimensional while the real flow is two-dimensional,the comparison between theory and CFD results cannot be exact,but is good enough to draw conclusions that the shock wave at the bottom of the vortex(Sb)is a right-going shock wave(second family)while that at the top(Su)is a left-going shock wave( first family).

    Now we explain the reason why shock Sbappears.The reason that Suappears follows from the same reason as explained by Heister et al.14For simplicity,we only perform a qualitative study.For the compressible vortex above the plate,there is an image vortex below the plate(see Fig.5 for illustration).It is clear that the streamlines between the vortex cores of the real and image vortices form an equivalent Laval nozzle.

    For Laval nozzle flow and within the context of a quasione-dimensional flow model,there is a pressure condition so that the throat is sonic,and downstream from the sonic throat there is a shock wave.

    Let Atbe the area or height of the throat and Aethe area or height at the exit of the throat.In case of a sonic throat and isentropic flow throughout the nozzle,the Mach number at the exit Maeis related to the area ratio At/Aeby the quasione-dimensional flow relation as

    Fig.5 Schematic diagram for the generation of the shock wave.The compressible vortex above the plate has an image vortex,so there is an equivalent Laval nozzle between the cores of the real and image vortices.

    Still for isentropic flow,the pressure at exit peis related to the Mach number at the exit Maeby

    where p0is the total pressure at the inlet.

    For a given area ratio At/Ae,Eq.(5)predicts two Mach numbers Mae,I,Mae,II,with Mae,I< 1(subsonic out flow)and Mae,II> 1(supersonic out flow).Inserting these two Mach numbers into Eq.(6)gives two exit pressures pe,I,pe,II,with pe,II< pe,I.If the ambient pressure at the exit is lower than pe,Ibut sufficiently close to pe,I,then there is a shock wave inside the divergent part of the nozzle.

    As displayed in Fig.4,for τ=3,the flow is indeed sonic(Ma=1)at the throat(R1).Downstream(here on the lefthand side since the flow direction is leftward at the bottom of the vortex)from the sonic throat,the flow is supersonic according to Fig.4.The shock Sbthus follows from the mechanism of the formation of a shock wave inside a Laval nozzle as discussed above.Note that the theory for a Laval nozzle is a steady-state model,while Sbis an unsteady shock wave based on a body- fixed frame.If we choose a reference frame moving with the vortex,then the steady-state theory can be applied to the present case.

    4.Detailed history of formation of shock waves

    To see how shock waves appear inside the leading edge vortex,we display in Fig.6 the Mach contours(with a partial display of streamlines showing the leading edge vortex)at six different instants.

    At τ=0.5,where the core of the leading edge vortex is roughly at 0.12cAdownstream from the leading edge,we observe two supersonic flow regions,one at the bottom of the vortex and the other at the top.The flow is smooth between the supersonic flow region and the subsonic flow region,so there is no shock wave at this instance.

    At τ=0.89,where the core of the leading edge vortex is roughly at 0.22cAdownstream from the leading edge,the two supersonic flow regions are enlarged.Still,there is no shock wave.

    At τ=0.92,the supersonic region at the top of the leading edge vortex is in time to be split into two supersonic regions.

    At τ=0.96,the supersonic region at the top of the leading edge vortex is completely split into two supersonic regions.This is the instant near which shock waves erect from the edges of supersonic regions.This becomes clearer at τ=1.2.

    Fig.6 Mach contours and streamlines at six difference instants,showing the appearance of shock waves.

    At τ=1.2,a left-going shock wave stands on the left edge of the bottom of the leading edge vortex,and a right-going shock wave stands on the right edge of the top of the leading edge vortex.Surprisingly,the broken supersonic flow region merges again at this instance.

    At τ=1.64,the existences of a left-going shock wave below the leading edge vortex and a right-going one above the leading edge vortex are very clear.

    Hence,shock waves do not form at the very initial period of time.They form only after the leading edge vortex has sufficiently grown up.Moreover,the supersonic region at the top of the leading edge vortex experiences a splitting and merging evolution during the period that shock waves appear.

    5.Conclusions

    We have studied subsonic starting flow for a Mach number of 0.5 and an angle of attack of 20°.We observe two shock waves inside and travelling with the time-growing vortex that shed from the leading edge.

    We have shown that the shock wave at the bottom of the vortex is a right-going shock wave and the one at the top of the vortex is a left-going shock wave.Shock waves do not form at the very initial period of time but after the leading edge vortex has sufficiently grown up.Moreover,the supersonic region at the top of the leading edge vortex experiences a splitting and merging evolution during the period that shock waves appear.

    This study complements previous studies of starting flow at a high angle of attack,which are only for incompressible or supersonic flow.Moreover,the observation of two shock waves enriches the previous knowledge of a compressible vortex pair having the possibility of one shock wave,according to theoretical studies.Moreover,the advance of stall observed only for a Mach number of around 0.5 may be due to the appearance of these shock waves triggering out the formation of a stall-inducing trailing edge vortex at much early time.For Mach numbers much greater than 0.5(say for instance 0.8),no shock waves inside the vortex are observed,and stall occurs at later times.

    In the present study,we only considered inviscid flow.As discussed in Ref.17for incompressible flow,the effect of viscous transportation in real flow is minor.This is due to the fact that for a large angle of attack,the flow is dominated by large vortices separated from leading and trailing edges.In fact,Wang18and Nitsche and Xu19already noticed the insensitivity of intensity of large-scale vortices to the Reynolds number for large-angle of attack flow.Notably,Nitsche and Xu19stated that the major contribution to circulation of the leading edge vortex is inviscid convection of shed vorticity into the vortex region,and at early times,the total shed circulation is highly independent of the Reynolds number.In the future,we will check how flow details are affected by viscosity.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.11472157).

    久热这里只有精品99| 男人添女人高潮全过程视频| 久久精品国产亚洲av天美| 欧美3d第一页| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 三级国产精品片| 在现免费观看毛片| 麻豆乱淫一区二区| 晚上一个人看的免费电影| 成年免费大片在线观看| 性色av一级| 国产亚洲一区二区精品| 国产精品久久久久久久久免| 又爽又黄a免费视频| 亚洲欧美日韩东京热| av播播在线观看一区| 国产男人的电影天堂91| 成年人午夜在线观看视频| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三 | 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 欧美日韩视频高清一区二区三区二| 在线 av 中文字幕| 亚洲丝袜综合中文字幕| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 99久久精品国产国产毛片| 丝瓜视频免费看黄片| 成人高潮视频无遮挡免费网站| 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区国产| 欧美一级a爱片免费观看看| 国产av码专区亚洲av| 日本午夜av视频| 在线观看国产h片| 黄色视频在线播放观看不卡| 亚洲人成网站在线观看播放| 国产精品国产三级专区第一集| 一级a做视频免费观看| 亚洲最大成人手机在线| 国产淫语在线视频| 亚洲av中文av极速乱| 欧美另类一区| 国产亚洲一区二区精品| 大香蕉久久网| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| a级毛色黄片| kizo精华| 街头女战士在线观看网站| av女优亚洲男人天堂| 晚上一个人看的免费电影| 色5月婷婷丁香| 婷婷色麻豆天堂久久| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 中文资源天堂在线| 3wmmmm亚洲av在线观看| 欧美日韩国产mv在线观看视频 | 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 黄色配什么色好看| 少妇丰满av| 一区二区三区四区激情视频| 伊人久久国产一区二区| 成人毛片a级毛片在线播放| 亚洲精品色激情综合| 婷婷色综合www| av黄色大香蕉| 1000部很黄的大片| 大片电影免费在线观看免费| 99热全是精品| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 69av精品久久久久久| 国产精品久久久久久久久免| 五月开心婷婷网| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频 | 一边亲一边摸免费视频| 久久久久性生活片| 伊人久久精品亚洲午夜| 少妇人妻 视频| 91久久精品国产一区二区成人| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 精品人妻视频免费看| 天美传媒精品一区二区| 国产乱人偷精品视频| 欧美日韩综合久久久久久| 美女国产视频在线观看| 最近手机中文字幕大全| 黄色欧美视频在线观看| 只有这里有精品99| 少妇猛男粗大的猛烈进出视频 | 国产一区二区亚洲精品在线观看| 国产精品久久久久久精品古装| 亚洲最大成人中文| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 看黄色毛片网站| 婷婷色麻豆天堂久久| 久久人人爽av亚洲精品天堂 | 日本熟妇午夜| 免费电影在线观看免费观看| 99热6这里只有精品| 亚洲性久久影院| 哪个播放器可以免费观看大片| av国产精品久久久久影院| 中文字幕免费在线视频6| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 国产人妻一区二区三区在| 免费看不卡的av| 黄片无遮挡物在线观看| 美女内射精品一级片tv| a级一级毛片免费在线观看| freevideosex欧美| 一个人观看的视频www高清免费观看| 亚洲图色成人| 午夜福利高清视频| 久久99热这里只频精品6学生| 国产91av在线免费观看| 日本-黄色视频高清免费观看| 啦啦啦在线观看免费高清www| 午夜爱爱视频在线播放| 亚洲最大成人中文| 国产亚洲91精品色在线| 欧美3d第一页| 夫妻性生交免费视频一级片| 久久99热这里只有精品18| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 欧美成人a在线观看| 久久热精品热| 各种免费的搞黄视频| 亚洲国产色片| 国产欧美亚洲国产| 少妇的逼好多水| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| 各种免费的搞黄视频| 熟女人妻精品中文字幕| 国产毛片a区久久久久| www.色视频.com| 久久久久网色| 伊人久久精品亚洲午夜| av免费在线看不卡| 最近的中文字幕免费完整| 精品少妇黑人巨大在线播放| 大码成人一级视频| 久热久热在线精品观看| 国产精品一区二区性色av| 舔av片在线| 特大巨黑吊av在线直播| 亚洲av欧美aⅴ国产| 我要看日韩黄色一级片| 又爽又黄a免费视频| 国产高潮美女av| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 国产有黄有色有爽视频| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3| 伦精品一区二区三区| 日韩欧美 国产精品| 少妇人妻久久综合中文| 大片免费播放器 马上看| 99热这里只有是精品在线观看| 国产一区有黄有色的免费视频| 国产一区二区三区综合在线观看 | 秋霞伦理黄片| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| 国产美女午夜福利| 免费黄频网站在线观看国产| 五月开心婷婷网| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 99久国产av精品国产电影| 久久久久久久大尺度免费视频| 国产又色又爽无遮挡免| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| 麻豆成人午夜福利视频| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 在线a可以看的网站| 成人特级av手机在线观看| 中文字幕制服av| 寂寞人妻少妇视频99o| 99九九线精品视频在线观看视频| 一级爰片在线观看| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 五月开心婷婷网| 精品久久国产蜜桃| 国产91av在线免费观看| 2021天堂中文幕一二区在线观| 国产免费一区二区三区四区乱码| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 蜜桃亚洲精品一区二区三区| 国产熟女欧美一区二区| 欧美一区二区亚洲| a级一级毛片免费在线观看| 成人国产麻豆网| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 久久6这里有精品| 精品久久久噜噜| 哪个播放器可以免费观看大片| 老司机影院成人| 国产成人freesex在线| 亚洲精品色激情综合| 国产一级毛片在线| 午夜福利高清视频| 亚洲四区av| 看免费成人av毛片| 久久人人爽av亚洲精品天堂 | 三级国产精品欧美在线观看| 欧美成人一区二区免费高清观看| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 在线观看一区二区三区激情| 国内揄拍国产精品人妻在线| 亚洲成人一二三区av| 国产免费福利视频在线观看| 天天躁日日操中文字幕| 色5月婷婷丁香| 亚洲自偷自拍三级| 97在线人人人人妻| 久久精品国产自在天天线| 国产人妻一区二区三区在| 成人亚洲精品一区在线观看 | 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| 久久女婷五月综合色啪小说 | 欧美97在线视频| 国产一区二区在线观看日韩| 热re99久久精品国产66热6| 永久网站在线| 日韩欧美精品免费久久| 在线精品无人区一区二区三 | 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| 好男人在线观看高清免费视频| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线 | 网址你懂的国产日韩在线| 26uuu在线亚洲综合色| 国产高清有码在线观看视频| 涩涩av久久男人的天堂| 男女啪啪激烈高潮av片| 最近中文字幕高清免费大全6| 一级av片app| 亚洲欧美日韩东京热| 欧美bdsm另类| 婷婷色综合www| 成人美女网站在线观看视频| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 日韩欧美精品v在线| 日韩成人av中文字幕在线观看| 香蕉精品网在线| 九草在线视频观看| 亚洲av免费在线观看| 男人和女人高潮做爰伦理| 亚洲在线观看片| 亚洲综合精品二区| 一个人看的www免费观看视频| 一级二级三级毛片免费看| 青春草视频在线免费观看| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 少妇 在线观看| 国产男女超爽视频在线观看| 欧美激情在线99| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 亚洲人成网站在线播| 欧美亚洲 丝袜 人妻 在线| 国产精品嫩草影院av在线观看| h日本视频在线播放| 18禁在线播放成人免费| 国产精品国产av在线观看| 国内揄拍国产精品人妻在线| 欧美日韩亚洲高清精品| av在线观看视频网站免费| 老司机影院成人| av天堂中文字幕网| 色播亚洲综合网| 久久久久久久久久成人| 久久精品综合一区二区三区| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| videos熟女内射| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 欧美日韩精品成人综合77777| 99热全是精品| 成人毛片a级毛片在线播放| 日本一二三区视频观看| 肉色欧美久久久久久久蜜桃 | av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 五月开心婷婷网| 精品少妇久久久久久888优播| 免费av观看视频| 又粗又硬又长又爽又黄的视频| videos熟女内射| 国内揄拍国产精品人妻在线| 国产爽快片一区二区三区| 亚洲成人精品中文字幕电影| 超碰97精品在线观看| 日韩一本色道免费dvd| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 在现免费观看毛片| 两个人的视频大全免费| 亚洲国产精品成人久久小说| 亚洲第一区二区三区不卡| 成人无遮挡网站| 国产成人精品福利久久| 久久97久久精品| 内射极品少妇av片p| 国产亚洲最大av| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 精品久久久噜噜| 免费不卡的大黄色大毛片视频在线观看| 国产在线一区二区三区精| 日本午夜av视频| 亚洲精品中文字幕在线视频 | 免费av观看视频| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 自拍欧美九色日韩亚洲蝌蚪91 | 晚上一个人看的免费电影| 亚洲成人精品中文字幕电影| 亚洲精品中文字幕在线视频 | 高清视频免费观看一区二区| 国产精品女同一区二区软件| 人妻一区二区av| 亚洲最大成人av| 国产午夜精品一二区理论片| 久久影院123| 在线播放无遮挡| 综合色av麻豆| 国产精品不卡视频一区二区| 18禁在线播放成人免费| 日韩国内少妇激情av| 午夜免费鲁丝| 欧美激情久久久久久爽电影| 亚洲aⅴ乱码一区二区在线播放| 伦精品一区二区三区| 久久久精品欧美日韩精品| 80岁老熟妇乱子伦牲交| 亚洲国产欧美人成| 国产在线男女| 91久久精品国产一区二区三区| 成人欧美大片| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品国产色婷婷电影| 极品教师在线视频| 国内精品美女久久久久久| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 婷婷色综合www| 国产毛片在线视频| 啦啦啦在线观看免费高清www| 免费看av在线观看网站| 男的添女的下面高潮视频| av国产精品久久久久影院| 亚洲在线观看片| 97人妻精品一区二区三区麻豆| 日本一二三区视频观看| 看免费成人av毛片| 激情五月婷婷亚洲| videos熟女内射| freevideosex欧美| 春色校园在线视频观看| 免费看光身美女| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美bdsm另类| 国产精品国产三级国产专区5o| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 欧美成人一区二区免费高清观看| 亚洲电影在线观看av| 亚洲最大成人手机在线| 亚洲精品aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 久久久久精品性色| freevideosex欧美| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| 婷婷色综合www| 色综合色国产| 国产精品国产av在线观看| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 成年免费大片在线观看| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 免费看不卡的av| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 亚洲综合色惰| 如何舔出高潮| 欧美日韩在线观看h| 深爱激情五月婷婷| av在线亚洲专区| 久久影院123| 波多野结衣巨乳人妻| 精品午夜福利在线看| 日本一本二区三区精品| 亚洲av免费在线观看| 高清毛片免费看| 日韩不卡一区二区三区视频在线| 亚洲va在线va天堂va国产| 你懂的网址亚洲精品在线观看| 能在线免费看毛片的网站| 国产老妇女一区| 久久久久九九精品影院| 国产伦在线观看视频一区| 夫妻午夜视频| 亚洲在线观看片| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 美女主播在线视频| 热re99久久精品国产66热6| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 天堂中文最新版在线下载 | 三级国产精品片| 午夜福利在线在线| 韩国av在线不卡| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 视频中文字幕在线观看| 免费av毛片视频| 国产精品蜜桃在线观看| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| 久久女婷五月综合色啪小说 | 少妇高潮的动态图| 99久久精品国产国产毛片| 午夜日本视频在线| 九九爱精品视频在线观看| 亚洲av福利一区| 欧美日本视频| 亚洲精品影视一区二区三区av| 国产成人精品久久久久久| 国产乱来视频区| 一区二区av电影网| 国产探花在线观看一区二区| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 免费在线观看成人毛片| 一区二区av电影网| 国产伦精品一区二区三区四那| 亚洲av一区综合| 国产老妇女一区| 狂野欧美激情性bbbbbb| 九草在线视频观看| 午夜福利视频1000在线观看| 亚洲av国产av综合av卡| 亚洲精品乱码久久久v下载方式| 国产亚洲91精品色在线| 久久精品国产亚洲av涩爱| 国模一区二区三区四区视频| 亚洲一区二区三区欧美精品 | 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 国产精品成人在线| 又爽又黄a免费视频| 丰满乱子伦码专区| 国产毛片a区久久久久| 色婷婷久久久亚洲欧美| 久久国产乱子免费精品| 久久久久久久亚洲中文字幕| 偷拍熟女少妇极品色| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 日韩欧美一区视频在线观看 | 丰满乱子伦码专区| h日本视频在线播放| 国产精品一区www在线观看| 日韩中字成人| 成年女人在线观看亚洲视频 | 日本-黄色视频高清免费观看| 国产视频内射| 免费电影在线观看免费观看| 尾随美女入室| 一级毛片我不卡| 亚洲精品自拍成人| 亚洲国产精品国产精品| 噜噜噜噜噜久久久久久91| 成年版毛片免费区| 熟女人妻精品中文字幕| 视频区图区小说| a级一级毛片免费在线观看| 卡戴珊不雅视频在线播放| 男的添女的下面高潮视频| 欧美极品一区二区三区四区| 色哟哟·www| 国产精品.久久久| 水蜜桃什么品种好| 草草在线视频免费看| 少妇的逼水好多| 一个人观看的视频www高清免费观看| 久久久久久九九精品二区国产| 国产精品蜜桃在线观看| 国产男女内射视频| 成人免费观看视频高清| 久久精品夜色国产| 亚洲综合色惰| 国产伦在线观看视频一区| 99久久精品国产国产毛片| 日韩欧美精品v在线| tube8黄色片| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区黑人 | 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 日韩成人伦理影院| 国产亚洲av嫩草精品影院| 国产 一区精品| 99热这里只有是精品50| 久久99热这里只频精品6学生| 永久免费av网站大全| 狠狠精品人妻久久久久久综合| 97在线视频观看| 久久久久久久久久人人人人人人| 99热全是精品| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久成人| 国产片特级美女逼逼视频| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线观看播放| 亚洲va在线va天堂va国产| 国产一区二区三区av在线| 成人综合一区亚洲| 午夜福利视频精品| 蜜臀久久99精品久久宅男| 最近最新中文字幕大全电影3| 色视频在线一区二区三区| 两个人的视频大全免费| 九九爱精品视频在线观看| 搡老乐熟女国产| 熟女电影av网| 欧美成人精品欧美一级黄| 日韩av免费高清视频| 久久女婷五月综合色啪小说 | 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 嫩草影院精品99| 国产精品久久久久久久电影| 美女视频免费永久观看网站| 亚洲国产欧美人成| 熟女电影av网| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 国产有黄有色有爽视频| 女的被弄到高潮叫床怎么办| 国产亚洲午夜精品一区二区久久 | 久久精品夜色国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中国三级夫妇交换| 看免费成人av毛片| 最近的中文字幕免费完整| 丰满人妻一区二区三区视频av| 亚洲最大成人中文| 少妇人妻精品综合一区二区| 亚州av有码| 国产毛片a区久久久久| 麻豆乱淫一区二区| 啦啦啦在线观看免费高清www| 久久女婷五月综合色啪小说 | 国产乱人视频| 观看免费一级毛片| 亚洲aⅴ乱码一区二区在线播放| 国产极品天堂在线| 精品一区二区三卡| 欧美成人一区二区免费高清观看|