• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and application of an Electric Tail Rotor Drive Control(ETRDC)for helicopters with performance tests

    2018-09-27 07:08:20YuwenZHANGChenJIANGYunjieWANGFanSUNHaowenWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年9期

    Yuwen ZHANG,Chen JIANG,Yunjie WANG,Fan SUN,Haowen WANG

    School of Aerospace,Tsinghua University,Beijing 100084,China

    KEYWORDS Electric tail rotor;Helicopter;More Electric Aircraft(MEA);Propulsion optimization;Tail rotor

    Abstract With the development of electric helicopters’motor technology and the widespread use of electric drive rotors,more aircraft use electric rotors to provide thrust and directional control.For a helicopter tail rotor,the wake of the main rotor influences the tail rotor’s in flow and wake.In the procedure of controlling,crosswind will also cause changes to the tail disk load.This paper describes requirements and design principles of an electric motor drive and variable pitch tail rotor system.A particular spoke-type architecture of the motor is designed,and the performance of blades is analyzed by the CFD method.The demand for simplicity of moving parts and strict constraints on the weight of a helicopter makes the design of electrical and mechanical components challenging.Different solutions have been investigated to propose an effective alternative to the mechanical actuation system.A test platform is constructed which can collect the dynamic response of the thrust control.The enhancement of the response speed due to an individual motor speed control and variable-pitch system is validated.

    1.Introduction

    In analogy with the aircraft electrification trend referred to as the More Electric Aircraft(MEA)approach,helicopters propulsion and their flight control devices are also experiencing a system optimization by the adoption of electric actuators.1–2Envisioned benefits for the development of electrically powered alternatives to hydraulically,pneumatically,or mechanically powered systems are:optimization of the power distribution,3,4easier and reduced maintenance due to the unified and simplified integration,5,6standardization of components,7,8new solutions and potential architectures not available before,7,9reduced noise generated by the tail rotor;reduced take-off weight.10,11

    In this paper,one challenge is the development of a directdrive Electrical Tail Rotor Drive Control(ETRDC)system12in replacement of the traditional actuation system that receives power by means of torque tubes and gearboxes.

    The main task for a tail rotor is to counteract the torque generated by the main rotor,and thus strong reliability and safety requirements for a tail rotor is in the first place of its design.Moreover,a direct-drive actuation system shall be installed in the tail with strict constraints in terms of size and weight.

    Permanent Magnet(PM)motors13represent a promising solution to achieve high power density,and they exhibit well-known features such as high efficiency and good operating performance.

    Most of the motor-driven lift components are used on quadrotors.The electric propulsion system of a typical UAV includes the following components:(A)blades,(B)a gear-box(optional),(C)a cooling system(optional),(D)an electric motor,(E)a driver,(F)an energy source,(G)wiring,plugs,and connectors.Most of the systems do not own blades of a large size.14Traditional methods for blade design are based on the well-known work by Betz and Prandtl from1919,15and such an optimized design was equipped in Rutan’s Voyager.16,17

    Bouabdallah and Siegwart18has described a method for iteratively designing a vehicle with a maximum limitation of mass and length to achieve a desired thrust-to-weight ratio.The method requires a database of actuators,batteries,and airframe components to calculate the total mass.Bershadsky et al.4has presented a database which parameterizes drive components to meet the need of design and optimization.

    Generally,the control of thrust of small electric aircraft is realized by adjustment of the rotational speed of motors.19The aerodynamic interference between a helicopter’s main rotor and tail is complex,and the alternating load and flight direction of its fuselage makes its aerodynamic condition rigorous.

    This paper presents a new contracted structure application on ETRDC with the purpose of accelerating the aerodynamic control response.A comparison with the traditional variable pitch tail structure is carried out,and a detailed design process and parameters are proposed.

    Under the constraints of weight and volume,a direct pitch control actuator is developed in order to eliminate the number of transmission mechanisms.A test was conducted to verify the speed of control response,and the time consumption from one thrust level to another is about 80%less.

    2.Parameterization of drive,control,and lift components

    The main dimension of a helicopter is shown in Fig.1.l is the distance between the main shaft and the center of the tail rotor,RHBis the radius of the main rotor,RTRis the radius of the tail rotor,and εRTRis the distance between the main rotor tip and the center of the tail rotor.The maximum take-off weight is 230 kg,and the subsequent examples are calculated based on this aircraft.

    Fig.1 Nomenclature of fuselage.

    2.1.Tail rotor power

    Considering the loss caused by the fuselage and the helicopter maneuver reserve factor,the moment balance equation is described by

    where TTRis the thrust of the tail rotor,MHBis the torque of the main rotor,and ζynpis the maneuver reserve factor.The induced power of the main rotor PINDcan be described by

    where THBis the main rotor thrust,and the relationship between the induced power and required power of the rotor can be described by

    where ηOHBis the efficiency of blades,and P is the required power of the main rotor.The relationship20between the induced velocity viand the main rotor thrust THBcan be described by

    Therefore,the relationship between the main rotor thrust and the induced power can be calculated by

    where A is the rotor disk area,ρ is the air density,1.225 kg/m3,Δ = ρ0/ρ is the relative density of altitude,D is the diameter of the main rotor disk,and ηOHB=0.7-0.8 is the efficiency of blades.21,22

    The relationship between THBand the gravity of the whole fuselage G can be described by

    where ζOδαis the blowing loss of the main rotor.

    The relationship between the torque of the main rotor MHBand the disk load of the main rotor wDHBcan be described by

    Substituting Eq.(1)into Eq.(7),we obtain

    where ωHBis the rotational speed of the main rotor(rad/s).

    Substituting Eq.(5)into Eq.(8),we obtain

    where ηOTR=0.6–0.7 is the efficiency of the tail rotor.

    Substituting Eq.(5)into Eq.(6),we obtain

    The relative required power consumption of the tail rotor can be obtained from

    Knowing the power requirement(27 kW)of the main rotor and the diameter ratio of the tail rotor to the main rotor being generally around 15%–20%,a ratio assumption,considering the center of gravity of the fuselage,can be made.In this paper,the ratio is 0.16,and P-TR=0.12,PTR=3.24 kW.The relationship between the radius ratio and the power consumption ratio is drawn in Fig.2.VHBtipis the tip velocity of the main rotor.Hence,the power consumption of the tail rotor is determined if the radius ratio is fixed.

    2.2.Tail rotor design

    Tail rotor blades are made of various composite materials including nylon-plastic,carbon fiber,wood,and other plastic.The mass of those blades can be found by4

    where p1is 0.08884,and p2is 0 for wooden blades,0.05555 and 0.2216 for plastic,0.1178 and-0.3387 for nylon-reinforced plastic,and 0.1207 and-0.5122 for carbon fiber.In this paper,the blades are made of carbon fiber.

    Blade performance is calculated by the CFD method.The mesh scale is of two million grids,and the minimum grid in the outer flow field is 0.01 mm while the maximum grid is 0.05 mm.The size of minimum grids in the inner flow field is 0.003 mm,and the maximum size is 0.01 mm.The rotational speed is from 1800 r/min to 5400 r/min.

    Fig.2 Relationship between power ratio and radius ratio(VHBtip=200 m/s).

    Fig.3 Distribution of twist angles.

    Fig.4 Airfoil at different radii.

    The diameter of the rotor disk is 720 mm,the distribution of twist angles is shown in Fig.3(in which r is the radial position of section,and R is radius of blade),and the airfoil at different radii is shown in Fig.4.

    The flow field analysis result is shown in Fig.5.Comparisons of thrust,torque,and power are shown in Fig.6.The maximum thrust error between the CFD method and the experiment is 6.5 N.The maximum torque between the CFD method and the experiment is 0.5 N·m,and the maximum power between them is 0.1 kW.The CFD method has a great agreement with the experiment.

    2.3.Motor design

    Brushless DC motors are generally preferred over traditional brushed designs for their greater efficiency in converting electric energy to mechanical energy.Although In Runner(IR)motors allow them tighter due to the body of the motor being static,the Out Runner(OR)configuration allows motors to produce more torque than IR counterparts.13IR is a common choice for many small(<100 g)multirotor builds,and OR is a good choice for larger structures.The motor efficiency is described as

    Fig.5 Flow field of blades at 5000 r/min.

    Fig.6 Comparisons of thrust,torque,and power by CFD method and experiment.

    where T is the torque(N·m),n is the rotational speed(r/min),U is the voltage,and I is the current.The finite element mesh of the motor and analysis result are shown in Fig.7.A comparison between the Finite Element Method(FEM)and the experiment is shown in Fig.8,in which the maximum error is 1.5 N·m,and thus the results are of certain accuracy.

    As shown in Fig.8,there is an error,nearly 14%,between the theoretical calculation of the motor and the actual measurement.The poles of the motor are made of N42SH,and the coercivity and remanence are selected according to the data from sheet.23The two properties affect the results obviously.Meanwhile,the materials of the poles between different motor manufacturers are different according to their own manufacturing processes.

    Fig.7 Motor finite element analysis.

    Fig.8 Comparison of motor torque.

    The main data of the motor is shown in Table 1.

    2.4.Actuation system

    The screw nut mechanism has great advantages in transmission efficiency and accuracy.The reliability will be improvedif the screw nut mechanism is used for transmission,and the loss caused by gearing will be reduced.Details of the actuator is shown in Fig.9.Under rated operating conditions,the relationship between the screw’s thrust output and the torque input is described in Eq.(14),and the power which drives the screw Psis in Eq.(15).

    Table 1 Main data of motor.

    Fig.9 Structure of actuator.

    Table 2 Main measured data of actuator.

    where Tsis the input torque(N·m),F is the maximum load in duty load(N),Phis the screw lead(mm),nsis the rotational speed(r/min),ηp=0.9[ 1/((1+πd0/Ph)μ)],μ =0.006,and d0is the nominal diameter(mm).

    A multi-turn photoelectric encoder is applied to measure the rotation angle of the screw.The signal of the rotation angle is utilized by a control card to control the displacement of the screw.The main data of the actuator is listed in Table 2.

    3.Comparisons of change pitch structure and weight

    The propulsion system of a small UAV(batteries,motors,blades,etc.)accounts for as much as 60%of the vehicle’s weight.14Therefore,optimization of the propulsion system is extremely crucial.For most pitch variable structures,either motor-or transmission-driven tail rotors require two or three control pushrods,which are named as A,B,and C respectively in Fig.10,to convert the actuator control input to a total linear movement.Actuators need an additional bracket structure to be connected to the tail rotor system.Meanwhile,the structure must be designed and manufactured with high stiffness and strength.Otherwise,the deformation of the bracket will affect the position accuracy when the actuator is operating,and thus will further seriously affect the entire control system of the helicopter’s yaw precision.

    Fig.10 General structure of a tail rotor.

    Fig.11 Whole scale of electric tail rotor drive and pitch control system.

    The best way to improve the reliability of a mechanical system is to reduce it.7In order to overcome the problem of the large number of parts brought by the traditional pitch control structure,the design proposal proposed in this paper will cancel control pushrods and use an actuator with a control pushrod coaxial with the motor centerline.This solution,in principle,avoids the use of control pushrods and eliminates the need for additional mounting brackets for the actuator.Due to the use of a coaxial actuator to change the pitch of blades,the linearity problem of the steering actuator will be avoided.Only one bracket is required for the connection of the entire tail rotor system to the helicopter fuselage,and hence a decoupled design of the tail rotor system and the fuselage structure can be achieved.The hub and cuff as well as the pitch control mechanism are enclosed in a cowling,which protects those rotating parts against dust and sand.Meanwhile,the smooth-shaped cowling that covers all the parts of the rotating mechanism together can reduce aerodynamic losses.

    A comparison between the numbers of parts used by systems is demonstrated in Fig.11 and Fig.10,and the weights are listed in Table 3.The system weight reduction is 28.7%.

    4.Tests and results

    An experimental platform,as shown in Fig.12,was built in order to measure the steady-state,dynamic performance of the tail rotor thrust and the control output of the actuator.The height of the platform from the ground is 1.2 m,and the diameter of the bracket surface is nearly the same as that ofthe motor.A six-axis force/torque transducer is fixed to this bracket so that three directions of force and three torques can be measured.

    Table 3 List of main parts of structures.

    Fig.12 Experimental platform.

    Experiments were carried out according to the following steps.Firstly,the six components of the transducer at different rotational speeds were measured,and followed by different pitches,at a fixed rotational speed. After the static test, the thrust response due to a step input of pitch and the thrust response due to a step input of rotational speed were recorded.The power consumption of the tail rotor in actual flight was recorded.

    4.1.Thrust and power test results

    The relationships between the thrust,output power of the motor,and rotational speed are shown in Fig.13,in which α is the angle of attack of section.The ratio of the output power of the motor to the input power of the motor drive is shown in Fig.14.Time of thrust history is listed in Table 4,which indicates that the time spent is greatly reduced.

    Fig.13 Relationship between thrust,output power and rotational speed.

    Fig.14 Efficiency of output power and drive input.

    Table 4 Time of thrust change.

    As shown in Fig.13,the thrust of blades as well as the output power increases with the rotational speed.The maximum thrust is near 200 N,which indicates that the results of the CFD method are correct.The input power of the tail rotor is the product of the input voltage and current of the motor controller.The output power of the tail rotor is the product of the motor torque and the rotational speed.

    4.2.Transient time

    A comparison of the consumption of time due to different structures is shown in Fig.15.The new design has improved the response speed by 86.7%.

    Fig.15 Comparison of consumption of time due to different structures.

    Fig.16 An XV-2 helicopter equipped with ETRDC.24

    Fig.17 Power of tail rotor measured in one typical forward flight.

    4.3.Flight tests

    Flight tests were conducted with a helicopter equipped with the unique tail rotor proposed by the present study,shown in Fig.16.24The tests demonstrate that the present solution of tail rotor design meets the requirement of the power demanded,shown in Fig.17.In addition,the performance of the tail rotor is rather satisfactory.

    5.Conclusions

    (1)A design method is proposed for the helicopter electric tail rotor,which can determine the power requirement of the tail rotor system.A finite element analysis of the motor and a CFD method are used to accurately predict the torque of the tail rotor motor and the aerodynamic performance of the blades.Computation results are in good agreement with experimental data.

    (2)A fast responding mechanism is proposed,aimed at overcoming the disadvantages of a single motor-driven rotor,which has a long adjustment period before the aerodynamic force starts to respond.Test data shows that the transient time is reduced by 86.7%.

    (3)A compact pitch control mechanism is proposed,in which the number of components is significantly reduced and the weight reduction is 28.7%.

    (4)The proposed mechanism is of practical value and has been equipped and tested on a helicopter.

    精华霜和精华液先用哪个| 久久精品国产亚洲网站| 亚洲在线观看片| 欧美xxxx性猛交bbbb| 亚洲最大成人手机在线| 久久久精品94久久精品| 国产 一区精品| 草草在线视频免费看| 亚洲av男天堂| 肉色欧美久久久久久久蜜桃 | 国产一区二区三区av在线| 国产免费一级a男人的天堂| 大话2 男鬼变身卡| 国产老妇女一区| 蜜桃久久精品国产亚洲av| 日日啪夜夜爽| 可以在线观看毛片的网站| 人人妻人人爽人人添夜夜欢视频 | 久久97久久精品| 一本久久精品| 免费黄色在线免费观看| 国产69精品久久久久777片| 成年免费大片在线观看| 狂野欧美白嫩少妇大欣赏| 男插女下体视频免费在线播放| 久久影院123| 欧美性感艳星| 日本猛色少妇xxxxx猛交久久| 夫妻午夜视频| 欧美zozozo另类| 能在线免费看毛片的网站| 国产免费视频播放在线视频| 国产黄色免费在线视频| 国产91av在线免费观看| 欧美少妇被猛烈插入视频| 成人黄色视频免费在线看| 五月伊人婷婷丁香| 只有这里有精品99| 校园人妻丝袜中文字幕| 午夜日本视频在线| 亚洲精品aⅴ在线观看| 欧美精品人与动牲交sv欧美| 国产高清不卡午夜福利| 99视频精品全部免费 在线| 男的添女的下面高潮视频| 一区二区三区精品91| 亚洲美女视频黄频| 各种免费的搞黄视频| 久久久精品94久久精品| 欧美激情在线99| av卡一久久| 亚洲四区av| 久久99热6这里只有精品| 国产欧美日韩一区二区三区在线 | av在线亚洲专区| 亚洲,欧美,日韩| 欧美最新免费一区二区三区| 波野结衣二区三区在线| 色吧在线观看| 春色校园在线视频观看| 亚洲在线观看片| 三级国产精品欧美在线观看| 综合色av麻豆| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区| 美女主播在线视频| 国国产精品蜜臀av免费| 国产免费一区二区三区四区乱码| 在线免费观看不下载黄p国产| 干丝袜人妻中文字幕| 久久精品国产鲁丝片午夜精品| 国产探花在线观看一区二区| 日韩在线高清观看一区二区三区| 丰满少妇做爰视频| 国产成人精品婷婷| 日本爱情动作片www.在线观看| 美女内射精品一级片tv| 国产精品熟女久久久久浪| 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| av黄色大香蕉| 久久这里有精品视频免费| 免费看不卡的av| 日韩国内少妇激情av| 在线a可以看的网站| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 亚洲精品日韩在线中文字幕| 国产高清不卡午夜福利| 欧美一级a爱片免费观看看| 国产成人福利小说| 日韩精品有码人妻一区| 色网站视频免费| 久久这里有精品视频免费| av女优亚洲男人天堂| 搡老乐熟女国产| 亚洲精品,欧美精品| 亚洲性久久影院| 赤兔流量卡办理| 九草在线视频观看| 国产精品一区二区在线观看99| 国产熟女欧美一区二区| av免费观看日本| www.色视频.com| 亚洲欧洲日产国产| 毛片女人毛片| 99热6这里只有精品| 中文字幕免费在线视频6| 久久精品国产亚洲av天美| 免费黄色在线免费观看| 免费电影在线观看免费观看| 网址你懂的国产日韩在线| 亚洲人成网站在线播| 亚洲精品国产av成人精品| 国产老妇伦熟女老妇高清| 亚洲色图综合在线观看| 国产人妻一区二区三区在| 欧美成人午夜免费资源| 国产成人一区二区在线| 亚洲精品aⅴ在线观看| 久久久久久伊人网av| 久久精品久久精品一区二区三区| 少妇 在线观看| 国产亚洲av片在线观看秒播厂| 中国美白少妇内射xxxbb| 永久免费av网站大全| 国内揄拍国产精品人妻在线| 亚洲美女视频黄频| a级毛片免费高清观看在线播放| 在线观看免费高清a一片| 成年人午夜在线观看视频| 在线免费观看不下载黄p国产| 久久久久久久久久久丰满| 另类亚洲欧美激情| 听说在线观看完整版免费高清| 国产精品女同一区二区软件| 日本av手机在线免费观看| 国内精品宾馆在线| 热re99久久精品国产66热6| 免费黄色在线免费观看| 日本一二三区视频观看| 亚洲aⅴ乱码一区二区在线播放| 男女边吃奶边做爰视频| 亚洲美女视频黄频| 久久精品国产自在天天线| 天天躁夜夜躁狠狠久久av| 国产成人精品久久久久久| 成人免费观看视频高清| 日韩国内少妇激情av| 99re6热这里在线精品视频| 亚洲人成网站在线观看播放| 免费黄网站久久成人精品| 欧美 日韩 精品 国产| 极品教师在线视频| 极品教师在线视频| 1000部很黄的大片| 国产免费视频播放在线视频| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久| 国内精品宾馆在线| 观看免费一级毛片| 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区 | 久久久久久国产a免费观看| 久久久久久久久大av| 国产女主播在线喷水免费视频网站| 亚洲av成人精品一二三区| 又粗又硬又长又爽又黄的视频| 亚洲精品久久午夜乱码| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 22中文网久久字幕| 成年免费大片在线观看| 国产成人freesex在线| 国产精品无大码| 久久久精品94久久精品| 少妇熟女欧美另类| 天堂网av新在线| 天堂中文最新版在线下载 | 成人无遮挡网站| 真实男女啪啪啪动态图| 精品国产一区二区三区久久久樱花 | 晚上一个人看的免费电影| 国产免费又黄又爽又色| 亚洲成人av在线免费| 视频区图区小说| 色哟哟·www| 搡老乐熟女国产| 久久久久性生活片| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 亚洲真实伦在线观看| 一级二级三级毛片免费看| a级毛色黄片| 免费av观看视频| 中文资源天堂在线| 青春草国产在线视频| 国产成人91sexporn| 久久久久久久久大av| 国产真实伦视频高清在线观看| 黄色日韩在线| 久久99蜜桃精品久久| 亚洲精品自拍成人| 在线观看av片永久免费下载| 精品国产一区二区三区久久久樱花 | 我的女老师完整版在线观看| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线 | 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 久久精品国产亚洲av天美| 免费大片黄手机在线观看| 国产亚洲5aaaaa淫片| 国产国拍精品亚洲av在线观看| 六月丁香七月| 大香蕉97超碰在线| 91久久精品国产一区二区成人| 午夜免费鲁丝| 亚洲欧美日韩卡通动漫| 国产综合精华液| 精品少妇久久久久久888优播| 国产美女午夜福利| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 人人妻人人爽人人添夜夜欢视频 | 在线观看美女被高潮喷水网站| 欧美xxxx性猛交bbbb| 少妇的逼水好多| 哪个播放器可以免费观看大片| 亚洲欧洲日产国产| 一个人观看的视频www高清免费观看| 免费看av在线观看网站| 极品教师在线视频| 久久精品国产亚洲av涩爱| h日本视频在线播放| 亚洲av二区三区四区| 国产精品秋霞免费鲁丝片| 一本一本综合久久| 中国美白少妇内射xxxbb| 日韩人妻高清精品专区| 精品人妻偷拍中文字幕| 亚洲av国产av综合av卡| 少妇人妻一区二区三区视频| 国产真实伦视频高清在线观看| 26uuu在线亚洲综合色| 菩萨蛮人人尽说江南好唐韦庄| 国产成年人精品一区二区| 欧美精品国产亚洲| 一级毛片久久久久久久久女| 欧美zozozo另类| 天天躁日日操中文字幕| 高清欧美精品videossex| 插阴视频在线观看视频| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 美女主播在线视频| 黑人高潮一二区| 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 国内少妇人妻偷人精品xxx网站| 少妇丰满av| 九色成人免费人妻av| 91精品伊人久久大香线蕉| 国产精品嫩草影院av在线观看| 亚洲精品中文字幕在线视频 | 成人毛片a级毛片在线播放| 亚洲精品成人久久久久久| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 国产精品嫩草影院av在线观看| 中文字幕制服av| 欧美潮喷喷水| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 26uuu在线亚洲综合色| 亚洲精品国产色婷婷电影| 美女cb高潮喷水在线观看| 欧美 日韩 精品 国产| 成人午夜精彩视频在线观看| 美女脱内裤让男人舔精品视频| 街头女战士在线观看网站| 亚洲一级一片aⅴ在线观看| 69人妻影院| 久久久久国产精品人妻一区二区| 久久久久久久久久久丰满| 亚洲国产精品999| 永久网站在线| 在线观看一区二区三区| 日韩强制内射视频| 超碰av人人做人人爽久久| 欧美xxxx黑人xx丫x性爽| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 亚洲天堂av无毛| 视频中文字幕在线观看| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 国产黄a三级三级三级人| 99热全是精品| 大香蕉久久网| 五月伊人婷婷丁香| 国产亚洲av嫩草精品影院| 中文字幕久久专区| 久久久午夜欧美精品| 日韩强制内射视频| 超碰97精品在线观看| 国产黄片美女视频| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 国产爽快片一区二区三区| 久久久久久久久久成人| 亚洲美女视频黄频| 午夜激情福利司机影院| 久久女婷五月综合色啪小说 | 在线a可以看的网站| 免费电影在线观看免费观看| 午夜福利在线在线| 免费观看的影片在线观看| 亚洲国产日韩一区二区| 欧美激情国产日韩精品一区| 亚洲精品乱久久久久久| 中文字幕制服av| 男的添女的下面高潮视频| av国产精品久久久久影院| tube8黄色片| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 男女那种视频在线观看| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 久热这里只有精品99| 国产高清不卡午夜福利| 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 国产精品女同一区二区软件| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 人妻少妇偷人精品九色| 国产探花极品一区二区| 成人国产麻豆网| 毛片一级片免费看久久久久| 在线观看一区二区三区激情| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| 成年女人在线观看亚洲视频 | 十八禁网站网址无遮挡 | 国产精品人妻久久久影院| 日韩一区二区三区影片| 人体艺术视频欧美日本| 午夜亚洲福利在线播放| 午夜视频国产福利| 日韩不卡一区二区三区视频在线| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 免费观看在线日韩| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 欧美区成人在线视频| 2018国产大陆天天弄谢| 久热久热在线精品观看| 91久久精品电影网| 国产精品女同一区二区软件| 精品视频人人做人人爽| 日韩伦理黄色片| 美女视频免费永久观看网站| 精品国产三级普通话版| 乱码一卡2卡4卡精品| 我的女老师完整版在线观看| 国产高清三级在线| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频| 三级男女做爰猛烈吃奶摸视频| 丰满少妇做爰视频| av在线蜜桃| 国产 精品1| 亚洲精品视频女| 三级国产精品片| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app| 一区二区三区精品91| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 亚洲人成网站高清观看| 欧美少妇被猛烈插入视频| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 人人妻人人爽人人添夜夜欢视频 | 美女主播在线视频| 日日啪夜夜爽| 午夜激情久久久久久久| 日韩在线高清观看一区二区三区| 精品少妇久久久久久888优播| 欧美激情久久久久久爽电影| 一本久久精品| 在线观看av片永久免费下载| 成人鲁丝片一二三区免费| 美女主播在线视频| 涩涩av久久男人的天堂| 在线观看三级黄色| 亚洲人成网站在线播| 成人国产麻豆网| 国产综合懂色| 男女边吃奶边做爰视频| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 波野结衣二区三区在线| 在线 av 中文字幕| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 国产 一区精品| 亚洲美女搞黄在线观看| 色吧在线观看| 80岁老熟妇乱子伦牲交| 国产黄片视频在线免费观看| 青春草国产在线视频| 精品人妻一区二区三区麻豆| 国产成人精品久久久久久| 91久久精品国产一区二区成人| 欧美日本视频| 国产亚洲午夜精品一区二区久久 | 日韩一本色道免费dvd| 大香蕉97超碰在线| 成年女人看的毛片在线观看| 美女内射精品一级片tv| 欧美人与善性xxx| 欧美性感艳星| 欧美潮喷喷水| 午夜激情久久久久久久| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 亚洲精品国产av蜜桃| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 天堂网av新在线| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 午夜福利在线观看免费完整高清在| 亚洲高清免费不卡视频| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看 | 欧美一级a爱片免费观看看| 久久99热这里只有精品18| 亚洲av不卡在线观看| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 亚洲av在线观看美女高潮| 亚洲精品日韩av片在线观看| 99热全是精品| 精品人妻偷拍中文字幕| 久久久色成人| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 在线a可以看的网站| 亚洲国产精品成人久久小说| 亚洲天堂av无毛| 国产日韩欧美亚洲二区| 九色成人免费人妻av| 特级一级黄色大片| 能在线免费看毛片的网站| 国产永久视频网站| 国产欧美日韩一区二区三区在线 | 人妻一区二区av| 久久韩国三级中文字幕| 边亲边吃奶的免费视频| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 人妻一区二区av| 97热精品久久久久久| 日韩人妻高清精品专区| 一本色道久久久久久精品综合| 可以在线观看毛片的网站| 校园人妻丝袜中文字幕| 国产午夜福利久久久久久| 三级国产精品片| 精品国产三级普通话版| 欧美潮喷喷水| 女人十人毛片免费观看3o分钟| 成年女人看的毛片在线观看| 美女高潮的动态| 一级毛片 在线播放| 人人妻人人看人人澡| 69av精品久久久久久| 国产av码专区亚洲av| 亚洲欧美日韩另类电影网站 | 国产成人福利小说| 国产欧美亚洲国产| 国产片特级美女逼逼视频| 亚洲真实伦在线观看| 久久精品国产鲁丝片午夜精品| av又黄又爽大尺度在线免费看| 色5月婷婷丁香| 天天躁日日操中文字幕| 日韩一本色道免费dvd| 狠狠精品人妻久久久久久综合| 啦啦啦在线观看免费高清www| 特级一级黄色大片| 亚洲av免费高清在线观看| 91午夜精品亚洲一区二区三区| 成年av动漫网址| 亚洲欧洲日产国产| 成人免费观看视频高清| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 久久人人爽人人爽人人片va| 黄色配什么色好看| 人妻少妇偷人精品九色| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 国产免费视频播放在线视频| 精品人妻偷拍中文字幕| 丝瓜视频免费看黄片| 丰满乱子伦码专区| 亚洲成人av在线免费| 人妻系列 视频| av免费在线看不卡| 国产伦在线观看视频一区| 美女cb高潮喷水在线观看| 街头女战士在线观看网站| 国产精品麻豆人妻色哟哟久久| 亚洲av一区综合| 国产成人精品久久久久久| 91精品国产九色| 2018国产大陆天天弄谢| 成人免费观看视频高清| 少妇 在线观看| 久久久久久伊人网av| 亚洲国产精品999| 国产亚洲av嫩草精品影院| 日本色播在线视频| 一级毛片aaaaaa免费看小| 久久久久久久精品精品| 欧美精品一区二区大全| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 最近中文字幕2019免费版| 日本黄色片子视频| 大码成人一级视频| 免费看光身美女| 丝袜脚勾引网站| 成人国产麻豆网| 97超碰精品成人国产| 婷婷色综合www| 中文欧美无线码| 男人添女人高潮全过程视频| 卡戴珊不雅视频在线播放| 国产免费一级a男人的天堂| 亚洲精品国产av蜜桃| 男女国产视频网站| 成人亚洲欧美一区二区av| 日本黄色片子视频| 久久人人爽人人爽人人片va| 网址你懂的国产日韩在线| 久久人人爽人人片av| 各种免费的搞黄视频| 黄色配什么色好看| 少妇人妻精品综合一区二区| 亚洲一级一片aⅴ在线观看| 日本熟妇午夜| 久久精品夜色国产| 中国三级夫妇交换| 亚洲国产日韩一区二区| 51国产日韩欧美| 国产一区二区在线观看日韩| av在线亚洲专区| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品自拍成人| 日本一本二区三区精品| 免费观看性生交大片5| 欧美精品一区二区大全| 又爽又黄a免费视频| 成人特级av手机在线观看| 亚洲性久久影院| 久久午夜福利片| 尾随美女入室| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 精品久久久久久久久亚洲| 亚洲天堂国产精品一区在线| 国产亚洲午夜精品一区二区久久 | 日韩大片免费观看网站| 久久这里有精品视频免费| 精品少妇久久久久久888优播| 国产老妇女一区| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久小说| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 日韩,欧美,国产一区二区三区| 国内精品宾馆在线|