• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A thermal- flutter criterion for an open thin-walled circular cantilever beam subject to solar heating

    2018-09-27 07:08:22XiaodeYUANZhihaiXIANG
    CHINESE JOURNAL OF AERONAUTICS 2018年9期

    Xiaode YUAN,Zhihai XIANG

    Department of Engineering Mechanics,School of Aerospace Engineering,Tsinghua University,Beijing 100084,China

    KEYWORDS Fourier finite element;Stability criteria;Thermal flutter;Thermally Induced Vibration(TIV);Thin-walled structures

    Abstract The flexible attachments of spacecraft may undergo Thermally Induced Vibration(TIV)on orbit due to the suddenly changed solar heating.The unstable TIV,called thermal- flutter,can cause serious damage to the spacecraft.In this paper,the coupled bending-torsion thermal vibration equations for an open thin-walled circular cantilever beam are established.By analyzing the stability of these equations based on the first Lyapunov method,the thermal- flutter criterion can be obtained.The criterion is very different form that of closed thin-walled beams because the torsion has great impact on the stability of the TIV for open thin-walled beams.Several numerical simulations are conducted to demonstrate that the theoretical predictions agree very well with the finite element results,which mean that the criterion are reliable.

    1.Introduction

    The flexible attachments of spacecraft generally have the characteristics of large size,light weight,low stiffness and small heat capacity.Therefore,these structures are prone to experiencing the Thermally Induced Vibration(TIV)due to the suddenly applied solar heat flux when the spacecraft enter or leave eclipse.1–4These vibrations could reduce the pointing accuracy of spacecraft and even introduce damage into the structure,especially when the vibration is unstable,i.e.,the thermal flutter.

    TIV was firstly predicted theoretically by Boley as early as 1956.5Boley and Barber6showed that when a very thin beam or plate is subjected to rapid surface heating,the vibration can be induced by a kind of time-dependent thermal moment due to the rapid temperature gradient in the structure.Later on,the Boley parameter B= τTω1was defined to characterize the severity of TIV for cantilever beams,7where τTis the thermal characteristic time and ω1is the minimum angular frequency of the beam.The ratio of the maximum dynamic deflection over the quasi-static deflection of a cantilever beam can be expressed aswhich means that the smaller B is,the more severe the TIV is.Although the Boley parameter B is a nice index for pure bending TIV of a cantilever beam,practical structures may have more complex TIV modes.For example,the structure composed of open thin-walled beams is apt to undergo torsional vibration due to its ultra-low torsional stiffness.8

    Compared to stable TIV,the thermal flutter is more harmful to space structures.This phenomenon was first observed on orbit in 19689and then it was realized in a laboratory environment.10After that,more and more coupled thermal-structure analyses were conducted to investigate the condition of thermal flutter.11,12Yu first established the stability criterion on the TIV of a closed thin-walled cantilever beam subject to solar heating13and then that criterion was updated by Graham.14In Graham’s criterion,the thermal flutter will only happen when the beam axis points away from the sun,where the beam axis is defined as the vector pointing from the fixed end of the beam to the free end of the beam.An important conclusion of this criterion is that the normal-incident heat flux will not induce thermal flutter,which is contradictory to both experiment results15and numerical simulations.16Realizing that the stability analysis should be established on the deformed steady state instead of the original configuration of the beam,Zhang and Xiang proposed a new criterion,which conforms with the experimental and numerical results.17

    All existing criteria of thermal flutter are only applicable to closed thin-walled beams.In contrast,the criterion for open thin-walled beams must consider the bending and torsion coupling deformations.Consequently,the circumferential incident angle of the heat flux should have great impact on the stability of the TIV.With a full consideration of these two points,this paper establishes a thermal- flutter criterion suitable for open thin-walled circular cantilever beams based on the first Lyapunov method.18

    2.Coupled thermal-structural dynamic analysis

    2.1.Analysis model and basic assumptions

    As Fig.1 shows,two sets of coordinate systems are defined to describe the deformation of the cantilever beam.OXYZ is a fixed spatial coordinate system,in which X axis is the initial centroid axis and Y axis points to the initial opening direction.Oxyz is a local coordinate system attached at a point on the beam,in which x axis is the deformed centroid axis and y axis always points to the opening direction of the rotated beam.

    The dimensions of the interested beam are defined as follows:l is the beam length;R and h are the midline radius and thickness of the beam cross-section,respectively.For a thin-walled slender beam,h/R?1 and R/l?1,so that Euler-Bernoulli beam theory is applicable.

    The solar heat flux vector S0is uniformly distributed along the beam length.θ0is the angle between S0and vector n,which is the normal of the beam and opposite to the projection of S0in plane OYZ.α is the angle between S0and the Y axis in the YOZ plane.

    The following assumptions are adopted in the analysis:

    Fig.1 An open thin-walled circular cantilever beam subject to solar heat flux.

    (1)Emission and radiation of heat to space is considered but convection and radiation between the different surfaces of the beam are neglected.

    (2)Heat transfer along beam length is neglected.

    (3)At positions of X=0,X=l and the longitudinal opening sides of the beam are adiabatic.

    (4)The amplitude of the perturbation temperature is much smaller than the average temperature in the crosssection.

    (5)Damping is not considered.

    (6)Deflections and rotations are small before fluttering.

    2.2.Basic equations

    Bending and torsion of an open thin-walled beam are initiated mainly by the temperature gradients due to the absorbed heat flux.At the same time,the deformation also affects the incident angle of the heat flux.When the beam deforms,the absorbed solar heat flux is calculated as

    where φ is the circumferential angle along the midline of beam cross-section;αsis the absorptivity of beam surface;S0is the magnitude of solar heat flux S0;α′∈ (0,2π)denotes the equivalent circumferential incident angle;ψ is the angle between S0and the deformed axis of the beam,and

    θxis the torsion angle;θyiand θziare the bending angles of the centroid around y and z axis,respectively;δ is defined as

    Based on Assumption(2),the beam temperature T( x,φ,t)is determined by

    where c is specific heat;ρ is mass density;k is thermal conductivity;ε is the emissivity of beam surface;σ is the Stefan–Boltzmann constant.

    Eq.(4)is a strong nonlinear equation,which is difficult to solve.However,it can be decomposed into two very simple equations by using the Fourier finite element method,16which approximates the temperature T( x,φ,t)as the sum of an average temperature Ta(x,t)and three perturbation temperatures:

    Substituting Eq.(5)into Eq.(4)and integrating it over the cross-section with respect to φ,one can obtain two decoupled equations:

    Eq.(6)is easy to solve because it is much simpler than Eq.(4).Upon obtaining the average temperature Ta(x,t)from Eq.(6),all perturbation temperatures can be solved by linear equation(7).

    The nonuniform temperature distribution will result in thermal loads,which include two thermal bending moments MTyand MTzand a thermal bimoment BTas follows:

    where E is the elastic modulus of beam;T0is the initial temperature of beam;αTis the thermal expansion coefficient;ω is the sectorial area.

    According to Assumption(6),the change of thermal loads along beam length can be neglected.Thus,the vibration equations subject to these thermal loads are

    with the boundary conditions:

    where Dpis the torsional rigidity;Iyand Izare the moment of inertia around y and z axis,respectively;Iωis the sectorial quadratic moment;ρ is the density of the beam;v and w are the deflections of the shear center(yc,zc)in y and z direction,respectively;IAis the polar moment of inertia of the shear center;λ is defined asFor the open circular beam shown in Fig.1,

    Let viand widenote the deflections of the centroid in y and z direction,respectively.They can be calculated by

    According to Euler-Bernoulli beam theory,it yields

    where χ = ?θx/?x.

    Eq.(6),Eq.(7)and Eqs.(14)–(19)compose a set of coupled thermal-structural dynamic equations,which are difficult to solve due to these coupled terms and the nonlinearity of Eq.(6).However,the first Lyapunov method only investigates the linear approximations of these equations in their steady state for the stability analysis,so that it is not necessary to solve these equations directly.

    2.3.Coupled steady state

    As aforementioned,the solution of coupled steady state is generally required for the stability analysis and it cannot be obtained analytically.However,this coupled steady solution is slightly different from the uncoupled steady solution for a closed thin-walled beam,17in which the uncoupled solution is enough for stability analysis.Frustratingly,this is not true for an open thin-walled beam as illustrated by the numerical results shown in Section 3.Therefore,a simple iterative method has to be used to find an approximate solution.

    Let t→ ∞ and x=l in Eqs.(6)–(19),and one can obtain the average temperature at iteration n(n=0,1,2,...,nmax):

    Because Tachanges much more slowly than Tpi,19it can be regarded as a constant when Tpiis calculated.Therefore,

    Consequently,

    Then,one can update the following angles:

    To start the iteration,the initial values can be set as

    Through Eqs.(24)–(30),the approximate solutions of coupled steady state at the beam free end can be obtained within a small number of iterations.

    2.4.Approximate solutions

    Considering the first-order vibration mode of the beam,the deformations can be represented as

    where N( x)and Φ( x)are the shape functions that satisfy the boundary conditions;V( t),W( t)and Θ( t)are the functions of t by using the method of separation of variables.

    Substituting Eq.(31)into Eqs.(14)–(16)and noticing Eq.(20),one can obtain the following equations by using the Galerkin weighted residual method:

    w h e r e

    The above equations are related to the perturbation temperatures at x=l.As mentioned in Section 2.3,the average temperature can be regarded as a constant.Therefore,the perturbation temperatures can be solved from Eq.(7):According to Eqs.(33),(35)and(12),the deflection v is only related to the unknown variable Tp2(l,t),regardless of

    Tp1(l,t)and Tp3(l,t).For the same reason,Tp2(l,t)is useless when we analyze the stabilities of deflection w and torsion.

    Therefore,the stability of the deformations in different directions is discussed separately in the following.

    2.5.Stability analysis

    2.5.1.Sub-criterion A

    To analyze the stability of the deflection v,one can rewrite Eqs.(33)and(36)in state space as

    Eq.(38)is nonlinear because of the coupled term in matrix B.According to the first Lyapunov method,its asymptotical stability is determined by its linear approximation in steady state.Therefore,Eq.(38)is approximated about the steady state by using the first-order Taylor expansion as

    According to Eqs.(2),(22)and(37),F can be calculated by

    The characteristic polynomial of the matrix in Eq.(42)is

    where s is the characteristic root;a0,a1and a2are corresponding coefficients.

    A feasible shape function that satisfies Eq.(32)is

    Substituting Eq.(47)into Eqs.(42)and(46),one obtains

    According to the Routh–Hurwitz criterion,the stability conditions for a third-order linear system are

    Obviously,a1>0 and a2>0 are always true.According to Eq.(48),a0>0 is also satisfied because the term Izhk is much greater than FR4παTρch2l for most space beams.

    Simplifying the last condition a1a2-a0>0 in Eq.(51),one obtains

    According to Eqs.(37)and(44),one can eventually get

    Particularly,under the pure bending state in Y direction(around Z axis,α =0°or α =180°),θx= θy=0,and then this criterion becomes

    2.5.2.Sub-criterion B

    Compared to deflection v,the stability analysis of deflection in z direction and torsion is more difficult because these two deformations are coupled with each other,which leads to more unknown state variables.

    The shape functions that satisfy Eq.(32)are

    With these shape functions,Eq.(34)can be rewritten as

    where

    And according to Eqs.(11),(13)and(35),one obtains

    Similar to Section 2.5.1,one can rewrite Eqs.(34)and(36)in the state space:

    where the state variable vector is S=[W( t)

    and

    The linear approximation of Eq.(58)is

    where

    The parameters in Eq.(63)are

    The characteristic polynomial of the matrix in Eq.(63)is

    According to the Routh–Hurwitz criterion,the stability conditions for a sixth-order linear system are

    where c1,d1,e1,f1and g1are the parameters of Routh table:

    Eq.(72)is the stability condition for the z-direction bending and torsion coupling vibration.

    2.5.3.Thermal- flutter criterion

    The thermal- flutter criterion for this open thin-walled circular cantilever beam composes of the sub-criterion A given in Eq.(53)and the sub-criterion B given in Eq.(72).Unstable TIV will happen when any one of these two sub-criteria is violated.The sub-criterion A establishes the relationship between the incident angle of the solar heat flux and the stability of deflection v.Under the pure bending state in Y direction,this new criterion(Eq.(54))can degenerate into the existing criterion for a closed thin-walled beam17free of torsion and warping.The sub-criterion B establishes the relationship between the incident angle of the solar heat flux and the stability of deflection in Z direction and torsion.It is too complex to find a clear physical meaning as that of the sub-criterion A.However,it can be easily verified numerically.

    3.Numerical results

    In this section,numerical simulations based on the Fourier finite element method20will be conducted to obtain the dynamic responses of an open thin-walled circular cantilever beam subject to suddenly applied solar heat fluxes.The geometry dimensions and material properties are listed in Table 1.As shown in Fig.1,two incident angles are interested in:the normal angle θ0and the circumferential angle α.

    Fig.2 depicts a typical vibration curve,from which one can easily identify that the vibration period is about 5 s.Therefore,the time step is set to 0.25 s in the following numerical simulations to ensure the numerical accuracy.

    Figs.3(a)and(b)compare the uncoupled and coupled thermal-structural response of the bending angles θy, θzand the torsion angle θxat beam free end under solar fluxes of different incident angles α and θ0.It is clear that the uncoupled displacements are quite different from the coupled displacements,because the torsion angle θxhas great impact on the incident solar flux during the deformation of the beam.In order to get the coupled steady state values,the iterative method proposed in Section 2.3 with the maximum iterative number nmax=5 is utilized.The obtained results are θx=0.17 rad,θy=0.07 rad,θz=-0.03 rad for Fig.3(a)and θx=0.19 rad, θy=0.08 rad, θz=-0.01 rad for Fig.3(b),which are exactly the same as those from dynamic analysis.

    As Section 2 emphasizes,when either sub-criterion A or sub-criterion B is violated,the thermal- flutter will happen.Based on this rule,one can plot the stable and unstable zones of the TIV of this beam in Fig.4.

    Since this open thin-walled beam has ultra-low torsional stiffness,it is not strange that most cases are unstable in Fig.4.For example,when α =135°and θ0=0°,the steady--angles arerad.In this case,both sub-criterion A and sub-criterion B are violated.Accordingly,in the numerical simulation results depicted in Fig.5(a),all displacements are unstable.Thus,it verifies the prediction by the criterion.

    Table 1 Geometry dimensions and material parameters.

    Fig.2 Period of TIV when α=135° and θ0=0°.

    Fig.3 Uncoupled and coupled thermal-structural responses at different incident angles.

    Fig.4 Stable and unstable zones.

    Fig.4 also implies a stable TIV when α =75°and θ0=30°.In this case,the steady angles are=0.21 rad,i=0.086 rad andi=-0.0016 rad,which satisfy both sub-criterion A and sub-criterion B.This conforms with the numerical simulation results depicted in Fig.5(b).

    Fig.5 TIV at different incident angles.

    An interesting case is pure bending state in Y direction.For example,when α=180°and θ0=20°,it is obvious that deflection w and torsion angle θxare equal to zero due to the symmetry of this problem.In this case,the sub-criterion A degenerates towhich is the same as the criterion for a closed thin-walled beam.17Since the steady anglesv could be stable according to the sub-criterion A.However,the sub-criterion B is violated,so that w and θxmust be unstable.These predictions are verified by the numerical results shown in Fig.5(c),in which all deformations are stable before 3000 s,then w and θxgradually diverge,and finally v is also unstable due to the influence of w and θx.This example demonstrates that the torsion has great impact on the stability of the TIV for open thin-walled beams.

    4.Conclusions

    This paper established a thermal- flutter criterion for an open thin-walled circular cantilever beam,which can be decomposed into two sub-criteria for the deflection v(sub-criterion A)and the coupled deformation of the bending state in z direction and torsion(sub-criterion B),respectively.In practice,thermal flutter happens when either the sub-criterion A or the subcriterion B is violated.The sub-criterion A can degenerate to the existing criterion for closed thin-walled beam free of torsion.However,the sub-criterion B shows that the torsion has great impact on the stability of the TIV for open thin walled beams that have ultra-low torsional stiffness.However,this criterion does not consider the structural damping,so that it gives a conservative prediction for practical structures.

    国产亚洲欧美精品永久| 精品福利观看| 国产一区在线观看成人免费| 大陆偷拍与自拍| 一区在线观看完整版| 日韩欧美在线二视频| 欧美日韩国产mv在线观看视频| 老司机靠b影院| 亚洲激情在线av| av网站免费在线观看视频| 少妇的丰满在线观看| 麻豆一二三区av精品| 999精品在线视频| 亚洲视频免费观看视频| 成人手机av| 国产人伦9x9x在线观看| 女同久久另类99精品国产91| 亚洲精品一二三| 一个人观看的视频www高清免费观看 | 淫秽高清视频在线观看| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 午夜精品国产一区二区电影| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 一本综合久久免费| 天天影视国产精品| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 一级a爱视频在线免费观看| 99re在线观看精品视频| 亚洲五月天丁香| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 久久人人97超碰香蕉20202| 黄色视频不卡| 亚洲欧美激情综合另类| 色综合婷婷激情| 男人舔女人的私密视频| 国产成人精品在线电影| 久久久国产成人精品二区 | 免费搜索国产男女视频| 搡老乐熟女国产| 又紧又爽又黄一区二区| 十八禁网站免费在线| 香蕉国产在线看| 国产精品一区二区免费欧美| 18禁观看日本| 国产亚洲欧美在线一区二区| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 久久久久久久午夜电影 | 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 国内久久婷婷六月综合欲色啪| 水蜜桃什么品种好| 久久中文看片网| 欧美精品一区二区免费开放| 一级毛片精品| 成人av一区二区三区在线看| 成人亚洲精品一区在线观看| 精品午夜福利视频在线观看一区| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 操美女的视频在线观看| 老司机亚洲免费影院| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 成人手机av| xxxhd国产人妻xxx| 婷婷精品国产亚洲av在线| 大陆偷拍与自拍| 首页视频小说图片口味搜索| 国产精品乱码一区二三区的特点 | 啪啪无遮挡十八禁网站| 精品第一国产精品| 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 老熟妇乱子伦视频在线观看| 少妇被粗大的猛进出69影院| 久久久久九九精品影院| 国产成人免费无遮挡视频| 好男人电影高清在线观看| 日韩视频一区二区在线观看| 国产精品久久电影中文字幕| 国产精品一区二区精品视频观看| 亚洲成av片中文字幕在线观看| 久久香蕉激情| 久久精品亚洲精品国产色婷小说| 黄色女人牲交| 免费在线观看黄色视频的| 成人精品一区二区免费| 国产又爽黄色视频| 欧美精品一区二区免费开放| 国产亚洲精品一区二区www| 亚洲成人免费av在线播放| 亚洲精品中文字幕一二三四区| 高清av免费在线| av免费在线观看网站| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片 | 亚洲一卡2卡3卡4卡5卡精品中文| 香蕉久久夜色| 亚洲精品一二三| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 国产高清激情床上av| 又大又爽又粗| 国产1区2区3区精品| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| www.精华液| 亚洲中文字幕日韩| 天天添夜夜摸| 久久久久精品国产欧美久久久| 精品国产超薄肉色丝袜足j| 天堂√8在线中文| 精品无人区乱码1区二区| 欧美人与性动交α欧美软件| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 美女福利国产在线| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡免费网站照片 | 久久这里只有精品19| 欧美性长视频在线观看| 国产精品二区激情视频| 中出人妻视频一区二区| 一边摸一边做爽爽视频免费| 国产精品自产拍在线观看55亚洲| 天堂影院成人在线观看| 国产av在哪里看| 满18在线观看网站| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 免费在线观看日本一区| 国产真人三级小视频在线观看| 中亚洲国语对白在线视频| 91老司机精品| 国产精品久久久av美女十八| 欧美乱妇无乱码| 亚洲av片天天在线观看| 日韩欧美一区二区三区在线观看| 极品人妻少妇av视频| 美女国产高潮福利片在线看| 女生性感内裤真人,穿戴方法视频| 国产区一区二久久| 国产精品98久久久久久宅男小说| 国产一区二区在线av高清观看| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女 | 女警被强在线播放| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 女人精品久久久久毛片| 日韩中文字幕欧美一区二区| 久久人妻福利社区极品人妻图片| 精品第一国产精品| 国产真人三级小视频在线观看| 一区二区三区精品91| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 亚洲,欧美精品.| 日本wwww免费看| 亚洲午夜精品一区,二区,三区| 91精品三级在线观看| 国产区一区二久久| 黄色 视频免费看| 免费观看人在逋| 精品日产1卡2卡| 久久精品亚洲熟妇少妇任你| 在线视频色国产色| 久久久精品欧美日韩精品| 在线观看免费午夜福利视频| 免费在线观看日本一区| 激情在线观看视频在线高清| 免费少妇av软件| 男女下面插进去视频免费观看| 美女扒开内裤让男人捅视频| 老司机亚洲免费影院| 波多野结衣av一区二区av| 日韩av在线大香蕉| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 欧美大码av| 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 欧美日韩瑟瑟在线播放| 亚洲国产精品999在线| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品在免费线老司机午夜| 欧美日韩av久久| 久久精品国产亚洲av香蕉五月| 一个人观看的视频www高清免费观看 | 亚洲午夜精品一区,二区,三区| 色婷婷av一区二区三区视频| 国产成人av教育| 精品高清国产在线一区| 一进一出抽搐gif免费好疼 | 国产日韩一区二区三区精品不卡| 欧美成人午夜精品| 80岁老熟妇乱子伦牲交| 91国产中文字幕| 亚洲情色 制服丝袜| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 交换朋友夫妻互换小说| 成人18禁在线播放| 亚洲三区欧美一区| 少妇被粗大的猛进出69影院| 国产色视频综合| 久久 成人 亚洲| 最好的美女福利视频网| 久久久久久久精品吃奶| 久久九九热精品免费| 首页视频小说图片口味搜索| 成人永久免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 天堂动漫精品| 国产极品粉嫩免费观看在线| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 首页视频小说图片口味搜索| 久久人妻av系列| 99久久99久久久精品蜜桃| 又黄又爽又免费观看的视频| 国产成人欧美| 女人高潮潮喷娇喘18禁视频| 日韩精品免费视频一区二区三区| 亚洲精品粉嫩美女一区| 男女下面插进去视频免费观看| 久9热在线精品视频| 久久草成人影院| 级片在线观看| 咕卡用的链子| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 嫩草影院精品99| svipshipincom国产片| 91九色精品人成在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲自拍偷在线| 国产欧美日韩精品亚洲av| 亚洲国产精品一区二区三区在线| 一级作爱视频免费观看| 美女扒开内裤让男人捅视频| 日日摸夜夜添夜夜添小说| 97人妻天天添夜夜摸| 99国产极品粉嫩在线观看| 日韩欧美三级三区| 男女之事视频高清在线观看| 成人黄色视频免费在线看| 精品午夜福利视频在线观看一区| 伦理电影免费视频| 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 国产伦人伦偷精品视频| 亚洲五月婷婷丁香| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 正在播放国产对白刺激| 97碰自拍视频| 满18在线观看网站| 三级毛片av免费| 国产精品一区二区免费欧美| 不卡av一区二区三区| 三上悠亚av全集在线观看| 亚洲成人国产一区在线观看| 久久久国产成人免费| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 欧美日韩一级在线毛片| 高清欧美精品videossex| 欧美黑人精品巨大| 久99久视频精品免费| 久久久久久久久中文| 日韩成人在线观看一区二区三区| 一级,二级,三级黄色视频| 亚洲在线自拍视频| www日本在线高清视频| 一本综合久久免费| 最好的美女福利视频网| 又大又爽又粗| 看免费av毛片| 日韩免费av在线播放| 嫩草影院精品99| 一区二区三区精品91| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 手机成人av网站| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 一区在线观看完整版| 黑人猛操日本美女一级片| 亚洲国产精品合色在线| 精品久久久久久,| 久久久精品欧美日韩精品| 在线观看免费午夜福利视频| 国产成人av激情在线播放| 色哟哟哟哟哟哟| 美女午夜性视频免费| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 黑人巨大精品欧美一区二区蜜桃| 男女之事视频高清在线观看| 大码成人一级视频| 老司机深夜福利视频在线观看| 超碰97精品在线观看| 日韩欧美一区视频在线观看| 国内毛片毛片毛片毛片毛片| 色婷婷av一区二区三区视频| av电影中文网址| 久久人人精品亚洲av| 国产av精品麻豆| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 国产真人三级小视频在线观看| 久久九九热精品免费| 久久伊人香网站| 99香蕉大伊视频| 十分钟在线观看高清视频www| 激情在线观看视频在线高清| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 色老头精品视频在线观看| 涩涩av久久男人的天堂| 国产亚洲欧美在线一区二区| 香蕉国产在线看| 正在播放国产对白刺激| 精品福利观看| 男女下面进入的视频免费午夜 | 中文字幕人妻熟女乱码| 国产精品一区二区免费欧美| 国产亚洲av高清不卡| 欧美黑人精品巨大| 男女下面插进去视频免费观看| 国产成人欧美在线观看| 亚洲av成人一区二区三| 亚洲 国产 在线| 琪琪午夜伦伦电影理论片6080| 一区在线观看完整版| 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 午夜免费观看网址| 丝袜人妻中文字幕| 伦理电影免费视频| 久热爱精品视频在线9| 在线观看一区二区三区| 18禁美女被吸乳视频| 两人在一起打扑克的视频| 亚洲午夜理论影院| 新久久久久国产一级毛片| 亚洲狠狠婷婷综合久久图片| 精品国产一区二区久久| 男男h啪啪无遮挡| 三上悠亚av全集在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区免费欧美| 一区二区三区激情视频| 18禁国产床啪视频网站| www.www免费av| 成人18禁高潮啪啪吃奶动态图| 亚洲熟女毛片儿| 亚洲成av片中文字幕在线观看| 两性夫妻黄色片| 久久青草综合色| 大型黄色视频在线免费观看| 久久香蕉国产精品| 99久久国产精品久久久| 热re99久久国产66热| 18禁观看日本| 国产一区二区三区在线臀色熟女 | 黄网站色视频无遮挡免费观看| 亚洲激情在线av| 国产色视频综合| 夜夜躁狠狠躁天天躁| 亚洲精品国产区一区二| 日本黄色日本黄色录像| av福利片在线| 国产成人精品久久二区二区免费| 精品人妻1区二区| 91av网站免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻aⅴ院| 久久狼人影院| 日韩高清综合在线| 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 又大又爽又粗| 看免费av毛片| 午夜免费成人在线视频| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 欧美人与性动交α欧美软件| 日本欧美视频一区| 中亚洲国语对白在线视频| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 国产精品一区二区三区四区久久 | 国产精品一区二区免费欧美| 国产成人欧美| 国产精品自产拍在线观看55亚洲| 可以免费在线观看a视频的电影网站| 手机成人av网站| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 好看av亚洲va欧美ⅴa在| 国产精品香港三级国产av潘金莲| 国产成人影院久久av| xxxhd国产人妻xxx| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 久久影院123| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频 | 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 亚洲中文字幕日韩| 国产一区二区激情短视频| 欧美黄色淫秽网站| 一级a爱视频在线免费观看| 国产精品一区二区三区四区久久 | 91麻豆精品激情在线观看国产 | 亚洲成人国产一区在线观看| 成人18禁在线播放| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 欧美成人性av电影在线观看| 高清在线国产一区| 亚洲专区中文字幕在线| 精品免费久久久久久久清纯| 制服人妻中文乱码| ponron亚洲| 亚洲欧美一区二区三区久久| 免费看a级黄色片| 久久精品91无色码中文字幕| 日日夜夜操网爽| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 看黄色毛片网站| 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 亚洲成人国产一区在线观看| 亚洲人成伊人成综合网2020| 精品福利观看| 琪琪午夜伦伦电影理论片6080| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久免费高清国产稀缺| 极品教师在线免费播放| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 黄色怎么调成土黄色| 美女大奶头视频| 国产色视频综合| 不卡av一区二区三区| 91精品三级在线观看| 大码成人一级视频| 亚洲国产欧美日韩在线播放| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| netflix在线观看网站| 国产91精品成人一区二区三区| 性少妇av在线| 亚洲三区欧美一区| 国产亚洲精品久久久久5区| 午夜免费鲁丝| 一a级毛片在线观看| 视频区图区小说| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| 9色porny在线观看| 一级a爱片免费观看的视频| 亚洲一卡2卡3卡4卡5卡精品中文| a级毛片黄视频| 成人亚洲精品一区在线观看| svipshipincom国产片| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 高清欧美精品videossex| 长腿黑丝高跟| 国产精品永久免费网站| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 亚洲午夜精品一区,二区,三区| 久久久国产精品麻豆| 最新美女视频免费是黄的| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 一边摸一边做爽爽视频免费| 午夜亚洲福利在线播放| 丁香六月欧美| 宅男免费午夜| 久久久久国产一级毛片高清牌| 日韩免费av在线播放| 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 最新美女视频免费是黄的| 精品国产一区二区三区四区第35| 视频区图区小说| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影| 精品国产国语对白av| 国产欧美日韩精品亚洲av| 高清在线国产一区| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站| 午夜两性在线视频| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 成人国产一区最新在线观看| 男人的好看免费观看在线视频 | 曰老女人黄片| 俄罗斯特黄特色一大片| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 人妻久久中文字幕网| 91成人精品电影| 视频区图区小说| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站 | 日韩成人在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 成人特级黄色片久久久久久久| 久久久久久久久久久久大奶| 老司机深夜福利视频在线观看| 国产精品爽爽va在线观看网站 | 欧美日韩亚洲高清精品| 久久久久九九精品影院| 一二三四在线观看免费中文在| 日日干狠狠操夜夜爽| 一本大道久久a久久精品| 久久久精品欧美日韩精品| 久久 成人 亚洲| 免费高清视频大片| 国产在线精品亚洲第一网站| 国产精品国产av在线观看| 国产精品久久电影中文字幕| 日本欧美视频一区| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 日韩有码中文字幕| 欧美日韩亚洲高清精品| 99在线视频只有这里精品首页| 在线观看www视频免费| www.www免费av| 侵犯人妻中文字幕一二三四区| 一个人观看的视频www高清免费观看 | 国产亚洲精品一区二区www| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| 国产三级黄色录像| 免费一级毛片在线播放高清视频 | 欧美激情 高清一区二区三区| 久久久久精品国产欧美久久久| 国产主播在线观看一区二区| 高清av免费在线| 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9| 成人三级黄色视频| 国产麻豆69| av中文乱码字幕在线| 很黄的视频免费| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 国产成人欧美在线观看| 国产xxxxx性猛交| 午夜久久久在线观看| 男女做爰动态图高潮gif福利片 | 国产成人精品久久二区二区91| 色老头精品视频在线观看| 啪啪无遮挡十八禁网站| 国产精品免费视频内射| 久久精品成人免费网站| 亚洲欧美日韩另类电影网站| 又大又爽又粗| 久久久久久免费高清国产稀缺| 真人一进一出gif抽搐免费| 老汉色∧v一级毛片| 一进一出抽搐动态|