• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    深度學(xué)習(xí)引導(dǎo)的高通量分子篩選用于鍶銫的選擇性配位

    2023-11-01 06:58:36張智淵邱雨晴畢可鑫胡孔球戴一陽石偉群
    核化學(xué)與放射化學(xué) 2023年5期
    關(guān)鍵詞:高能物理四川大學(xué)工程學(xué)院

    張智淵,董 越,邱雨晴,畢可鑫,胡孔球,戴一陽,周 利,劉 沖,*,吉 旭,石偉群

    1.四川大學(xué) 化學(xué)工程學(xué)院,四川 成都 610065;2.中國(guó)科學(xué)院 高能物理研究所,北京 100049

    To meet the carbon neutral agenda globally, development and expansion of nuclear power remains an ideal option to provide electricity for an ever-growing world population while minimizing environmental impacts during operation[1]. State-of-the-art nuclear technologies that hold the promise of a future of clean energy require a closed fuel cycle for safety and sustainability reasons among others, necessitating more research on advanced reprocessing of spent nuclear fuel(SNF). Over the past seven decades, various SNF reprocessing processes have been established to recover critical radionuclides and to reduce radioactive wastes, such as PUREX(plutonium-uranium extraction), UNEX(universal extraction), FPEX(fission product extraction), etc[2]. Among all radionuclides in the high-level liquid waste(HLLW) generated from SNF reprocessing,90Sr and137Cs are major sources for the heat load and radiation[3-5]. Therefore, processes like UNEX were employed to separate90Sr and137Cs simultaneously to lessen the raffinates’ radioactivity, beneficial for downstream operations[3]. Additionally, a further separation between chemically similar90Sr and137Cs could produce valuable materials for radiation therapy, radioisotope thermoelectric generators, industrial gauging devices, etc[3].

    In fact, for many SNF reprocessing scenarios, differential coordinative chemical properties of various species are usually the basis to realize successful separation. The same principle is applicable for Sr/Cs separation[6-7], where a large number of coordinating ligands need to be assessed and compared to identify ones with selectivity to achieve preferential coordination(for extraction or crystallization). In our previous work, a machine-learning-guided methodology was developed to rank bridging linkers to form coordination polymers for crystallizing separation of Sr2+over Cs+, in which strengths of coordination bonds were found to be critical in evaluating and comparing different linker molecules’ coordinative affinities and selectivity[8]. Continuing on that, we now propose a more comprehensive study to reliably assess and rank ligands based on their coordinative affinities toward Sr/Cs, using a deep learning(DL) architecture. Specifically, we employ atransformerframework that originated in the field of natural language processing(NLP)[9], specializing in the identification of meaningful segments(e.g., functional groups in molecules) and extraction of contextual information(e.g., structure-property relationships). Moreover, considering the complexities of DL(i.e.,transformer) models and demanding computational burdens thereof, Bayesian optimization(BO) was applied to improve efficiency of the training process[10-11].

    An overview of the workflow is shown in Fig.1. The present study started with mining the crystal data of the Cambridge Structural Database(CSD)[12], from which we retrieved information regarding relevant metal-ligand(M-L, M=select 1A/2A metals) pairs and corresponding ligands for subsequent analysis. Next, we trained DL models(i.e.,transformer) using said M-L pairs, which enabled us to systematically evaluate the coordination capabilities of the ligands toward metals of interest. Specifically,to optimize the DL models efficiently, the hyperparameters(HPs) were tuned employing a BO approach. Finally, we ranked the ligands according to their predicted(differential) coordinative affinities for Sr and Cs. We expect that, for a certain ligand, the more different affinities it exhibits toward Cs over Sr(or vice versa), the higher degree of selective coordination is anticipated, hence better separation capability.

    Fig.1 Overview of deep-learning-centered protocol to identify and rank candidate ligands for selective Sr/Cs coordination

    1 Methods

    1.1 Data mining and molecular representation

    Using the CSD Python API[12]provided by the Cambridge Crystallographic Data Centre(CCDC), we were able to extract all M-L pairs and corresponding ligands from crystallographic data that contain 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) elements. Then, these data were pre-processed to remove 74 CSD-predefined solvents[13], self-defined free anions/gas molecules[8], and standalone atoms without linkage to ligands. Subsequently, all M-L pairs and ligands were extracted from the pre-processed data. Data pre-processing and extraction of M-L pairs and ligands are illustrated in an example in Fig.2. Next, to be used as input for the DL models, the extracted M-L pairs were linearly represented by the canonical simplified molecular-input line-entry system(canonical SMILES)[14-15]. Along with the molecular structures, structural parameters like bond lengths, bond angles, and coordination numbers could also be extracted from the datasets, among which the coordination bond length was selected as the representative parameter to describe the coordinative affinity or strength of interaction between M and L in a given M-L pair. Additionally, we also extracted 9 169 ligands that would be used for virtual M-L pair generation.

    Fig.2 An example of data pre-processing and molecular structure extraction

    1.2 Transformer architecture

    We usedtransformer[9, 16]as the DL architecture to model the relationship between the molecular structures of M-L pairs and the coordinative affinity(i.e., bond length) of the ligands involved. As shown in Fig.3, thetransformerarchitecture is composed of a word embedding layer, a positional encoding layer, the main body(encoder/decoder) and a multilayer perceptron(MLP) predictor.

    Fig.3 Schematic illustration of transformer architecture

    Specifically, the word embedding layer[16]can convert discrete symbolic representation(i.e., the abovementioned SMILES symbols) to continuous vectors, as required by thetransformerarchitecture. The positional encoding layer[17]

    compiles the positional information for the sequence of characters in the SMILES, creating another set of vectors to be used as input fortransformermain module. The main oftransformeris composed of encoder and decoder[16]. In short, the encoder can recognize certain combinations of characters in a SMILES sequence, which usually have higher abstract meanings in chemistry than individual characters. Then the decoder would identify which combinations are important for the target(i.e., coordination bond length in our work). Finally, the coordination bond lengths would be predicted by the MLP predictor according to the decoder-proposed important structural combinations.

    It should be noted, as illustrated in Fig.3, that two inputs are required for the encoder and decoder oftransformer, respectively. In general, the input for encoder is the complete original SMILES in our dataset. For the decoder, the input should provide information about the specific target of prediction, that is the coordination bond length of a specific bond, considering there are possibly multiple coordination bonds in a given M-L pair.

    1.3 Model training and Bayesian optimization

    To train thetransformermodels, all M-L pairs were divided into train set, validation set and test set in a ratio of 8∶1∶1. The train set was used to train the models; the validation set was used to validate the performance of trained model and as the “target” for HP optimization; the test set was to test the generalizability of the optimal model. Thetransformermodels were trained by a back-propagation(BP) algorithm[18]and gradient descent to minimize the mean-square-error loss function:

    (1)

    Table 1 HP tuning space

    To improve efficiency, we proposed to apply BO algorithm[19-20]to optimize the HPs. As shown in Fig.4(a)(using only a one-dimensional objective function as an example), Gaussian process(GP)[21]and expected improvement(EI)[22]were chosen as the surrogate function and acquisition function, respectively. In our higher-dimensional objective function of HP tuning, GP fits the(unknown) objective function with estimated uncertainties. Consequently, EI proposes the most valuable samples(HPs) to try next. For a given dataset, optimization was performed by applying BO process for 8 batches(4 models per batch). Comparing to manual optimization(Fig.4(b)), the BO approach(Fig.4(c)) was shown to be superior to optimize thetransformermodels, achieving a higherr2(0.927 vs 0.856 for manual) after 8 batches of optimization. As illustrated in Fig.4(d) where the HPs were reduced to a two-dimensional space by t-distributed Stochastic Neighbor Embedding(t-SNE)[23], BO could cover wider parameter space, beneficial for avoiding local optima which constantly challenge manual optimization strategies.

    Fig.4 An example of Bayesian optimization on a one-dimensional objective function(top, black curve), using a GP surrogate function(top, magenta curve and pink area) to generate an EI acquisition function(bottom)(a); comparison of manual optimization(b) and Bayesian optimization(c) on coefficients of determination(r2, scattered points) for transformer models, blue line indicates the averaged r2 for models in the current batch, red line indicates the max r2 of trained models so far; distribution of HPs after dimension reduction by t-SNE, where blue and red dots are HPs selected by BO algorithm and manual optimization, respectively(d)

    1.4 Ligand assessment

    Based on 9 169 ligand molecules extracted from CSD(section 1.1) that contain 12 common coordinating groups(listed in Table 2), Cs-L/Sr-L pairs were generated by virtually bonding the coordinating atoms(e.g., N/O) with Sr/Cs and subsequently represented using SMILES. For the 2×9 169 virtual M-L pairs(i.e., 9 169 Sr-L pairs and 9 169 Cs-L pairs) generated, there is always a Cs-L pair for any Sr-L pair, sharing the identical molecular structure except for the metal, and vice versa, therefore enabling us to predict said L’s different affinity toward Sr/Cs. We grouped each of the 9 169 Sr-L/Cs-L pairs, denoted asGi, wherei=1, 2,…, 9 169.

    Table 2 Counts of coordinating functional groups for generating virtual (Sr, Cs)-L pairs

    (2)

    (3)

    2 Results and discussion

    2.1 Datasets

    After mining of structural data of targeted 1A/2A elements in CSD, we extracted 33 095 M-L pairs, in which 19 467 were mono-coordinated and 13 628 multi-coordinated. A statistical summary is given in Table 3, broken into different elements. In total, these M-L pairs contained 98 411 coordination bonds, i.e., 98 411 samples. It is widely accepted that, for deep learning, to contain as many relevant samples as possible in the training dataset is always beneficial for the model performance[25-27]. Therefore, we argue that all 33 095 M-L pairs(not just ones with Sr/Cs) should be used to train and optimizetransformermodels. Specifically, those M-L pairs containing Na, K, Rb, Mg, Ca and Ba were considered relevant because: 1) they provided information about molecular structures of ligands; and 2) periodicity-dictated elemental similarity in 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) groups should lead to similar coordination properties(e.g., coordinating function groups and atoms).

    Table 3 Statistics of extracted M-L pairs of specified 1A/2A elements

    In order to experimentally confirm this empirical rule and justify our choice of expanded datasets instead of focusing on directly relevant(Sr, Cs)-L samples,transformermodels based on two datasets(i.e., all 33 095 M-L pairs and 4 271(Sr, Cs)-L pairs) were trained and optimized using the same protocol(section 1.3). The mean absolute error(MAE) of the best model based on the dataset of all 33 095 M-L pairs was 0.076 6 ?(1 ?=0.1 nm), 14% less than the best MAE based on 4 271(Sr, Cs)-L pairs, which was 0.088 9 ?.

    2.2 Transformer model

    As described in section 1.3 and illustrated in Fig.5(a), based on all 33 095 M-L pairs,transformermodel with the highest performance(r2= 0.927 and MAE=0.077 5 ?) on the test dataset was the 21stmodel(its HPs are characterized by the underlined numbers in Table 1) produced by the BO process. The regression diagram and the distribution histogram of absolute error, comparing the model-predicted values against actual coordination bond lengths(i.e., target) for samples in the test dataset, are shown in Fig.5(a) and 5(b), respectively. Overall, thetransformerarchitecture, expanded dataset and BO algorithm have generated a better prediction model comparing to our previous approach[8].

    Fig.5 Regression diagram between prediction and target(higher density of scatters is brighter-colored)(a); histogram of absolute error between prediction and target(b)

    2.3 Ligand and functional group analysis

    Fig.6 Top 10 identified M-L pairs with the largest

    Further, as functional groups usually play critical roles in determining the coordination properties of ligand molecules, the distribution of most frequent 8 coordinating groups(out of 12 that were listed in Table 2) on the ranking list was analyzed. The mean probability density(MPD) of each functional group appearing in the top 1%, 1%-10%, 10%-50% and bottom 50% of the ranking list was calculated by the following:

    (4)

    WhereNis the total number of virtual M-L pairs(i.e., 9 169),gis the index of functional groups(g=1, 2, …, 8),jis the index of ranking percentages(i.e., 1%, 1%-10%, 10%-50% and bottom 50%, respectively),ngis the amount of functional groupg,pjrepresents the percentage span ofj,cg,jis the count of functional groupgin percentage(range)j. As shown in Fig.7, for any functional groupgin ranking positionj, if MPD(g,j)>1(indicated by the broken line), the occurrence probability(OP) ofginjis greater that the OP ofgin the total list. Therefore, we could conclude that phosphoric acid group, with 3.82 MPD in top 1% and 2.10 MPD in 1%-10%, had the highest probability to be incorporated in a Sr-selective ligand[28-30]. Next in line, hydroxyl, ketone and ether groups showed moderate selectivity toward Sr. Surprisingly, the other common acidic functional groups(i.e., sulfonic acid and carboxylic acid), were not predicted to be coordinatively selective for Sr, which was counterintuitive according to the Hard and Soft Acids and Bases principle as Sr2+is considered a harder Lewis acid than Cs+.

    Fig.7 MPD of 8 frequent functional groups in specified ranking percentages

    3 Conclusions

    In summary, tackling the Sr/Cs separation challenge in SNF reprocessing, we have conducted a deep-learning-guided comprehensive study from the perspective of coordination chemistry. Based on crystal structural data of Sr/Cs and select congeners in respective groups, with the aid of Bayesian optimization, we developedtransformermodels with high performances in predicting coordination bond lengths which were identified as a figure of merit for assessing coordinative affinities. As a proof of concept, we analyzed 9 169 CSD-registered ligands and predicted their differential coordination capabilities toward Sr/Cs, as demonstrated in the top 10 molecular structures and a detailed analysis of functional groups with different potentials for selective coordination toward Sr over Cs. The ranking list of ligands and identification of promising functional groups(e.g., phosphoric acid) would be beneficial for downstream experimental screening and evaluation in separation scenarios.

    猜你喜歡
    高能物理四川大學(xué)工程學(xué)院
    福建工程學(xué)院
    盛宴已經(jīng)結(jié)束
    福建工程學(xué)院
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    高能物理中的數(shù)據(jù)分析
    四川大學(xué)信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    亚洲自拍偷在线| 午夜福利成人在线免费观看| 在线国产一区二区在线| 欧美激情久久久久久爽电影| 国产不卡一卡二| 露出奶头的视频| 深爱激情五月婷婷| 好男人在线观看高清免费视频| 在线播放国产精品三级| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕 | 日韩av不卡免费在线播放| 亚洲av美国av| 日韩成人av中文字幕在线观看 | 久久精品人妻少妇| 麻豆久久精品国产亚洲av| 成人一区二区视频在线观看| ponron亚洲| 日本免费一区二区三区高清不卡| www日本黄色视频网| 国产男靠女视频免费网站| 97人妻精品一区二区三区麻豆| 国产高清视频在线观看网站| 欧美日韩乱码在线| 美女 人体艺术 gogo| 国产91av在线免费观看| 国产高清三级在线| 欧美日本视频| 大香蕉久久网| 国产精品不卡视频一区二区| 久久亚洲国产成人精品v| 伊人久久精品亚洲午夜| 高清午夜精品一区二区三区 | 日韩精品中文字幕看吧| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 国产精品av视频在线免费观看| 国产精品一区二区三区四区久久| 我要看日韩黄色一级片| av卡一久久| 国产黄色视频一区二区在线观看 | 最近视频中文字幕2019在线8| 国产精品爽爽va在线观看网站| 日韩欧美免费精品| 91久久精品国产一区二区成人| 久久精品夜色国产| 午夜日韩欧美国产| 婷婷精品国产亚洲av在线| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 欧美日本视频| 最新中文字幕久久久久| 亚洲精品国产av成人精品 | 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 久久亚洲国产成人精品v| 人人妻,人人澡人人爽秒播| 亚洲精品国产成人久久av| 国产麻豆成人av免费视频| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| av在线天堂中文字幕| a级毛色黄片| 日韩在线高清观看一区二区三区| 亚洲精品成人久久久久久| 亚洲性夜色夜夜综合| 久久人人爽人人片av| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 99riav亚洲国产免费| 国产大屁股一区二区在线视频| .国产精品久久| 国产私拍福利视频在线观看| 成人av在线播放网站| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 久久久久久久午夜电影| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 日本 av在线| 嫩草影院入口| 国产精品永久免费网站| 色哟哟哟哟哟哟| 床上黄色一级片| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 亚洲精品一区av在线观看| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 免费看光身美女| 看非洲黑人一级黄片| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品| 国产精品1区2区在线观看.| 欧美日韩在线观看h| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久av不卡| 51国产日韩欧美| 久久久久久久久久久丰满| 国产午夜精品论理片| 国产视频一区二区在线看| 欧美日本视频| 国内精品久久久久精免费| 日韩欧美在线乱码| 国产精品1区2区在线观看.| 亚洲综合色惰| 美女 人体艺术 gogo| 91狼人影院| 97人妻精品一区二区三区麻豆| 丝袜美腿在线中文| 国产色爽女视频免费观看| 国产女主播在线喷水免费视频网站 | 搞女人的毛片| 亚洲欧美日韩东京热| 51国产日韩欧美| 亚洲欧美精品综合久久99| 免费人成在线观看视频色| 日本黄大片高清| 亚洲乱码一区二区免费版| 91久久精品国产一区二区三区| av.在线天堂| 啦啦啦韩国在线观看视频| 黄色配什么色好看| 亚洲第一电影网av| 日韩三级伦理在线观看| 永久网站在线| 老熟妇仑乱视频hdxx| 1000部很黄的大片| 97碰自拍视频| 亚洲一级一片aⅴ在线观看| 最近中文字幕高清免费大全6| 国产人妻一区二区三区在| av黄色大香蕉| 国产成人一区二区在线| 国产精品不卡视频一区二区| 久久久久免费精品人妻一区二区| av专区在线播放| 99热精品在线国产| 日韩欧美精品免费久久| 成年女人毛片免费观看观看9| 国产av一区在线观看免费| 日本熟妇午夜| 欧美日韩在线观看h| 中文字幕熟女人妻在线| 久久国内精品自在自线图片| 国产久久久一区二区三区| 熟妇人妻久久中文字幕3abv| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 性色avwww在线观看| 国产v大片淫在线免费观看| 日韩一区二区视频免费看| 一个人看的www免费观看视频| av天堂在线播放| 亚洲精品色激情综合| 色播亚洲综合网| 少妇人妻精品综合一区二区 | 观看美女的网站| 国产麻豆成人av免费视频| 色尼玛亚洲综合影院| 久久亚洲国产成人精品v| 精品一区二区三区人妻视频| 国产不卡一卡二| av在线天堂中文字幕| 亚洲国产色片| 午夜日韩欧美国产| 一进一出抽搐gif免费好疼| 热99在线观看视频| 亚洲性夜色夜夜综合| 一区二区三区免费毛片| 国产单亲对白刺激| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 欧美日本亚洲视频在线播放| 国产精品人妻久久久影院| 亚洲aⅴ乱码一区二区在线播放| 国产美女午夜福利| 天堂网av新在线| 天天一区二区日本电影三级| 久久欧美精品欧美久久欧美| 丰满人妻一区二区三区视频av| 日日干狠狠操夜夜爽| 国产成人aa在线观看| 久久人妻av系列| 亚洲欧美日韩东京热| 亚洲精品一区av在线观看| 久久人人爽人人爽人人片va| videossex国产| 色av中文字幕| 日韩欧美在线乱码| 国产成人精品久久久久久| 国产成人91sexporn| 国产精品女同一区二区软件| 国产片特级美女逼逼视频| 午夜精品一区二区三区免费看| 欧美日韩国产亚洲二区| 一区二区三区高清视频在线| 香蕉av资源在线| 色播亚洲综合网| 欧美另类亚洲清纯唯美| 国产精品不卡视频一区二区| 国产精品电影一区二区三区| 看十八女毛片水多多多| 免费看a级黄色片| a级毛片免费高清观看在线播放| av卡一久久| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区四那| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 一区二区三区四区激情视频 | 国产人妻一区二区三区在| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| av在线观看视频网站免费| 亚洲国产欧美人成| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 18禁在线播放成人免费| 午夜激情福利司机影院| 99久久精品一区二区三区| 1000部很黄的大片| 亚洲自偷自拍三级| 国产成人影院久久av| 日本在线视频免费播放| 色综合色国产| 国产不卡一卡二| 18禁在线播放成人免费| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 国产女主播在线喷水免费视频网站 | 亚洲av中文av极速乱| 国产黄a三级三级三级人| 久久久国产成人免费| 国产精品一区二区免费欧美| 国产毛片a区久久久久| 日本色播在线视频| 综合色av麻豆| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 亚洲人成网站在线播放欧美日韩| 日韩中字成人| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 午夜精品国产一区二区电影 | 久久精品影院6| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 人人妻,人人澡人人爽秒播| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 欧美潮喷喷水| 日本免费一区二区三区高清不卡| 变态另类丝袜制服| 最近2019中文字幕mv第一页| 人妻丰满熟妇av一区二区三区| 亚洲欧美精品自产自拍| 深夜精品福利| 午夜精品在线福利| 欧美一级a爱片免费观看看| 免费观看在线日韩| 国产成年人精品一区二区| 在现免费观看毛片| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼| 女生性感内裤真人,穿戴方法视频| 国产片特级美女逼逼视频| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 激情 狠狠 欧美| 成年免费大片在线观看| 亚洲,欧美,日韩| 午夜a级毛片| 国产成人a∨麻豆精品| 最近最新中文字幕大全电影3| 身体一侧抽搐| 97在线视频观看| 国产中年淑女户外野战色| 少妇的逼水好多| 免费看a级黄色片| 久久6这里有精品| 亚洲图色成人| 一级黄色大片毛片| 亚洲18禁久久av| 国产美女午夜福利| 91狼人影院| 午夜a级毛片| 亚洲四区av| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| av免费在线看不卡| 国产亚洲精品久久久com| 99精品在免费线老司机午夜| 蜜臀久久99精品久久宅男| 一个人免费在线观看电影| 蜜桃久久精品国产亚洲av| 日本-黄色视频高清免费观看| 国产精品一及| 好男人在线观看高清免费视频| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 又黄又爽又刺激的免费视频.| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 精品久久久久久久久久久久久| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 色av中文字幕| 九九在线视频观看精品| 国产成年人精品一区二区| 精品人妻熟女av久视频| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品1区2区在线观看.| 亚州av有码| 免费看av在线观看网站| 成人高潮视频无遮挡免费网站| 国产成人freesex在线 | 免费人成视频x8x8入口观看| 十八禁国产超污无遮挡网站| 97碰自拍视频| 嫩草影院入口| 日韩一区二区视频免费看| 99国产极品粉嫩在线观看| 91久久精品国产一区二区成人| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| 亚洲七黄色美女视频| 亚洲天堂国产精品一区在线| ponron亚洲| 日韩av在线大香蕉| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| av在线播放精品| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 我要搜黄色片| 久久久a久久爽久久v久久| av在线观看视频网站免费| 日韩av在线大香蕉| 不卡一级毛片| 看片在线看免费视频| 国产乱人视频| 亚洲av一区综合| 天堂影院成人在线观看| 男女啪啪激烈高潮av片| 女人十人毛片免费观看3o分钟| 欧美潮喷喷水| 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 久久久久国产精品人妻aⅴ院| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 你懂的网址亚洲精品在线观看 | 久久鲁丝午夜福利片| 国产精品,欧美在线| 美女高潮的动态| 国产女主播在线喷水免费视频网站 | 久久久成人免费电影| 在线观看美女被高潮喷水网站| 午夜爱爱视频在线播放| 伦精品一区二区三区| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 国产av麻豆久久久久久久| 欧美bdsm另类| 人妻少妇偷人精品九色| 欧美绝顶高潮抽搐喷水| 99热只有精品国产| 成人鲁丝片一二三区免费| 寂寞人妻少妇视频99o| 免费大片18禁| 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 色播亚洲综合网| 青春草视频在线免费观看| 亚洲自拍偷在线| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 少妇人妻一区二区三区视频| 成人无遮挡网站| 国产精品亚洲美女久久久| 久久久久久伊人网av| 一级黄片播放器| 三级男女做爰猛烈吃奶摸视频| 成年女人永久免费观看视频| 极品教师在线视频| 99视频精品全部免费 在线| 偷拍熟女少妇极品色| 又爽又黄a免费视频| 2021天堂中文幕一二区在线观| 亚洲五月天丁香| 赤兔流量卡办理| 99久久精品热视频| 人妻少妇偷人精品九色| 老熟妇乱子伦视频在线观看| 精品久久久久久久久av| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 亚洲欧美清纯卡通| 亚洲无线观看免费| 少妇人妻一区二区三区视频| 欧美色视频一区免费| 亚洲国产精品合色在线| 亚洲精品国产成人久久av| 国产在视频线在精品| 亚洲成人精品中文字幕电影| 亚洲四区av| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 国产乱人偷精品视频| av在线观看视频网站免费| 日韩欧美精品免费久久| 97超碰精品成人国产| 色吧在线观看| 成人二区视频| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 欧美绝顶高潮抽搐喷水| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| videossex国产| 欧美日本视频| 色吧在线观看| 国产精品伦人一区二区| 精品一区二区三区人妻视频| 亚洲av熟女| 午夜日韩欧美国产| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| 亚洲电影在线观看av| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 国产成人一区二区在线| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 午夜激情欧美在线| 欧美三级亚洲精品| 免费搜索国产男女视频| 日韩成人伦理影院| 亚洲内射少妇av| 中文在线观看免费www的网站| www日本黄色视频网| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美人成| 国产又黄又爽又无遮挡在线| 欧美bdsm另类| 如何舔出高潮| 嫩草影视91久久| 亚洲欧美清纯卡通| 小说图片视频综合网站| 亚洲七黄色美女视频| 久久精品人妻少妇| 久久精品影院6| 别揉我奶头 嗯啊视频| 午夜福利在线在线| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 99九九线精品视频在线观看视频| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 看黄色毛片网站| 国产精品久久久久久精品电影| 免费看av在线观看网站| 国内精品一区二区在线观看| 99热只有精品国产| 精品午夜福利视频在线观看一区| 老熟妇乱子伦视频在线观看| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 亚洲成人中文字幕在线播放| 99热6这里只有精品| av.在线天堂| 美女内射精品一级片tv| 黄色一级大片看看| 综合色丁香网| 中国美女看黄片| 欧美中文日本在线观看视频| 精品一区二区三区人妻视频| 亚洲精品影视一区二区三区av| 伊人久久精品亚洲午夜| 久久久精品欧美日韩精品| 久久久久久久亚洲中文字幕| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 中文亚洲av片在线观看爽| 日本a在线网址| 中文资源天堂在线| 久久久久久国产a免费观看| 国产成人a区在线观看| 免费电影在线观看免费观看| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 久久久久国内视频| .国产精品久久| 嫩草影院入口| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 国产精品野战在线观看| 香蕉av资源在线| 直男gayav资源| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 看非洲黑人一级黄片| 中出人妻视频一区二区| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 在线天堂最新版资源| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av涩爱 | 日本色播在线视频| 麻豆av噜噜一区二区三区| 亚洲精品一区av在线观看| 精品无人区乱码1区二区| 久久热精品热| 最近2019中文字幕mv第一页| 国产精品一二三区在线看| 91久久精品电影网| 99在线视频只有这里精品首页| 成人特级黄色片久久久久久久| 午夜免费激情av| 亚洲国产高清在线一区二区三| 一级毛片我不卡| 国产老妇女一区| 99riav亚洲国产免费| 亚洲中文字幕日韩| 老司机影院成人| 久久久久久九九精品二区国产| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 在线天堂最新版资源| 亚洲四区av| 永久网站在线| 成人av在线播放网站| 精品熟女少妇av免费看| 亚洲欧美清纯卡通| 永久网站在线| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 麻豆国产av国片精品| 亚洲中文字幕一区二区三区有码在线看| 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 欧美成人一区二区免费高清观看| 插逼视频在线观看| 一本一本综合久久| 久久热精品热| 韩国av在线不卡| 少妇人妻一区二区三区视频| 免费看日本二区| 国产精品无大码| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 亚洲图色成人| 国产一区亚洲一区在线观看| 亚洲在线观看片| 国产黄a三级三级三级人| 久久久欧美国产精品| 嫩草影院精品99| 成年女人永久免费观看视频| 波多野结衣巨乳人妻| 超碰av人人做人人爽久久| 少妇高潮的动态图| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 亚洲av免费高清在线观看| 欧美一区二区精品小视频在线| 欧美色欧美亚洲另类二区| 18禁黄网站禁片免费观看直播| 午夜精品国产一区二区电影 | 亚洲成a人片在线一区二区| 美女免费视频网站| 亚洲精品乱码久久久v下载方式| 国产精品一及| 欧美最黄视频在线播放免费| 国产高清视频在线观看网站| 国产精品野战在线观看| 99九九线精品视频在线观看视频| 久久精品国产亚洲av涩爱 | 亚洲精品影视一区二区三区av| 久久久久国产精品人妻aⅴ院| 综合色丁香网| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 午夜免费激情av| 欧美日韩国产亚洲二区| 亚洲综合色惰| 麻豆乱淫一区二区| 婷婷精品国产亚洲av| 一个人免费在线观看电影| 国产精品亚洲美女久久久| 久久久久久久久大av| 桃色一区二区三区在线观看| 国产在线男女| 亚洲美女视频黄频| 日本黄色片子视频| 免费在线观看影片大全网站| 狂野欧美白嫩少妇大欣赏| 自拍偷自拍亚洲精品老妇| 国产精品一二三区在线看|