• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence

    2018-03-07 06:25:56YiXueFaningDangRongjianLiLiumingFanQinHaoLinMuYuanyuanXia
    Computers Materials&Continua 2018年1期

    Yi Xue, Faning Dang Rongjian Li Liuming Fan Qin Hao, Lin MuYuanyuan Xia

    1 Introduction

    Coal usually occurs in deep geo-stress and gas coupled environment. When it is affected by external factors such as mining disturbance, the initiation, expansion and coalescence of microcracks will emerge in coal, and the coal will be damaged and fractured [Wold,Connell and Choi (2008); Cao and Zhou (2015); Xue, Gao and Liu (2015); Salmi, Nazem and Karakus (2016); Newman, Agioutantis and Leon (2017)]. Damage causes the degradation of coal mechanical performance, and significantly changes the seepage performance [Durucan and Edwards (1986); Xue, Ranjith, Gao et al. (2017); Domingues,Baptista and Diogo (2017)]. In addition, the coal mechanical properties and permeability changes will affect the behavior of fluid seepage in coal, and then affect the distribution of effective stress and pore pressure in coal. In turn, coal stress and pore pressure changes will lead to changes in effective stress, which leads to the further development of the internal damage of coal. This mutual influence is seepage-stress-damage coupled influence [Zhu and Tang (2004); Li, Yang, Liang et al. (2011); Xue, Zhu, Zhang et al.(2016); Cao, Du, Xu et al. (2017)].

    The excavation process of underground coal seam is a dynamic process comprised of a series of coupled effects and interactions such as coal deformation, gas flow, coal damage and the evolution of porosity and permeability. The tunnel excavation has been studied comprehensively. Cao et al. [Cao, Li, Tao et al. (2016)] explored the dynamic unloading excavation process by PFC after verifications against the theoretical results and studied the characteristics of unloading waveform under high initial stress under various ratios of horizontal and vertical in situ stresses. Zhang et al. [Zhang, Xu, Wang et al. (2016)]developed a coupled elastoplastic damage model for brittle rocks and deduced the constitutive relationships under three different loading conditions: damage, plastic and coupled plastic damage. Ren et al. [Ren, Zuo, Xie et al. (2014)] presented an updated method for finding the optimal shape of an underground excavation using the latest bi-directional evolutionary structural optimization techniques and discussed its engineering application through illustrated examples. However, the coal mass is a special rock material. It has a strong adsorption and heterogeneity characteristics, unlike sandstone, granite, marble and other rock materials. A fewer publications are available to account for the coupled effects with adsorption and heterogeneity characteristics.

    Considering the heterogeneity of mechanical parameters of coal material, a seepage-stress-damage coupled model is established for analyzing the fracture evolution of coal. The numerical solution of the model is achieved through finite element software and the correctness of the model is verified by an example.

    2 Coupled seepage-stress-damage model

    2.1 Parameter assignment method of coal based on statistical distribution

    Coal is a mixture including different mineral particles, cementation, pore fissure defects and so on. Therefore, the properties distribution of different mesoscopic elements is usually nonuniform in coal material. The heterogeneity of coal materials is very important for simulating the localized fracture phenomenon of coal. In this paper, the statistical mathematics method is used to describe the heterogeneity of physical and mechanical parameters of coal materials.

    In order to describe the heterogeneity of coal materials, it is assumed that coal is consisted of a large number of microscopic elements. Assuming that the mechanical properties of these units obey Weibull distribution, the distribution can be defined according to the following density distribution function.

    Where u satisfies the numerical value of the Weibull distribution function,0uis a parameter related to the average value of all the unit parameters, and the shape parameter m gives the shape of the distribution density function.

    Figure 1: Distribution of mechanical properties in coal

    Fig. 1 gives the distribution of the mechanical properties of microscopic elements of coal material under different homogenization coefficients.According to the basic properties ofthe Weibull distribution, the greater the parameter,better the uniformity of the material unit, and vice versa. Therefore and are called the distribution parameters of materials. Using the Eq. (1), the inhomogeneous parameters of the coal materials can be generated in the numerical calculation. These parameters are closer to the true sample parameters in the laboratory test.

    2.2 Deformable control equation

    According to the theory of porous elasticity, the unit of coal satisfies the following equilibrium equation

    The coal is regarded as a porous medium, and the coal element satisfies the constitutive equation. It can be expressed by stress, strain and pore pressure as follows

    where is the shear modulus of coal,is the Poisson's ratio of coal,is the symbol of Kronecker,is the Biot coefficient of coal,;is the bulk modulus of coal matrix,is the volume modulus of coal,is the component of strain tensor, andis the component of stress tensor.

    The following geometric equations are obtained according to the continuous deformation condition:

    The stress equilibrium equation can be expressed by displacement, pore pressure and adsorption expansion

    2.3 Gas seepage equation

    The seepage of gas follows the law of conservation of mass.

    where m is the unit volume for the gas in the coal;is the gas density;is the Darcy velocity;is the source or sink; t is the time variable. The mass of the gas m is composed of free term and adsorption term, which can be expressed as:

    Under the function of pressure gradient, the gas seepage equation in the fractured medium is as follows

    Because of the compressibility of the gas, the relation between the gas density and the pressure is:

    The continuity equation of gas seepage can be obtained as

    2.4 Permeability model of coal

    The basic skeleton of coal is deformed under the affection of gas pressure, which changes the porosity of coal, and affects the seepage of gas in coal. The coal is subjected to the double action of external stress and pore pressure. According to the principle of Terzaghi effective stress, the following equation can be obtained

    The change rate of porosity is as follows:

    Then the following equation can be obtained:

    The permeability of the coal body is related to the porosity, which can be expressed by the Kozeny-Carman equation:

    where φis the porosity, C is the KC constant, which is associated with fracture tortuosity; S is the fracture surface area of porous medium per unit volume.

    In the elastic stage, when the coal body deforms under the effect of external force, C and S are regarded as constants. And for coal seam, 1φ, permeability can be expressed as cubic law

    The permeability of coal can be expressed as

    The porosity of coal can be expressed in strain forms

    Eqs. (19) and (20) are permeability models in stress form, Eq. (23) is permeability model in strain form, both of which can effectively evaluate the permeability evolution characteristics of coal seam. According to the theory of elastic porous media, these two kinds of permeability models can be deduced and verified by each other.

    2.5 Analysis of damage theory

    The maximum tensile stress criterion is used to determine the tensile damage of coal, and the Mohr-Coulomb criterion is used to determine the shear damage of coal, as shown in Fig. 2.

    Figure 2: The constitutive law of coal under uniaxial stress condition

    Based on the strain, the damage variable of coal units can be expressed using the following expression:

    According to the elastic damage theory, the elastic modulus of coal under damage state can be expressed as follows:

    When the coal is damaged, the effect of the coal damage on the permeability can be described as

    2.6 Numerical realization of computational model

    In this paper, a coupled seepage-stress-damage model for coal is proposed, which regards damage as a process. One of the most effective methods to solve the problem of fluid-solid coupled problem is to analyze it by using the multi-physical field coupled software COMSOL Multiphsics. In this paper, COMSOL Multiphsics and MATLAB are used to achieve the coupled solution of solid field, fluid field and damage field. The calculation process is shown in Fig. 3.

    Figure 3: Flowchart for computational procedure of the approach

    3 Numerical simulation of coupled process of coal

    3.1 Example I: compression seepage coupled process of fractured coal

    First, we use the proposed model to carry out the compression seepage coupled numerical simulation test of standard coal samples, and compare the numerical simulation results with the existing test results to verify the effectiveness of this model in simulating the deformation, fracture and seepage behavior of coal.

    The basic model of numerical experiments is shown in Fig. 4. The size of the simulated coal sample is 50 mm×100 mm. In order to characterize the heterogeneity of coal materials, it is assumed that the initial mechanical parameters and seepage parameters of coal meet the Weibull distribution. The initial attribute parameters of each mesoscopic unit are generated by Monte-Carlo stochastic simulation method. The spatial distribution of the initial elastic modulus of coal is shown in Fig. 5. The mechanical parameters and percolation parameters used in the calculation are shown in Tab. 1. Similar with the conventional triaxial loading process, a constant confining pressure is applied on the left and right boundaries of the model, the bottom boundary is fixed. The axial load increment) is applied on the top boundary to control the loading until the sample completely loses the bearing capacity. The seepage behavior in numerical experiments is simulated by steady state seepage model. The left and right boundary of the sample is impermeable, and the upper and lower boundary is applied constant gas pressure. The lower boundary is atmospheric pressure and the pressure difference isnumerical simulation is consistent with the conventional coal gas seepage test in the laboratory.

    Figure 4: Calculation model of coal specimen under loading

    Figure 5: Heterogeneous properties of coal medium

    Table 1: Material parameters for numerical tests of coal under loading

    In order to investigate the damage, fracture and permeability evolution law of coal specimen during axial loading process, the homogeneous degree coefficient of initialelastic modulus distribution of coal specimen is . During the loading process, the specimen is subjected to the confining pressureand gas pressure.Fig. 6 shows the damage distribution of coal during the loading process. The positive value of the color bar indicates the shear failure and the negative value indicates the tensile failure.

    The whole loading process of coal samples can be divided into four stages: linear elastic stage, plastic deformation stage, stress drop stage and residual strength stage. Each stage is related to the deformation of coal and the initiation and development of internal cracks.The crack initiation of coal can be seen from the figures. In the initial loading process, a random distribution of damage points is found inside the specimen. Then, with the loading of stress, the random distribution of the damage zone continues to expand and converge. The failure of coal is mainly shear failure. Finally, a macroscopic fracture zone,which is composed of massive fracture units, is formed. This macroscopic fracture zone is consistent with phenomena observed in a large number of coal mechanics experiments.Therefore, the seepage-stress-damage coupled model can be used to simulate the failure process of coal under compression conditions.

    Figure 6: The fracture evolution process of coal specimen during the loading process

    Fig. 7 is the permeability distribution during the loading process. It can be seen that the damage and destruction of coal resulted in the increase of permeability. However,because there was no obvious breakthrough in coal in the initial stage, the macroscopic flow behavior of the coal sample was not violent. Gas gas flows rapidly in the macroscopic shear zone, while the area outside the shear zone is comparatively slow due to the smaller permeability coefficient.

    Fig. 8 gives a cloud map of the vectorial field distribution after the specimen is destroyed.The size of the arrow indicates the velocity of the flow field. It can be seen that the gas flow is mainly along the high permeability region, that is, the damaged region, and the flow in the low permeability region is slow. The damage of coal resulted in a large increase in permeability. The numerical simulation simulated the change of coal sample from the random distribution of mesoscopic damage to macroscopic fracture throug self organization evolution process and the local characteristics in the evolution of seepage field. These effectively prove the validity of the simulation model of fracture process and corresponding seepage behavior of coal.

    Figure 7: The permeability evolution process of coal specimen during the loading process

    Figure 8: Distribution of flow vector in coal specimen

    Figure 9: Calculation model of coal specimen with circular hole under loading process

    3.2 Example Ⅱ: numerical simulation of failure process of coal with hole

    The model is used to simulate numerical compression experiment of square coal with circular hole. The parameters in Tab. 1 are still used in this calculation. The size of the coal is 1000 mm×1000 mm, the circular hole is located at the center of the coal and the diameter is 20 mm. The schematic diagram of the model is shown in Fig. 9. The stress loading mode of coal is biaxial compression. The vertical stress and horizontal stress are increased uniformly at the same time to simulate the hydrostatic pressure loading method,The crack propagation of the coal during the loading process is shown in Fig. 10. It can be seen that under the action of horizontal and vertical stresses, the coal are subjected to the action of hydrostatic pressure. According to the elastic mechanics theory, when the hole size is far smaller than the size of the elastic model and the hole distance is far away from the boundary of model, the stress concentration will appear around the hole under the function of uniform stress. The analytical solution of coal isare the main stresses in two directions.

    According to the Mohr-Coulomb criterion, it is known that the coal reached the damage strength firstly at the edge of the hole. In the numerical simulation results, the damage first appears around the circular hole. Due to the heterogeneity of the mechanical parameters of the coal units, some units on the edge of the hole first reach the criterion of failure criterion and destroy.

    The random distribution of the material properties of the coal leads to the random occurrence of the damage point in the coal. Subsequently, due to the failure of these units,the bearing capacity was further reduced and the damage was further developed, and obvious crack expansion appeared. It can be seen that under the action of confining pressure, the coal have been subjected to pressure shear failure. Due to the randomness of the mechanical properties distribution of coal, the number and direction of the cracks are also random distribution. This is consistent with the failure characteristics of the coal test in laboratory and it verifies the correctness of the numerical model.

    Figure 10: The fracture evolution process of coal specimen during the loading process

    4 Conclusions

    Based on the damage mechanics, elastic mechanics and seepage mechanics theory, we consider the effect of damage on the mechanical property and seepage characteristic of coal, and establish the seepage-stress-damage coupled model of coal in the representative elementary volume (REV) level. The numerical model is solved through the finite element software COMSOL combined with MATLAB.

    The numerical model establishes the relationship between microcosmic damage evolution and macroscopical fracture and simulates the whole process of coal from microcosmic damage to macroscopical fracture, and the dynamic simulation of fluid flow in this process.

    The compression seepage coupled numerical experiment is conducted in this paper and the numerical results show that in the initial loading process, a random distribution of damage points is found inside the specimen. Then, with the loading of stress, the random distribution of the damage zone continues to expand and converge, finally forming a macroscopic fracture zone. These effectively prove the validity of the simulation model of fracture process and corresponding seepage behavior of coal.

    Cao, W.; Li, X.; Tao, M.; Zhou, Z. (2016): Vibrations induced by high initial stress release during underground excavations. Tunnelling and Underground Space Technology, vol.53, pp. 78-95.

    Cao, Z. Z.; Zhou, Y. J. (2015): Research on coal pillar width in roadway driving along goaf based on the stability of key block. Computers, Materials & Continua, vol. 48, no. 2,pp. 77-90.

    Cao, Z. Z.; Du, F.; Xu, P.; Lin, H. X.; Xue, Y. et al. (2017): Control Mechanism of Surface Subsidence and Overburden Movement in Backfilling Mining based on Laminated Plate Theory. Computers, Materials & Continua, vol. 53, no. 3, pp. 187-202.

    Domingues, M. S.; Baptista, A. L.; Diogo, M. T. (2017): Engineering complex systems applied to risk management in the mining industry. International Journal of Mining Science and Technology, vol. 27, no. 4, pp. 611-616.

    Durucan, S.; Edwards, J. S. (1986): The effects of stress and fracturing on permeability of coal. Mining Science and Technology, vol. 3, no. 3, pp. 205-216.

    Li, L. C.; Yang, T. H.; Liang, Z. Z.; Zhu, W. C.; Tang, C. A. (2011): Numerical investigation of groundwater outbursts near faults in underground coal mines. International Journal of Coal Geology, vol. 85, no. 3, pp. 276-288.

    Newman, C.; Agioutantis, Z.; Leon, G. B. J. (2017): Assessment of potential impacts to surface and subsurface water bodies due to longwall mining. International Journal of Mining Science and Technology, vol. 27, no. 1, pp. 57-64.

    Ren, G.; Zuo, Z. H.; Xie, Y. M.; Smith, J. V. (2014): Underground excavation shape optimization considering material nonlinearities. Computers and Geotechnics, vol. 58, pp. 81-87.

    Salmi, E. F.; Nazem, M.; Karakus, M. (2017): The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines. International Journal of Rock Mechanics and Mining Sciences, vol. 91, pp. 59-71.

    Wold, M. B.; Connell, L. D.; Choi, S. K. (2008): The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining. International Journal of Coal Geology, vol. 75, no. 1, pp. 1-14.

    Xue, S.; Zhu, X.; Zhang, L.; Zhu, S.; Ye, G. et al. (2016): Research on the damage of porosity and permeability due to perforation on sandstone in the compaction zone.Computers, Materials & Continua, vol. 51, no. 1, pp. 21-42.

    Xue, Y.; Gao, F.; Liu, X. G. (2015): Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining. Natural Hazards, vol. 79,no. 2, pp. 999-1013.

    Xue, Y.; Cao, Z. Z., Cai, C. Z.; Dang, F. N.; Hou, P. et al. (2017): A fully coupled thermo-hydro-mechanical model associated with inertia and slip effects. Thermal Science,vol. 21, no. S1, pp. 259-266.

    Zhang, J. C.; Xu, W. Y.; Wang, H. L.; Wang, R. B.; Meng, Q. X. et al. (2016): A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation. International Journal of Rock Mechanics and Mining Sciences, vol. 84, pp. 130-141.

    Zhu, W. C.; Tang, C. A. (2004): Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering, vol. 37, no. 1, pp. 25-56.

    中文天堂在线官网| 国产一区二区亚洲精品在线观看| 最近中文字幕2019免费版| 精品久久久久久久久久久久久| 一二三四中文在线观看免费高清| 99热网站在线观看| 国产av在哪里看| 色综合色国产| 国产探花在线观看一区二区| 精品人妻熟女av久视频| 欧美zozozo另类| 久久久久久久久久黄片| 亚洲成人精品中文字幕电影| 国产av码专区亚洲av| 国产在线男女| 国产精品蜜桃在线观看| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜爱| 激情五月婷婷亚洲| 美女黄网站色视频| 男的添女的下面高潮视频| 伦精品一区二区三区| 在线观看人妻少妇| 成人av在线播放网站| 女人十人毛片免费观看3o分钟| 少妇的逼好多水| 国产一区二区在线观看日韩| ponron亚洲| 国产免费一级a男人的天堂| 免费av观看视频| 久久久久久久久久久丰满| 国产亚洲av嫩草精品影院| 超碰av人人做人人爽久久| 国产成人免费观看mmmm| 国产高潮美女av| 波野结衣二区三区在线| 成人欧美大片| 欧美 日韩 精品 国产| 国产亚洲精品久久久com| 国产亚洲最大av| av免费在线看不卡| 国产亚洲5aaaaa淫片| 91久久精品电影网| 天天一区二区日本电影三级| kizo精华| 亚洲久久久久久中文字幕| 熟女人妻精品中文字幕| 久久6这里有精品| 日日摸夜夜添夜夜爱| 亚洲av男天堂| 精品久久久久久电影网| 欧美精品一区二区大全| 国产精品久久久久久久电影| 免费av观看视频| 看黄色毛片网站| 欧美97在线视频| 干丝袜人妻中文字幕| 最近手机中文字幕大全| 一二三四中文在线观看免费高清| 日韩成人av中文字幕在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精品日韩av片在线观看| 边亲边吃奶的免费视频| 看十八女毛片水多多多| 国产精品不卡视频一区二区| 又爽又黄a免费视频| 亚洲精品第二区| 插阴视频在线观看视频| 激情 狠狠 欧美| 国产精品人妻久久久久久| 99久国产av精品国产电影| 18禁在线播放成人免费| 国产精品三级大全| 日本wwww免费看| 男人舔奶头视频| 成人av在线播放网站| 欧美性感艳星| 欧美精品国产亚洲| 久久99热这里只有精品18| 91av网一区二区| 亚洲成人中文字幕在线播放| 久久国产乱子免费精品| 日韩av在线免费看完整版不卡| 色网站视频免费| kizo精华| 久久久久久久亚洲中文字幕| 超碰97精品在线观看| 能在线免费观看的黄片| av卡一久久| 欧美性感艳星| 国产高清国产精品国产三级 | 国产国拍精品亚洲av在线观看| 精华霜和精华液先用哪个| 两个人的视频大全免费| 久久久久久久久久久免费av| 国产一区二区三区综合在线观看 | 久久久久久久大尺度免费视频| av女优亚洲男人天堂| 能在线免费看毛片的网站| 亚洲av一区综合| 嫩草影院精品99| 亚洲精品乱久久久久久| 精品午夜福利在线看| 少妇被粗大猛烈的视频| 婷婷色综合大香蕉| 中文天堂在线官网| 在线天堂最新版资源| 少妇高潮的动态图| 80岁老熟妇乱子伦牲交| 亚洲国产日韩欧美精品在线观看| 日韩视频在线欧美| 亚洲三级黄色毛片| 别揉我奶头 嗯啊视频| 狠狠精品人妻久久久久久综合| 国产成人aa在线观看| 午夜免费激情av| 在线观看免费高清a一片| 嫩草影院新地址| 精品久久国产蜜桃| 一级片'在线观看视频| 国产精品av视频在线免费观看| 街头女战士在线观看网站| 边亲边吃奶的免费视频| 午夜福利高清视频| 成人亚洲欧美一区二区av| 看免费成人av毛片| 九草在线视频观看| 岛国毛片在线播放| 日日摸夜夜添夜夜添av毛片| 伦精品一区二区三区| 少妇的逼水好多| 成人综合一区亚洲| 国产日韩欧美在线精品| 欧美成人午夜免费资源| 成人鲁丝片一二三区免费| 免费黄色在线免费观看| 亚洲精品成人av观看孕妇| 久久久久网色| 99久久精品国产国产毛片| 亚洲国产精品成人久久小说| 插阴视频在线观看视频| 99久久精品国产国产毛片| 中文乱码字字幕精品一区二区三区 | 91aial.com中文字幕在线观看| 亚洲精品视频女| 亚洲精品亚洲一区二区| 只有这里有精品99| 亚洲av免费在线观看| 18禁在线播放成人免费| 亚洲av一区综合| 日韩av在线大香蕉| 国产片特级美女逼逼视频| 色尼玛亚洲综合影院| 日韩国内少妇激情av| av网站免费在线观看视频 | 亚洲av电影在线观看一区二区三区 | 自拍偷自拍亚洲精品老妇| 搡女人真爽免费视频火全软件| 美女xxoo啪啪120秒动态图| 一本久久精品| 男人狂女人下面高潮的视频| 观看免费一级毛片| 亚洲最大成人中文| 日韩一本色道免费dvd| 国产精品国产三级国产av玫瑰| 亚洲av电影在线观看一区二区三区 | 国产午夜精品论理片| 白带黄色成豆腐渣| 午夜福利网站1000一区二区三区| 亚洲成色77777| 亚洲电影在线观看av| 亚洲欧美精品自产自拍| 精品人妻视频免费看| 午夜激情久久久久久久| 久久午夜福利片| 久久久久久久大尺度免费视频| 久久久欧美国产精品| 我的老师免费观看完整版| 在线观看一区二区三区| 精品久久国产蜜桃| 好男人视频免费观看在线| 99热全是精品| 日韩在线高清观看一区二区三区| 亚洲成人av在线免费| 日韩av在线免费看完整版不卡| 黑人高潮一二区| 啦啦啦中文免费视频观看日本| 老司机影院成人| 国产精品蜜桃在线观看| 午夜免费观看性视频| 天堂中文最新版在线下载 | 丝袜喷水一区| 欧美xxⅹ黑人| 欧美bdsm另类| 色播亚洲综合网| 一级av片app| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 婷婷色麻豆天堂久久| 亚洲av成人av| 国产精品久久视频播放| 国产亚洲一区二区精品| 联通29元200g的流量卡| 国产精品一区二区三区四区免费观看| 1000部很黄的大片| 男人舔女人下体高潮全视频| 国产成人福利小说| 国产乱人视频| 午夜福利网站1000一区二区三区| 少妇被粗大猛烈的视频| 少妇的逼好多水| 久久韩国三级中文字幕| 久久久久网色| a级毛色黄片| 免费黄网站久久成人精品| 中文在线观看免费www的网站| 人人妻人人看人人澡| 免费无遮挡裸体视频| 欧美三级亚洲精品| 国产精品无大码| 床上黄色一级片| videossex国产| 最近2019中文字幕mv第一页| 国产单亲对白刺激| 国产91av在线免费观看| 亚洲在线自拍视频| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 亚洲国产高清在线一区二区三| 午夜日本视频在线| 日本午夜av视频| 日韩大片免费观看网站| 精品一区在线观看国产| 国产黄片视频在线免费观看| 亚洲精品国产av成人精品| 午夜激情欧美在线| 欧美成人午夜免费资源| 国产探花在线观看一区二区| 国产探花极品一区二区| 你懂的网址亚洲精品在线观看| 日韩av在线免费看完整版不卡| 又大又黄又爽视频免费| 爱豆传媒免费全集在线观看| 97在线视频观看| 大片免费播放器 马上看| 在线 av 中文字幕| 精品国内亚洲2022精品成人| 天天一区二区日本电影三级| 久久久午夜欧美精品| 日日撸夜夜添| 一个人免费在线观看电影| 国语对白做爰xxxⅹ性视频网站| 国产黄色视频一区二区在线观看| 超碰97精品在线观看| 免费少妇av软件| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 精品99又大又爽又粗少妇毛片| 97超碰精品成人国产| 国产有黄有色有爽视频| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 欧美一区二区亚洲| 最近手机中文字幕大全| 干丝袜人妻中文字幕| 国产在线男女| 色网站视频免费| 日本午夜av视频| 久久久精品欧美日韩精品| 97热精品久久久久久| 天堂影院成人在线观看| 在线天堂最新版资源| 亚洲av.av天堂| 男人狂女人下面高潮的视频| 日韩欧美一区视频在线观看 | 一级片'在线观看视频| 99热6这里只有精品| 十八禁网站网址无遮挡 | 国产高清国产精品国产三级 | 搡女人真爽免费视频火全软件| 欧美xxxx黑人xx丫x性爽| 男人狂女人下面高潮的视频| 岛国毛片在线播放| 免费不卡的大黄色大毛片视频在线观看 | 韩国高清视频一区二区三区| 欧美日本视频| 亚洲自拍偷在线| 校园人妻丝袜中文字幕| 极品教师在线视频| 国产精品一区二区三区四区免费观看| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 十八禁国产超污无遮挡网站| 欧美xxⅹ黑人| 男女边吃奶边做爰视频| 三级毛片av免费| 高清视频免费观看一区二区 | 亚洲国产精品成人久久小说| 午夜久久久久精精品| 欧美三级亚洲精品| 色吧在线观看| 一本久久精品| 老女人水多毛片| 男的添女的下面高潮视频| 亚洲国产欧美人成| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看| 亚洲自拍偷在线| 日本爱情动作片www.在线观看| 亚洲av电影不卡..在线观看| 最近中文字幕2019免费版| 精品国产三级普通话版| 性插视频无遮挡在线免费观看| 中文字幕免费在线视频6| 麻豆成人av视频| 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 日韩欧美精品v在线| 观看美女的网站| 18禁动态无遮挡网站| 日韩,欧美,国产一区二区三区| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 久久久久久久久久黄片| 禁无遮挡网站| 天堂网av新在线| 边亲边吃奶的免费视频| 少妇裸体淫交视频免费看高清| 国产乱来视频区| 国产伦在线观看视频一区| 精品人妻视频免费看| 欧美一区二区亚洲| 欧美极品一区二区三区四区| 国产精品久久久久久久电影| 国产成年人精品一区二区| 亚洲精品第二区| 欧美日本视频| 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频 | 韩国高清视频一区二区三区| 精品少妇黑人巨大在线播放| 3wmmmm亚洲av在线观看| 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 国产毛片a区久久久久| 国产一区二区在线观看日韩| 18禁在线无遮挡免费观看视频| videos熟女内射| 国产爱豆传媒在线观看| 最近视频中文字幕2019在线8| 久热久热在线精品观看| 国产精品久久久久久久电影| 免费av毛片视频| 午夜激情欧美在线| 久久亚洲国产成人精品v| 少妇人妻一区二区三区视频| av卡一久久| 中文字幕久久专区| 91aial.com中文字幕在线观看| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 黄色日韩在线| 精品一区二区免费观看| 一区二区三区免费毛片| 日韩视频在线欧美| 免费看a级黄色片| videossex国产| 天堂网av新在线| 2022亚洲国产成人精品| 日本爱情动作片www.在线观看| 日本三级黄在线观看| 午夜福利网站1000一区二区三区| 国产精品爽爽va在线观看网站| 国产91av在线免费观看| 边亲边吃奶的免费视频| 淫秽高清视频在线观看| 又爽又黄无遮挡网站| www.av在线官网国产| 日韩精品有码人妻一区| 嫩草影院入口| 天堂影院成人在线观看| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 国产又色又爽无遮挡免| 久久人人爽人人爽人人片va| 欧美日韩亚洲高清精品| 99视频精品全部免费 在线| 久久久精品94久久精品| 亚洲天堂国产精品一区在线| 午夜日本视频在线| 亚洲婷婷狠狠爱综合网| 午夜免费男女啪啪视频观看| 日日撸夜夜添| 国产精品一二三区在线看| 老司机影院毛片| 久久精品综合一区二区三区| 高清毛片免费看| 一本久久精品| 国产免费又黄又爽又色| 免费观看a级毛片全部| 亚洲四区av| 国内精品一区二区在线观看| 亚洲内射少妇av| 久久久久久久国产电影| 成人毛片60女人毛片免费| 舔av片在线| 国产精品麻豆人妻色哟哟久久 | 欧美激情在线99| 国产一区有黄有色的免费视频 | 亚洲精品乱久久久久久| 国产精品一二三区在线看| 国产毛片a区久久久久| 免费av毛片视频| 亚洲国产精品成人久久小说| av在线亚洲专区| 日韩制服骚丝袜av| 日韩亚洲欧美综合| 免费大片黄手机在线观看| 亚洲av福利一区| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区黑人 | 国产精品1区2区在线观看.| 国产欧美另类精品又又久久亚洲欧美| 天堂俺去俺来也www色官网 | 亚洲欧美成人综合另类久久久| 亚洲国产精品成人久久小说| 精品国产露脸久久av麻豆 | 亚洲精品成人av观看孕妇| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 少妇熟女欧美另类| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| videossex国产| 91狼人影院| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| av福利片在线观看| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 两个人的视频大全免费| 天美传媒精品一区二区| 国产综合懂色| 2022亚洲国产成人精品| 久久午夜福利片| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 九九爱精品视频在线观看| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 能在线免费观看的黄片| 99久久九九国产精品国产免费| 久久久久久久午夜电影| 中文在线观看免费www的网站| 国产av在哪里看| 国产在视频线精品| 亚洲在久久综合| 一级片'在线观看视频| 丝瓜视频免费看黄片| 亚洲自拍偷在线| 在线 av 中文字幕| 精品酒店卫生间| 亚洲成色77777| 国产精品一区二区性色av| 欧美zozozo另类| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 男插女下体视频免费在线播放| 内射极品少妇av片p| 国产av不卡久久| 精品久久久久久成人av| 亚洲av中文av极速乱| 一级毛片我不卡| 国产精品1区2区在线观看.| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 免费看a级黄色片| 男人爽女人下面视频在线观看| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 精品久久久噜噜| 日日撸夜夜添| 又爽又黄无遮挡网站| 人妻夜夜爽99麻豆av| 亚洲高清免费不卡视频| 亚洲性久久影院| 日本猛色少妇xxxxx猛交久久| 尤物成人国产欧美一区二区三区| 美女大奶头视频| 国产成人aa在线观看| 人体艺术视频欧美日本| 两个人视频免费观看高清| 国产伦精品一区二区三区四那| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 国产成人午夜福利电影在线观看| 国产 亚洲一区二区三区 | 久久99热6这里只有精品| 日本黄大片高清| 天天躁日日操中文字幕| 亚洲性久久影院| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 亚洲国产精品sss在线观看| 亚洲国产色片| 九九在线视频观看精品| 久久97久久精品| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| av线在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄无遮挡网站| av播播在线观看一区| 在线免费十八禁| 熟女电影av网| av国产久精品久网站免费入址| 91精品一卡2卡3卡4卡| 日韩av免费高清视频| 日韩电影二区| 精品午夜福利在线看| 免费少妇av软件| 国产欧美另类精品又又久久亚洲欧美| 天堂影院成人在线观看| 久久99热这里只有精品18| 欧美日韩亚洲高清精品| 亚洲国产精品sss在线观看| 国产视频内射| 2022亚洲国产成人精品| 人妻系列 视频| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 五月天丁香电影| 国产精品久久久久久久电影| 亚洲va在线va天堂va国产| .国产精品久久| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 国产高清有码在线观看视频| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 国产色婷婷99| 国产精品人妻久久久影院| 免费少妇av软件| 久久久国产一区二区| 欧美97在线视频| 天堂√8在线中文| 中文字幕av在线有码专区| 精品一区在线观看国产| 亚洲精华国产精华液的使用体验| 乱人视频在线观看| 91狼人影院| 午夜亚洲福利在线播放| 国产成人一区二区在线| 乱人视频在线观看| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影小说 | 五月伊人婷婷丁香| 国产精品伦人一区二区| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| av在线观看视频网站免费| 青春草国产在线视频| 国产亚洲5aaaaa淫片| 免费看av在线观看网站| 国产真实伦视频高清在线观看| 18禁动态无遮挡网站| 精品国产三级普通话版| 精品人妻一区二区三区麻豆| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| 床上黄色一级片| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 成人午夜精彩视频在线观看| 色哟哟·www| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 免费人成在线观看视频色| 日韩av免费高清视频| 日韩一区二区视频免费看| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 乱人视频在线观看| 麻豆成人av视频| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 欧美激情在线99| h日本视频在线播放| 能在线免费看毛片的网站| av.在线天堂| 国产老妇伦熟女老妇高清| ponron亚洲| 少妇熟女欧美另类|