• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determining the connectedness ofan undirected graph*

    2018-09-11 01:43:00TANTunziGAOSuixiangYANGWenguo

    TAN Tunzi, GAO Suixiang, YANG Wenguo

    (School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing100049,China;Key Laboratory of Big Data Mining and Knowledge Management of Chinese Academy of Sciences,Beijing100190,China) (Received 18 February 2017; Revised 15 November 2017)

    Abstract Determining the connectedness of an undirected graph is a frequent issue in practical graph mining and regarded as a key subproblem of the graph partitioning problem. Apart from graph partitioning, graph connectedness also plays an imperative role in tracking the spread of disease, VLSI design, social network analysis, and theoretical studies in graph theory such as “Cayley graph”. This work reviews several important methods for determining the connectedness of an undirected graph, such as breadth-first search, depth-first search, and the eigenvalues of a graph Laplacian matrix. In addition, we propose several new methods, such as power sum and logical sum of adjacency matrix. We compare all the relevant methods empirically on random graphs with up to 10 000 vertices, and show that the breadth-first search and logical sum methods deliver good performances on large graphs with more than 100 vertices and the logical sum method is the fastest.

    Keywords connectedness; breadth-first search; depth-first search; power sum; Laplacian matrix; logical sum

    An undirected graphG=(V,E) consists of a pair of sets: a set of verticesV={v1,v2,…,vN} and a set of edgesE={v1,v2,…,vM}, where all the edges are bidirectional. If there are no self-loops, parallel edges, and weights in the undirected graph, it is called a simple graph[1-2], so the “graph” occurred in this paper stands for a simple graph. The graph G is connected if there is a path in G from every vertex to every other vertex[3-4]. When partitioning a graph into several connected components, determining the connectedness of all the components is regarded as a key sub problem. In some previous work, such as Refs.[5-7], connectedness has been ignored, because the objective function aiming at minimizing the total cut makes the connectedness constraint unnecessary. But if we change the objective function, how to determine the connectedness of a graph or part of the graph becomes very important in computing. Apart from graph partitioning, graph connectedness also plays an imperative role in tracking the spread of disease[8], VLSI design[9], social network analysis[10-11], and some theoretical results in graph theory like “Cayley graph”[12].

    “How to determine whether a graph is connected or not?” is a frequently asked question on the Internet. Different methods mentioned by people in their blogs or some websites are rarely found or organized in research papers. This paper reviews some main methods for determining the connectedness of a graph, proposes some new ones, and does experiments to compare all the methods.

    1 Preliminaries

    There are several different ways to represent a graphG=(V,E),amongwhichadjacencymatrixisthemostwidelyusedandiftheadjacencymatrixisgiven,thegraphisfixedcorrespondingly.AdjacencymatrixA={ai,j}N×Nshowstheconnectionbetweenvertexandvertex[2],wherevi,vj∈V,Nisthenumberofverticesand

    Thedegreeofvertexv:deg(v)inagraphisthenumberofedgesincidenttothevertex,sothedegreematrixD(G)ofgraphGisadiagonalmatrixwiththevertexdegreesonthediagonal.

    AnotherimportantconceptusedinthispaperisLaplacianmatrix,whichisalsoapopularmatrixrepresentationofagraph.GivenagraphGonNvertices,itsLaplacianmatrixisthen-by-nmatrixL(G)=D(G)-A(G),whereA(G)istheadjacencymatrix,andD(G)isthedegreematrix.

    Forexample,givenagraphG=(V,E)withV={u,v,w,x,y}andE={uv,uw,vw,vx,wx,xy}.TheadjacancymatrixAofthegraphGis

    A=0110010110110100110100010é?êêêêêêêù?úúúúúúú

    The Laplacian matrixL(G) of the graphGis

    whereDis the degree matrix,which contains the degree of each vertex.

    Last but not least, the “distance” between two vertices in a graph is the number of edges in a shortest path connecting them.

    2 Methods

    There are three different types of methods for determining the connectedness of a graph:

    1)Search methods, including breadth-first search, depth-first search, random walks methods.

    2)Algebraic computation on adjacency matrix or Laplacian matrix of the graph, such as power, eigenvalue, and logical sum.

    3)Path finding: shortest path algorithms like Dijkstra, Warshall, Floyd algorithm.

    In order to determine the connectedness of a graph by path finding methods, the paths between one vertex and all the other vertices should be found, which is very time consuming and complicated. So we combine the second with third methods and apply the path finding methods on the computation of adjacency matrix.

    2.1 Search methods

    2.1.1 Breadth-first search

    Breadth-first search was first proposed by Ref.[13] in 1950s to find the shortest path out of a maze, and invented independently by Ref.[14] for solving efficiently path-connection problems.

    Making use of breadth-first search to determine the connectedness of a graph can be interpreted as three steps:

    1)Put one chosen vertex into the waiting list (shorten as “WL”) and mark it;

    2)Move the first vertex WL1in WL to SL (short for “search list”) and put all the unmarked vertices within the distance of 1 with WL1into WL from the back and mark them.

    3)Repeat second step until there is no vertex in WL. If the elements in SL are all the vertices of the graph, the graph is connected.

    Figure 1 shows an example of the procedure to do breadth-first search on a graph.

    Fig.1 Breadth-first search

    The time complexity of breadth-first search algorithm isO(|V|+|E|), whereVis the number of vertices andEisthenumberofedges,becausetheworstcaseisthatalltheedgesandverticesarevisited[15].

    2.1.2Depth-firstsearch

    Depth-firstsearchwasinvestigatedinthe19thcenturyfortheuseofsolvingmazes[16].

    Determiningtheconnectednessofagraphbytheuseofdepth-firstsearchalgorithmworksinthefollowingthreesteps:

    1)PickupastartingvertextoSLandmarkit;FL(formallist)=[0];

    2)PutoneunmarkedvertexdirectlyconnectedwiththelastvertexinSLintoSLandmarkit.RecordtheformalchosenvertexofthenewlychosenvertexinFL.

    3)Repeatsecondstepuntilthereisnounmarkedvertexconnectedtothechosenvertex,androllbacktotheformalchosenvertexbytheuseofFL.Stopuntilsearchbackto0intheFL.IftheelementsinSLareallthevertices,thegraphisconnected.

    Figure2showsanexampleoftheproceduretododepth-firstsearchonagraph.ThetimecomplexityofthisalgorithmisΘ(|V|+|E|)[15]whichissimilarwiththebreadth-firstsearch,sothechoiceofthesetwoalgorithmsdependsondifferentsituationsandtheirdifferentpropertiesinsteadoftheirtimecomplexities.

    2.1.3Randomwalksalgorithm

    Randomwalks,firstproposein1905[17],havebeenwidelyusedinmanyfields:physics,computerscience,chemistry,andsoon[18-19].Arandomwalkisapaththatconsistsofaseriesofrandombehaviors

    Fig.2 Depth-first search

    orsteps.Thealgorithmcannotstopuntilalltheverticesarevisitedorthenumberofstepsexceedsagiveninteger.ThealgorithmisshowninAlgorithm1.

    2.2 Algebraic computation

    2.2.1 Power sum of adjacency matrix

    ThekthpowerofagraphGisagraphwiththesamesetofverticesasGandanedgebetweentwoverticesiffthereisapathoflengthatmostkbetweenthem[20].TheshortestpathbetweeneverytwoverticesinagraphcontainsatmostNvertices,sowecomputethepowersumofadjacencymatrixA:

    P=I+A+A2+A3+…+AN-1,

    (1)

    whereIis the identity matrix.

    If all the elements in the first row of P are larger than 0, the graphGisconnected.TheideaofpowersummethodissimilarwithWarshallalgorithm,aimingatfindingalltheshortestpathsbetweenacertainvertexandalltheothervertices.ThecomputationcomplexityofpowersummethodisO(N3).

    Algorithm 1 Random walks algorithmRequire: rand: Random number; A: Adjacency matrix; K: An integer, SL: visiting listEnsure:SL1:Initial next←v,i←02:Generate rand, and i←i+1. The degree of vertex next is deg(next).3:ifi-1deg(next)K.7:Output: SL

    Algorithm 2 Logical sum algorithm (version 1)Require A: Adjacency matrix, V={V1,V2,…,VN}, V1 is marked.1:Pick up one vertex Vj, where minjarg{a1,j=1} and mark the vertex Vj. Note: arg{a1,j=1} means all the js which meet a1,j=1.2:Renew the value of the first row by the logical sum of the first row and the jth row; replace all the elements in column j and row j with 0.3:Repeat step 1 and 2 until there is no “1” left in the first row. If all the vertices are marked, the graph is connected.

    Algorithm 3 Logical sum algorithm (version 2)Require A: Adjacency matrix, V={V1,V2,…,VN},V1 is marked.1:Pick up all the vertices M={Vj}, where arg{a1,j=1} and mark them. Note: arg{a1,j=1} means all the js which meet a1,j=1.2:Renew the value of the first row by the logical sum of the first row and all the rows in M; replace all the elements in columns M and rows M with 0.3:Repeat step 1 and 2 until there is no “1” left in the first row. If all the vertices are marked, the graph is connected.

    2.2.2Laplacianmatrix

    Laplacianmatrixisanotherimportantmatrixrepresentationofagraphandhavebeenusedtocalculatealotofimportantpropertiesofthegraph[21].TherearemanycharacteristicsoftheeigenvaluesofgraphLaplacianmatrix,amongwhichthetheory:thenumberofconnectedcomponentsofGisequaltothemultiplicityof0asaneigenvalue[22]canbeusedtodeterminetheconnectednessofagraph.Ingeneral,thetimecomplexityofthismethodisO(N2)[23].

    2.2.3Logicalsumofadjacencymatrix

    Thismethodisthecomputationalversionofsearchmethods.Logicalsumisabasiccomputationincomputerscienceandalsosimilarwiththedefinitionof“union”and“or”.Asweknow,ifavertexiisconnectedwithj,jisconnectedwithm,andtheniisconnectedwithm.Itisthesameideawiththelogicalsum:

    0+0=0,0+1=1+0=1+1=1.

    ApplyinglogicalsumtographcomputationwasfirstlyproposedinaSpanishbookin1992.Weproposeonenewmethodwithtwodifferentversionsbasedonlogicalsum.TheimplementationoflogicalsumondeterminingtheconnectednessofagraphissummarizedinAlgorithm2.

    Logicalsumalgorithm(version2)showsaslightlymodifiedalgorithmbasedonthefirstone.Thedifferencebetweenversion1andversion2isthecomputationorder:onlyonerowisaddedtothefirstrowduringeverystepinversion1,butinversion2,alltheverticesmeetingtheconstraintarefoundandaddedtothefirstrowduringeverystep.Thetimecomplexityofthismethodisthesamewithbreadth-firstsearch:O(|V|+|E|).

    3 Numerical experiments

    Since the time complexity of random walk method is unknown and we want to show that logical sum method shows better than other methods in real experiments because of its computational idea. We conducted numerical experiments to compare all the methods mentioned in the third section. (DS: depth-first sesarch; BS: breadth-first search; RW: random walk; PS: power sum; LM: Laplacian matrix; LS (1): logical sum (1); LS (2): logical sum (2))

    Table 1 to Table 5 and Fig.3 present the results.

    Table 1 Numerical experiments on graphswith 10 vertices ms

    In order to show their performance on different scale of graphs, four sets of experiments on random graphs with up to 10 000 vertices have been done. After that, well performed methods: breadth-first search and logical sum are applied to random graphs with 20 000 and 30 000 vertices.

    In the four sets of experiments, each method was run third times on random graphs with 10, 100, 1 000, and 10 000 vertices, respectively.

    Table 2 Numerical experiments ongraphs with 100 vertices ms

    Table 3 Numerical experiments on graphswith 1 000 vertices ms

    Table 4 Numerical experiments on graphswith 10 000 vertices s

    Table 5 Numerical experiments on graphswith 20 000 and 30 000 vertices s

    In the fifth set of experiments, breadth-first search and logical sum are applied to random graphs with 20 000 and 30 000 vertices.

    Fig.3 Performances of different methods

    4 Main results

    In our first to fourth set of experiments, each method is applied three times on random graphs and the random graph in every round is the same. Power sum takes the least time when there is only 10 vertices in a graph and breadth-first search follows. While in the second set of experiments, breadth-first search method is the fastest algorithm, and power sum follows. When there is more than 1 000 vertices in the graph, the advantage of logical sum algorithm becomes more and more obvious. Besides, random walk method is not stable since the way of producing next chosen vertex is not stable. Figure 3 shows the running time of different methods changing over the number of vertices in the graph.

    As shown in Table 5, breadth-first search and logical sum are very fast when dealing with large graphs and logical sum (version 2) is the best which saves almost half of the running time of breadth-first search.

    5 Conclusion

    Depth-first search and breadth-first search are well-known and widely used methods. They are very easy and fast, but breadth-first search are much faster in determining the connectedness of a graph than depth-first search method and breadth-first search method is also very competitive in comparison with algebraic methods. Another search method: random walks method is easily developed, but not very stable in application.

    Power sum method is always faster than the Laplacian matrix method and it is also faster than logical sum methods when the graph is small. However, when the number of vertices of a graph grows, logical sum methods are more efficient.

    Since there are a lot of packages and tools for those old methods, if the graph is not so complicated and large, the breadth-first search is the best choice. But if the graph is very large, loogical sum (version 2) method is very easy to develop and extremely fast, which should be a very good choice.

    国产av一区在线观看免费| 一进一出好大好爽视频| 国产精品九九99| 亚洲五月天丁香| 狂野欧美激情性xxxx| 脱女人内裤的视频| 亚洲成人久久性| 啦啦啦免费观看视频1| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| www.精华液| 国产伦一二天堂av在线观看| 精品电影一区二区在线| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站| 欧美激情极品国产一区二区三区| www日本黄色视频网| 久久久久久久久久黄片| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区黑人| 成人手机av| 久9热在线精品视频| 别揉我奶头~嗯~啊~动态视频| 欧美丝袜亚洲另类 | 一级黄色大片毛片| 久久久久久九九精品二区国产 | 亚洲国产毛片av蜜桃av| 中文字幕人成人乱码亚洲影| 99re在线观看精品视频| 黄片小视频在线播放| 俄罗斯特黄特色一大片| 一个人观看的视频www高清免费观看 | 亚洲国产精品sss在线观看| 欧美日韩黄片免| 中文字幕精品免费在线观看视频| 亚洲av片天天在线观看| 狂野欧美激情性xxxx| 成人国语在线视频| 黄色a级毛片大全视频| 久久国产亚洲av麻豆专区| 麻豆一二三区av精品| 在线观看舔阴道视频| 中文字幕精品免费在线观看视频| 国产精品亚洲一级av第二区| 亚洲精品国产区一区二| 国产成人系列免费观看| 日韩三级视频一区二区三区| 亚洲av成人av| 男女之事视频高清在线观看| 午夜免费激情av| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 亚洲一区二区三区不卡视频| 一边摸一边做爽爽视频免费| 国产三级在线视频| 精品国产美女av久久久久小说| 午夜福利一区二区在线看| 精品国产美女av久久久久小说| 天堂动漫精品| 精品久久久久久久毛片微露脸| 日日干狠狠操夜夜爽| 两个人视频免费观看高清| 日韩高清综合在线| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 色av中文字幕| www.熟女人妻精品国产| 看免费av毛片| 麻豆一二三区av精品| 中文字幕av电影在线播放| xxx96com| 欧美乱码精品一区二区三区| 精品少妇一区二区三区视频日本电影| 日韩中文字幕欧美一区二区| 色av中文字幕| 国产成人av激情在线播放| 亚洲一区二区三区不卡视频| 夜夜看夜夜爽夜夜摸| 成人国产一区最新在线观看| 成人三级黄色视频| 在线观看一区二区三区| АⅤ资源中文在线天堂| 欧美激情极品国产一区二区三区| 满18在线观看网站| 麻豆av在线久日| 国产色视频综合| 黄色片一级片一级黄色片| 国产麻豆成人av免费视频| 亚洲欧美激情综合另类| 国产精品永久免费网站| 黄色毛片三级朝国网站| 又黄又爽又免费观看的视频| 久久婷婷成人综合色麻豆| av中文乱码字幕在线| 啦啦啦免费观看视频1| 国产精品日韩av在线免费观看| 老鸭窝网址在线观看| 性色av乱码一区二区三区2| 国产区一区二久久| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 久久精品91无色码中文字幕| 人人澡人人妻人| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久 | 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 欧美午夜高清在线| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| 欧美又色又爽又黄视频| av超薄肉色丝袜交足视频| 精品久久久久久久久久久久久 | 最近最新免费中文字幕在线| 国产99久久九九免费精品| 999久久久国产精品视频| 国产精品自产拍在线观看55亚洲| 日本三级黄在线观看| 在线观看66精品国产| 免费av毛片视频| 青草久久国产| 亚洲中文日韩欧美视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影 | 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 最新美女视频免费是黄的| 国产一级毛片七仙女欲春2 | 欧美激情久久久久久爽电影| 丰满的人妻完整版| 三级毛片av免费| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 国产午夜精品久久久久久| 久9热在线精品视频| 91在线观看av| 国产精品久久久久久精品电影 | 精华霜和精华液先用哪个| 日本a在线网址| 天堂影院成人在线观看| 久久久久亚洲av毛片大全| 日本免费a在线| 欧美中文日本在线观看视频| 精品日产1卡2卡| 亚洲 国产 在线| 欧美乱码精品一区二区三区| 91九色精品人成在线观看| 久久国产亚洲av麻豆专区| 91九色精品人成在线观看| 麻豆成人av在线观看| 亚洲国产精品999在线| 哪里可以看免费的av片| 成人午夜高清在线视频 | 亚洲国产欧美网| 久热爱精品视频在线9| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区| 69av精品久久久久久| 一进一出抽搐动态| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 丝袜在线中文字幕| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久 | 欧美黑人巨大hd| 看免费av毛片| 国产免费av片在线观看野外av| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 1024香蕉在线观看| av片东京热男人的天堂| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 中文字幕久久专区| 村上凉子中文字幕在线| 香蕉国产在线看| 黑人操中国人逼视频| 国产av一区二区精品久久| 国产熟女午夜一区二区三区| 国产亚洲精品av在线| 久久亚洲精品不卡| 日本一区二区免费在线视频| 麻豆成人av在线观看| 成人亚洲精品一区在线观看| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 老司机深夜福利视频在线观看| 免费看美女性在线毛片视频| 久久久久国内视频| 午夜激情福利司机影院| 最近最新中文字幕大全电影3 | 日韩欧美 国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频不卡| 大香蕉久久成人网| 国产激情久久老熟女| 无限看片的www在线观看| 亚洲最大成人中文| 国产在线观看jvid| 亚洲狠狠婷婷综合久久图片| 俺也久久电影网| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 一夜夜www| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 国产亚洲欧美在线一区二区| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 亚洲五月色婷婷综合| 俄罗斯特黄特色一大片| 看片在线看免费视频| 日韩精品免费视频一区二区三区| 免费在线观看成人毛片| 久久香蕉精品热| 国产精品av久久久久免费| 国产高清videossex| 日韩精品青青久久久久久| 日本 欧美在线| 亚洲av成人一区二区三| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 两人在一起打扑克的视频| 亚洲人成网站在线播放欧美日韩| 亚洲七黄色美女视频| 欧美一级a爱片免费观看看 | 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| www.999成人在线观看| 欧美另类亚洲清纯唯美| 在线视频色国产色| 美女 人体艺术 gogo| 又紧又爽又黄一区二区| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| av有码第一页| 国产片内射在线| 久久久国产欧美日韩av| 中文字幕精品亚洲无线码一区 | 免费搜索国产男女视频| 欧美 亚洲 国产 日韩一| 亚洲国产欧洲综合997久久, | 亚洲久久久国产精品| 国产v大片淫在线免费观看| 国产99白浆流出| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 欧美性猛交黑人性爽| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 在线观看日韩欧美| 欧美亚洲日本最大视频资源| 免费看十八禁软件| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 丁香六月欧美| 亚洲熟妇熟女久久| 怎么达到女性高潮| 亚洲第一青青草原| 一本精品99久久精品77| 亚洲精品久久成人aⅴ小说| 精品无人区乱码1区二区| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 香蕉久久夜色| a级毛片a级免费在线| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月| 首页视频小说图片口味搜索| 国产男靠女视频免费网站| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 亚洲第一电影网av| av欧美777| 97超级碰碰碰精品色视频在线观看| 妹子高潮喷水视频| 黑丝袜美女国产一区| 黄片大片在线免费观看| 一级a爱片免费观看的视频| 久久久久久久久久黄片| 久久天躁狠狠躁夜夜2o2o| 国产三级在线视频| 黄频高清免费视频| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看 | xxx96com| 午夜免费成人在线视频| 色综合站精品国产| aaaaa片日本免费| 亚洲一区中文字幕在线| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 午夜免费鲁丝| 神马国产精品三级电影在线观看 | 日本一本二区三区精品| 黄片小视频在线播放| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 岛国在线观看网站| 国产精品一区二区三区四区久久 | 亚洲熟女毛片儿| 国产成人欧美| 琪琪午夜伦伦电影理论片6080| 午夜免费激情av| 亚洲精品国产一区二区精华液| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 夜夜爽天天搞| 91成年电影在线观看| 色精品久久人妻99蜜桃| 亚洲 欧美一区二区三区| 午夜影院日韩av| 亚洲欧美一区二区三区黑人| 精品午夜福利视频在线观看一区| 午夜福利在线在线| 久久久国产成人免费| 国产视频一区二区在线看| 免费高清在线观看日韩| 日韩欧美在线二视频| 熟女电影av网| 亚洲精品一区av在线观看| 精品久久久久久成人av| 免费在线观看日本一区| 国产午夜福利久久久久久| 一区二区日韩欧美中文字幕| av超薄肉色丝袜交足视频| 99精品在免费线老司机午夜| 亚洲专区中文字幕在线| 两个人视频免费观看高清| 伦理电影免费视频| 18禁观看日本| 欧美日韩乱码在线| 在线播放国产精品三级| 美国免费a级毛片| 亚洲激情在线av| 一本一本综合久久| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 亚洲成人久久性| 国产高清有码在线观看视频 | 1024手机看黄色片| 亚洲 欧美 日韩 在线 免费| 国产亚洲av嫩草精品影院| av免费在线观看网站| 满18在线观看网站| 国产精品1区2区在线观看.| 欧美在线一区亚洲| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费| 香蕉国产在线看| 国产一区二区三区视频了| 一本一本综合久久| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 国产三级在线视频| 成人三级做爰电影| 久久亚洲精品不卡| 日本在线视频免费播放| 日韩欧美三级三区| 精品国产乱子伦一区二区三区| 岛国视频午夜一区免费看| 久久久久久久久免费视频了| 国产成年人精品一区二区| 欧美一级a爱片免费观看看 | 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看 | 无限看片的www在线观看| 欧美激情高清一区二区三区| 天天一区二区日本电影三级| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼| bbb黄色大片| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区 | 在线观看免费午夜福利视频| 国产爱豆传媒在线观看 | 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲,欧美精品.| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频| 一个人观看的视频www高清免费观看 | 国产国语露脸激情在线看| 国产精品久久久久久亚洲av鲁大| 成年女人毛片免费观看观看9| 国产真人三级小视频在线观看| 99热这里只有精品一区 | 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 自线自在国产av| 桃色一区二区三区在线观看| av在线播放免费不卡| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 啦啦啦观看免费观看视频高清| 美女高潮到喷水免费观看| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 亚洲成av人片免费观看| 精品电影一区二区在线| 国产成人欧美在线观看| 久久99热这里只有精品18| 男女那种视频在线观看| a级毛片a级免费在线| 亚洲专区字幕在线| 色精品久久人妻99蜜桃| 国产成人欧美| 国产亚洲欧美98| 中文字幕人成人乱码亚洲影| 久久精品夜夜夜夜夜久久蜜豆 | 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 国产av一区在线观看免费| 精华霜和精华液先用哪个| 日韩一卡2卡3卡4卡2021年| 色哟哟哟哟哟哟| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 国内揄拍国产精品人妻在线 | 一进一出抽搐gif免费好疼| 久久这里只有精品19| 亚洲第一av免费看| 久久热在线av| 久久久久久久午夜电影| 亚洲自偷自拍图片 自拍| 69av精品久久久久久| 黄网站色视频无遮挡免费观看| 欧美日韩福利视频一区二区| 美女大奶头视频| √禁漫天堂资源中文www| 男女床上黄色一级片免费看| 在线国产一区二区在线| 人成视频在线观看免费观看| 欧美日韩黄片免| 很黄的视频免费| 中文字幕人成人乱码亚洲影| 人人澡人人妻人| 色综合站精品国产| 欧美性长视频在线观看| 在线观看免费日韩欧美大片| 久久精品人妻少妇| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 免费在线观看日本一区| 午夜亚洲福利在线播放| 日韩中文字幕欧美一区二区| 亚洲欧美激情综合另类| 午夜福利一区二区在线看| 久久青草综合色| 日韩欧美免费精品| 久热爱精品视频在线9| 中文字幕人妻熟女乱码| 美女免费视频网站| 久久久久久久久免费视频了| 俄罗斯特黄特色一大片| 国产精品亚洲一级av第二区| 久久这里只有精品19| 男人舔女人下体高潮全视频| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 亚洲av五月六月丁香网| 一级作爱视频免费观看| 啦啦啦免费观看视频1| 男女那种视频在线观看| 叶爱在线成人免费视频播放| 岛国在线观看网站| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 免费电影在线观看免费观看| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 国产免费av片在线观看野外av| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 99国产综合亚洲精品| 男男h啪啪无遮挡| 久久狼人影院| 国产精品美女特级片免费视频播放器 | 啦啦啦 在线观看视频| 成人一区二区视频在线观看| 日韩三级视频一区二区三区| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 我的亚洲天堂| 亚洲精品美女久久av网站| 国产精品野战在线观看| 女性生殖器流出的白浆| 久久久久久久久中文| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 亚洲最大成人中文| 欧美黑人巨大hd| 黑人巨大精品欧美一区二区mp4| 国产麻豆成人av免费视频| 午夜a级毛片| 精品第一国产精品| 十八禁网站免费在线| √禁漫天堂资源中文www| xxx96com| 国产一区在线观看成人免费| 最新在线观看一区二区三区| 男女午夜视频在线观看| 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| cao死你这个sao货| 欧美日韩瑟瑟在线播放| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点| 国产成人精品无人区| 欧美国产精品va在线观看不卡| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 一本久久中文字幕| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 亚洲真实伦在线观看| 狂野欧美激情性xxxx| av在线播放免费不卡| 正在播放国产对白刺激| 国产精品免费一区二区三区在线| 高潮久久久久久久久久久不卡| 国产精品九九99| 搡老熟女国产l中国老女人| 制服丝袜大香蕉在线| 亚洲av五月六月丁香网| 又大又爽又粗| 老汉色∧v一级毛片| 国产成人av教育| 亚洲精品在线观看二区| 免费看日本二区| 久久久久久久久久黄片| 日韩国内少妇激情av| 国产欧美日韩一区二区精品| av在线播放免费不卡| 男男h啪啪无遮挡| 亚洲精品久久国产高清桃花| 91成人精品电影| 国内精品久久久久精免费| 久久久久久久精品吃奶| 韩国精品一区二区三区| 最近最新中文字幕大全电影3 | 亚洲国产精品久久男人天堂| 黑丝袜美女国产一区| 久久精品91蜜桃| 色综合欧美亚洲国产小说| 国产精品日韩av在线免费观看| 午夜激情av网站| av片东京热男人的天堂| www.999成人在线观看| 手机成人av网站| 黄色片一级片一级黄色片| 91麻豆精品激情在线观看国产| 又黄又粗又硬又大视频| 后天国语完整版免费观看| 久久精品夜夜夜夜夜久久蜜豆 | av免费在线观看网站| av片东京热男人的天堂| 十八禁网站免费在线| 777久久人妻少妇嫩草av网站| 欧美色欧美亚洲另类二区| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 国产成人av教育| 亚洲av美国av| 老熟妇乱子伦视频在线观看| 午夜老司机福利片| 国产欧美日韩一区二区三| 香蕉久久夜色| 一级作爱视频免费观看| 他把我摸到了高潮在线观看| 免费在线观看视频国产中文字幕亚洲| 免费在线观看黄色视频的| 国产私拍福利视频在线观看| 一本大道久久a久久精品| 在线观看免费午夜福利视频| 久久精品国产清高在天天线| 国产精品乱码一区二三区的特点| 国产成人av教育| 国产成年人精品一区二区| 亚洲色图av天堂| 欧美黄色淫秽网站| 久久精品影院6| 亚洲五月色婷婷综合| 亚洲欧美精品综合久久99| 一个人免费在线观看的高清视频| 999久久久精品免费观看国产|