• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower Bound Limit Analysis of Anisotropic Soils

    2018-03-07 06:25:53ChunguangLiCuihuaLiCongSunandHongZheng
    Computers Materials&Continua 2018年1期

    Chunguang Li, Cuihua Li, Cong Sun and Hong Zheng

    Nomenclature

    1 Introduction

    The question of slope stability is a well-known classical problem in soil mechanics, and it has been studied by numerous authors using Limit equilibrium methods [Cheng,Lansivaara and Wei (2007); Duncan (1996); Huang (2013); Lam and Fredlund (1993);Stolle and Guo (2008); Yu, Salgado, Sloan et al. (1998)], limit analysis [Bandini (2003);Chen, Yin, Li et al. (2003); Drescher and Christopoulos (1988); Han, Chen, Xia et al.(2014); Kim (1998); Li, Lyamin, Merifield et al. (2009); Tschuchnigg, Schweiger, Sloan et al. (2015); Yu, Salgado, Sloan et al. (1998)], finite element strength reduction method[Griffiths and Lane (1999); Griffiths and Marquez (2007); Tschuchnigg, Schweiger,Sloan et al. (2015); Zheng, Liu and Li (2005)], slip line method [Cheng (2003); Chenot,Felgeres, Lavarenne et al. (1978)] and variational method [Baker (2005); Baker and Garber (1977); Castillo and Luceno (1982)]. The first two methods are classical numerical methods and they are currently used widely in in practical engineering.However, almost all the references are focused on isotropic materials.

    It is well known that natural soils and sedimentary rocks are usually deposited and consolidated under one-dimensional conditions, and hence most naturally occurring clays are inherently anisotropic. In 1966 Bishop [Bishop (1966)] performed a lot soil tests and noticed that in-situ undrained strength of a soil is influenced by the anisotropy, and the behavior of soils. The anisotropy of the soil structure, are likely to play a more significant part in the behavior of clays. By triaxial and plane strain tests of clayey soils, it is shown that the anisotropy of undrained shear strength of over-consolidated clay is primarily caused by the direction-dependent (anisotropic) shear strength [Kurukulasuriya, Oda and KAzAMA (1999)]. The anisotropy influence not only the strength of soils, but also on other properties of soils, such as CO2emission [La Scala Jr, Panosso, Pereira et al.(2009)], Hydraulic Conductivity [Soracco, Lozano, Sarli et al. (2010)], etc. Recently,using the Small-Strain Hollow Cylinder Apparatus, Yang had studied the drained anisotropic behavior of sand under generalized stress conditions, and the inherently anisotropic behavior of sands is clearly illustrated in his studies.

    It has been suggested that the variation of soil cohesion with direction due to inherent anisotropy is much more significant than the anisotropy of material friction angle [Arthur and Menzies (1972)].

    During the past several decades, the variation of shear strength with direction has been taken into account in stability analysis by a number of researchers using different methods. The methods include the limit equilibrium method, finite element method, finite difference method, and the limit analysis method. Aghajani et al. [Aghajani, Salehzadeh and Shahnazari (2015)] investigated the effect of anisotropy of shear strength parameter on the stability of a sandy slope by the limit equilibrium method. Al-Karniand Al-Shamrani using the method of slices, also investigated the influence of cohesion anisotropy on the stability of slopes in homogeneous soils. Since anisotropy can be considered in most limit equilibrium software, such as SLOPE/W [Krahn (2004)], the slope stability problem with anisotropic materials can be easily solved by commercial software. Based on Ubiquitous Joint Rock Mass (UJRM) model in FLAC3D(Itasca Consulting Group, 2012), various slope stability problems have been analyzed [Li, Dai,Li et al. (2011); Sainsbury and Sainsbury (2013); Sainsbury, Sainsbury and Sweeney(2016); Soren, Bodi and Sen (2014)]. Similarly, friction anisotropy also is taken into account by a lot of finite element software, such as ABAQUS, PLAXIS, etc. The stability of slope with fiber-reinforced soils was analyzed with limit analysis by Michalowski, he employed a fiber distribution function to characterize the fiber orientation anisotropy, and demonstrated the application of the kinematic approach of limit analysis to the anisotropic frictional materials [Michalowski (2008)]. Also using upper bound technique of limit analysis, Chen et al. [Chen, Snitbhan and Fang (1975)] established an expression under the condition of variation of cohesion with direction in undrained materials; Using an modified anisotropic yield criterion, Yu and Sloan [Yu and Sloan (1994)] generalized the conventional isotropic Mohr-Coulomb yield criterion to include the effect of variation of cohesion with direction in cohesive-frictional materials. Considering the failure mechanism as a series of rigid blocks, Yang et al. [Yang and Du (2016)] analyzed influence of anisotropy on the bearing capacity of surface strip footings.

    It has been found that neglecting the anisotropy feature may lead to the overestimation of the safety factor for geotechnical earthworks and slope stability and thus lead to an unsafe design [Chen, Snitbhan and Fang (1975); Yu and Sloan (1994)]. Because the shear strength varies with direction, it is more realistic to use values of strength appropriate to each direction. However, very little work has been done on the effects of simultaneous variation of cohesion and internal friction angle.

    The lower bound theorem is attractive because it gives a conservative result, and this paper aims to develop a general numerical method which can be used to calculate rigorous lower bound solutions for soils whose cohesion and internal friction varies with direction. The modified anisotropic yield surface is then developed to formulate the numerical lower bound limit analysis. The computational results obtained from the formulations were compared with those available in literature.

    2 Lower bound theorems of limit analysis

    The lower bound theorem provides a safe estimate of the collapse loads for a rigid plastic solid.

    Consider a rigid plastic solid, subjected to some distribution of tractionsitand body forcesib. Collapse occurs under the loading,iLbλ, where the factorLλis in fact the safety factor.

    To estimateLλ, we will denote the guess for the stress distribution in the solid byijσ. The stress distribution must

    1.Satisfy the stress boundary conditions

    in whichitis the prescribed traction.

    2.Satisfy the equations of equilibrium

    within the solid, whereib is the body force per unit volume.

    3.Must not violate the yield criterion anywhere within the solid,

    The lower bound theorem states that a statically admissible collapse load factor is always less than or equal to the exact collapse load factor

    With these three sets of constraints, equilibrium equations, boundary conditions and yield criteria inequalities, the lower bound load optimization problem can be written as

    maximizeλ

    3 Brief review of lower limit analysis

    To obtain a rigorous lower bound collapse load for a discretized continuum, three-node triangles are usually used to construct a piecewise continuous stress field in which statically admissible discontinuities are permitted across element boundaries. This approach was first applied to plane strain problems by Lysmer [Lysmer (1970)],following this early work, Sloan [Sloan (1988)] introduced finite element and mathematical programming formulation that permit large two-dimensional problems to be solved efficiently on a standard personal computer.

    Fig. 1 shows the three-noded triangular elements for the lower bound formulation. Each node is associated with three unknown stresses as the nodal variables.

    Thus, the stresses vary linearly throughout an element according to:

    Where Ni, are linear shape functions.

    Figure 1: Three-node linear stress triangle for lower bound limit analysis

    3.1 Element equilibrium

    Combination of Eqs. (2) and (6) leads to the following matrix form of element equilibrium equations

    Thus, the equilibrium condition for each triangular element generates two equality constraints on the nodal stresses.

    3.2 Boundary conditions

    Substituting Eq. (6) into (1) gives

    Thus each boundary edge generates four equality constraints on the nodal stresses.

    3.3 Stress compatibility conditions

    In order to permit statically admissible discontinuities, it is necessary to enforce the normal and shear stresses must be continuous across an admissible stress discontinuity at the edges of adjacent triangles. As shown in Fig. 2, element a and b share the side defined by nodal pairs (1, 2) and (3, 4), the stress compatibility condition requires

    Figure 2: Stress discontinuity between adjacent triangles

    3.4 Yield conditions

    The Mohr-Coulomb yield criterion in the plain strain condition is stated as:

    in which tensile stresses are taken as positive.

    This yield function can be linearized by an inscribed polygon of p sides, as shown in Fig.3, which guarantee rigorous lower bound solutions. The new linearized yield function can be written as:

    Figure 3: Linearization of Mohr-Coulomb yield function

    3.5 Assembly of complete optimization problem

    After the assembly of all the constraints equations and objective function, the complete problem formulation can then be written as:

    4 Linearization of the mohr-coulomb yield criterion inspace

    The Mohr-Coulomb yield criterion may be written as

    Where τ and σnare the shear stress and the normal stress on a plane with normal unit vector n, c is cohesion and f=tanφ is friction coefficient and φ is angle of internal friction.As stated by the Mohr-Coulomb yield criterion, failure from shear will occur when the shear stress on a plane reaches a value given by Eq. (14).

    Assume that Eq. (14) holds true for any direction at point P, then shear failure will not take place at this point because on any plane passing through point P, the available shear strength is greater than the maximum shearing stress.

    The Mohr's circle is approximated by an interior polygon with p vertices starting from (σx,τxy), as shown in Fig. 4. The normal unit vector to the plane corresponding to the kth vertices is given by Mohr's circle is approximated by

    where the plane corresponding to the kth vertices makes an angle of kπ/p counterclockwise to the plane perpendicular to x axis.

    Adding more vertices, we can get the polygon closer to the Mohr-Coulomb circle and make the lower bound better. Generally speaking, it can be found that choosing p greater than 24 gives a sufficiently accurate approximation to the Mohr-Coulomb yield function.Substituting Eqs. (15-17) into (14) gives the linearized yield function as

    It is worth noting that because Mohr’s circle and Coulomb failure line is symmetric aboutaxis, only the positive part ofare considered for Eq. (14).

    And we can see that Eq. (18) is a linear equation ofand.

    Figure 4: Discretization of Mohr’s circle in τ-σ space

    5 Method to ensure the lower bound

    Since the number of vertices used to approximate the Mohr circle is finite, not all of the stress states can be ensured to satisfy the Coulomb yield criterion, as is shown in Fig. 5, if we let the vertices on the Mohr circle satisfy Eq. (5), in the worst case, there are stresses on some slip directions (the bolded line on the Mohr circle) will violate the Mohr-Coulomb yield criterion.

    Figure 5: The region lies outside the yield surface

    Figure 6: Pseudo cohesion c'

    To make the solution be a rigorous lower bound, considering circle and the dashed line which is parallel to the Mohr-Coulomb failure line and passes through two adjacent discretized points, as is shown in Fig. 6, when the Mohr's circle of stress touches the Coulomb failure line, the radius of the Mohr's circle is

    and the distance from the center of Mohr's circle to the dashed line is

    The dashed line that intersects the shear stress axis, gives a cohesion intercept, c'.

    If we denote the intercept of the dashed line on the shear axis by c', and call it pseudo cohesion, we have

    Using Eqs. (21) and (22), pseudo cohesion c' can be expressed as

    Replacing the cohesion c in Eq. (18) with pseudo cohesion c' yields

    Eq. (24) ensures that the solution obtained is a rigorous lower bound on the true collapse load.

    6 Lower limit analysis for anisotropic materials

    For a given anisotropic Mohr-Coulomb material, the cohesion strength c and the internal friction coefficient f can be given by

    where θ represents the angle between the direction of a plane where the cohesion c or is internal coefficient f measured and the horizontal direction.

    Figure 7: Variation of strength with directions in vertical-horizontal plane

    For example, based on the earlier studies [Casagrande and Carillo (1944); Lo (1966)], the cohesion, c, with the major principal stress inclined at an angle θ with the horizontal may be written in the form:

    in which chand cv, are the cohesion strengths in the horizontal and vertical directions,respectively.

    A simple approach to computing rigorous bounds for anisotropic materials is to just replace the cohesion strength c and the internal friction coefficient f in Eq. (26) with

    The advantage of this method is that it is suitable for any type of anisotropic Mohr-Coulomb material, not just for Eq. (27).

    7 Numerical examples

    7.1 The ACADS test example EX1(c)

    The first example, named as Ex1(c), is a study from ACADS (Association for Computer Aided Design, Australia) of a non-homogeneous slope with three significantly different isotropic material parameters, whose geometry is shown in Fig. 8. The property parameters of the problem are shown in Tab. 1.

    The slope is meshed uniformly with global element size specified as 1.0 m,as is shown in Fig. 9. Tab. 2 and Fig. 10 shows the comparison of safety factor obtained using c and c'for the nonhomogeneous slope. From Tab. 2 we see that the safety factors using pseudo cohesion c' have relatively good agreement with Sloan’s method [Sloan (1988)], and both the methods using c and c' will converge to a fixed value when p goes to infinity, their only difference between the two methods is that the curve of safety factor-p using c' is bounded from above (has an upper bound), however, the curve using c is bounded from below (has an lower bound).

    Compared with the recommended result Fs=1.390, the relative error is 3.96%, a better result will be achieved if the geometry is meshed with more elements.

    Figure 8: Slope example EX1(c) from ACADS. (unit: m)

    Figure 9: Mesh of example EX1(c)

    Table 1: The material property of example EX1(c)

    Figure 10: A comparison of strength reduction factor using c and c' for example EX1(c)

    7.2 A smooth trapdoor in anisotropic clay

    The geometry of the problem is shown in Fig. 11, the stability factor for the trapdoor can be shown to be N=(γH+σs-σt)/ch, where γ is the unit weight of the soil [Sloan, Assadi and Purushothaman (1990)].

    The lower bound mesh used to model a trapdoor with H/B=5 [Yu and Sloan (1994)]. Due to symmetry, only one half of the problem needs to be considered and the mesh is as shown in Fig. 12. To compute the stability number for a fixed H/B value, the surcharge and soil unit weight are set to zero [Yu and Sloan (1994)].

    A summary of the stability lower bounds for various ratios of cv/ch, using an 18-sided approximation of the yield criterion, is shown in Tab. 3 and Fig. 13. It can be seen that the lower bounds agree well with that obtained by Yu’s method.

    Figure 11: Trapdoor problem

    Figure 12: Mesh used for analysis of the trapdoor problem

    Table 3: Safety factor for trapdoor problem

    Figure 13: Stability factor against the value of cv/ch

    7.3 Anisotropic slope

    The anisotropic slope shown in Fig. 14 has the following soil properties:

    The slope is inclined at an angle of 26.57° (2:1) to the horizontal and the boundary conditions are given as vertical rollers on the left boundary and full fixity at the base[Griffiths and Lane (1999)].

    With the uniform element size specified as 0.06 H, the mesh of the slope is shown in Fig.15.The lower bound of safety factor is 1.364, which closely agrees with the safety factor 1.380 given for the same problem by the charts of Bishop and Morgenstern [Bishop and Morgenstern (1960)].

    Suppose that chand fhsatisfy Eq. (35), let’s consider the following three cases:

    (a) Varying cv/chand fv/fh=1.

    (b) Varying fv/fhand cv/ch=1.

    (c) Varying cv/ch= fv/fh.

    Fig. 16 shows the stability factors of the anisotropic slope for the three cases, and the stability factor solutions are listed in Tab. 4. For case (a), not surprisingly, the stability factor increases with increasing cv/chwhen fv/fh=1. Similar behavior to the above can also be seen for case (b) and (c). From the figure it can be seen that the effect on the stability factor of fv/fhis here more pronounced than that of cv/ch.

    Figure 14: Geometry and boundary conditions of anisotropic slope

    Figure 15: Mesh for anisotropic slope

    Table 4: Safety factor for anisotropic slope

    Figure 16: Stability factor against the value of cv/ch, fv/fh

    8 Conclusions

    This paper presents a general finite element formulation of the lower bound theorems for soil whose cohesion and friction coefficient varies with direction. To develop the numerical formulations for anisotropic soil, the Mohr’s circle is discretized inspace and pseudo cohesion is defined to ensure rigorous lower bound solutions. Several numerical examples given in the paper illustrate that the proposed numerical procedure can be used to compute rigorous bound solutions of anisotropic soils.

    Aghajani, H. F.; Salehzadeh, H.; Shahnazari, H. (2015): Stability analysis of sandy slope considering anisotropy effect in friction angle. Sadhana, vol. 40, pp. 1955-1974.

    Arthur, J.; Menzies, B. (1972): Inherent anisotropy in a sand. Geotechnique, vol. 22, pp.115-128.

    Baker, R. (2005): Variational Slope Stability Analysis of Materials with Nonlinear Failure Criterion. Electronic Journal of Geotechnical Engineering, vol. 10(Bundle A).

    Baker, R.; Garber, M. (1977): Variational approach to slope stability. TECHNION-ISRAEL INST OF TECH HAIFA.

    Bandini, P. (2003): Numerical limit analysis for slope stability and bearing capacity calculations. Purdue University.

    Bishop, A. (1966): The strength of soils as engineering materials. Geotechnique, vol. 16,pp. 91-130.

    Bishop, A.; Morgenstern, N. (1960): Stability coefficients for earth slopes.Geotechnique, vol. 10, pp. 129-153.

    Casagrande, A.; Carillo, N. (1944): Shear failure of anisotropic materials. Journal of Boston Society of Civil Engineers, vol. 31, pp. 74-81.

    Castillo, E.; Luceno, A. (1982): A critical analysis of some variational methods in slope stability analysis. International Journal of Rock Mechanics & Mining Sciences &Geomechanics, vol. 6, pp. 195-209.

    Chen, J.; Yin, J. H.; Lee, C. (2003): Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming. Canadian Geotechnical Journal, vol.40, pp. 742-752.

    Chen, W. F.; Snitbhan, N.; Fang, H. Y. (1975): Stability of slopes in anisotropic,nonhomogeneous soils. Canadian Geotechnical Journal, vol. 12, pp. 146-152.

    Cheng, Y. (2003): Seismic lateral earth pressure coefficients for c-φ soils by slip line method. Computers and Geotechnics, vol. 30, pp. 661-670.

    Cheng, Y.; Lansivaara, T.; Wei, W. (2007): Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, vol. 34,pp. 137-150.

    Chenot, J.; Felgeres, L.; Lavarenne, B.; Salencon, J. (1978): A numerical application of the slip line field method to extrusion through conical dies. International Journal of Engineering Science, vol. 16, pp. 263-273.

    Drescher, A.; Christopoulos, C. (1988): Limit analysis slope stability with nonlinear yield condition. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 12, pp. 341-345.

    Duncan, J. M. (1996): State of the art: Limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering-Asce, vol. 122, pp. 577-596.

    Griffiths, D.; Lane, P. (1999): Slope stability analysis by finite elements. Geotechnique,vol. 49, pp. 387-403.

    Griffiths, D. V.; Marquez, R. M. (2007): Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique, vol. 57, pp. 537-546.

    Han, C. Y.; Chen, J. J.; Xia, X. H.; Wang, J. H. (2014): Three-dimensional stability analysis of anisotropic and non-homogeneous slopes using limit analysis. Journal of Central South University, vol. 21, pp. 1142-1147.

    Huang, Y. H. (2013): Slope stability analysis by the limit equilibrium method:fundamentals and methods. American Society of Civil Engineers (ASCE).

    Kim, J. (1998): Limit analysis of soil slope stability using finite elements and linear programming. Purdue University.

    Krahn, J. (2004): Stability modeling with Slope/W. An Engineering Methodology.Calgary, Canada, Geo-Slope/W international LTD.

    Kurukulasuriya, L. C.; Oda, M.; KAzAMA, H. (1999): Anisotropy of undrained shear strength of an over-consolidated soil by triaxial and plane strain tests. Soils Found, vol.39, pp. 21-29.

    La Scala Jr, N.; Panosso, A.; Pereira, G.; Gonzalez, A.; Miranda, J. (2009): Fractal dimension and anisotropy of soil CO2 emission in an agricultural field during fallow.International Agrophysics, vol. 23, pp. 353-358.

    Lam, L.; Fredlund, D. (1993): A general limit equilibrium model for three-dimensional slope stability analysis. Canadian Geotechnical Journal, vol. 30, pp. 905-919.

    Li, A.; Lyamin, A.; Merifield, R. (2009): Seismic rock slope stability charts based on limit analysis methods. Computers and Geotechnic, vol. 36, pp. 135-148.

    Li, H.; Dai, F.; Li, W.; Xu, L.; Min, H. (2011): Stability assessment of a slope under a transformer substation using numerical modelling. Bulletin of Engineering Geology and the Environment, vol. 70, pp. 385-394.

    Lo, K. (1966): Stability of slopes in anisotropic soils. Journal of Soil Mechanics &Foundations Divsion, vol. 92(Closure).

    Lysmer, J. (1970): Limit analysis of plane problems in soil mechanics. Journal of Soil Mechanics & Foundations Division, vol. 96(SM4), pp. 1311-1334.

    Michalowski, R. (2008): Limit analysis with anisotropic fibre-reinforced soil.Geotechnique, vol. 58, pp. 489-501.

    Sainsbury, D.; Sainsbury, B. (2013): Three-dimensional analysis of pit slope stability in anisotropic rock masses. Slope Stability, vol. 2013, pp. 683-696.

    Sainsbury, D.; Sainsbury, B.; Sweeney, E. (2016): Three-dimensional analysis of complex anisotropic slope instability at MMG’s Century Mine. Mining Technology, vol.125, pp. 212-225.

    Sloan, S. W. (1988): lower bound limit analysis using finite-elements and linear-programming.International Journal for Numerical and Analytical Methods in Geomechanics, vol. 12,pp. 61-77.

    Sloan, S. W.; Assadi, A.; Purushothaman, N. (1990): Undrained Stability of A Trapdoor.Geotechnique, vol. 40, pp. 45-62.

    Soracco, C. G.; Lozano, L. A.; Sarli, G. O.; Gelati, P. R.; Filgueira, R. R. (2010):Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil and Tillage Research, vol. 109, pp. 18-22.

    Soren, K.; Budi, G.; Sen, P. (2014): Stability analysis of open pit slope by finite difference method. Journal of Engineering and Advanced Research Technology, vol. 3,pp. 326-334.

    Stolle, D.; Guo, P. J. (2008): Limit equilibrium slope stability analysis using rigid finite elements. Canadian Geotechnical Journal, vol. 45, pp. 653-662.

    Tschuchnigg, F.; Schweiger, H. F.; Sloan, S. W. (2015): Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques.Part I: Numerical studies considering non-associated plasticity. Computers and Geotechnics, vol. 70, pp. 169-177.

    Yang, X. L.; Du, D. C. (2016): Upper bound analysis for bearing capacity of nonhomogeneous and anisotropic clay foundation. KSCE Journal of Civil Engineering,vol. 20, pp. 2702-2710.

    Yu, H.; Sloan, S.; (1994): Limit analysis of anisotropic soils using finite elements and linear programming. Mechanics Research Communications, vol. 21, pp. 545-554.

    Yu, H. S.; Salgado, R.; Sloan, S. W.; Kim, J. M. (1998): Limit analysis versus limit equilibrium for slope stability. Journal of Geotechnical and Geoenvironmental Engineering, vol. 124, pp. 1-11.

    Zheng, H.; Liu, D.; Li, C. (2005): Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering, vol. 64,pp. 1871-1888.

    看非洲黑人一级黄片| 国产又黄又爽又无遮挡在线| 女的被弄到高潮叫床怎么办| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av天美| 高清毛片免费看| 亚洲天堂国产精品一区在线| 级片在线观看| 99热这里只有是精品50| 日韩欧美国产在线观看| 最近最新中文字幕大全电影3| 亚洲欧美日韩高清在线视频| 久久人妻av系列| 天堂网av新在线| 黄色欧美视频在线观看| 99热精品在线国产| 日韩在线高清观看一区二区三区| 国产探花极品一区二区| 免费无遮挡裸体视频| 熟女电影av网| 中文字幕av成人在线电影| 亚洲精品日韩在线中文字幕 | 欧美日本视频| 久久亚洲国产成人精品v| 少妇熟女aⅴ在线视频| 国产老妇女一区| 午夜福利在线观看免费完整高清在 | 国产精品美女特级片免费视频播放器| 在线免费十八禁| 美女高潮的动态| 精品午夜福利视频在线观看一区| 亚洲图色成人| 联通29元200g的流量卡| 成人精品一区二区免费| 搡老熟女国产l中国老女人| 天天一区二区日本电影三级| 婷婷精品国产亚洲av| 日本黄色视频三级网站网址| 在线天堂最新版资源| 国产精品一区二区性色av| 精品一区二区三区人妻视频| 久久久午夜欧美精品| 最好的美女福利视频网| 搡老岳熟女国产| 免费av毛片视频| 国产一区二区在线av高清观看| 99九九线精品视频在线观看视频| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频 | 日韩欧美一区二区三区在线观看| 99久久中文字幕三级久久日本| 久久久久久久午夜电影| 日日撸夜夜添| 色哟哟·www| 搡老妇女老女人老熟妇| 俺也久久电影网| 少妇人妻精品综合一区二区 | 日韩欧美一区二区三区在线观看| 国产一区亚洲一区在线观看| 欧美一区二区国产精品久久精品| 在线观看美女被高潮喷水网站| 精品久久久久久久末码| 久久九九热精品免费| 热99re8久久精品国产| 91精品国产九色| 国产色爽女视频免费观看| 99久久精品一区二区三区| 久久久久九九精品影院| 亚洲国产精品成人综合色| 国内精品宾馆在线| 99热全是精品| 久久久久久久久久久丰满| 免费黄网站久久成人精品| 国产精品国产三级国产av玫瑰| 欧美性猛交黑人性爽| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲| 日韩成人伦理影院| 亚洲欧美日韩东京热| 亚洲av五月六月丁香网| 国产免费一级a男人的天堂| 亚洲乱码一区二区免费版| 久久精品国产自在天天线| 深夜精品福利| 舔av片在线| 免费搜索国产男女视频| 午夜精品在线福利| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 久久久精品大字幕| 尾随美女入室| 免费无遮挡裸体视频| av.在线天堂| 97碰自拍视频| 一区福利在线观看| 亚洲熟妇中文字幕五十中出| 成人漫画全彩无遮挡| 两个人视频免费观看高清| 一边摸一边抽搐一进一小说| 狂野欧美白嫩少妇大欣赏| 国产精品久久电影中文字幕| 乱码一卡2卡4卡精品| 日韩欧美在线乱码| 国产精品1区2区在线观看.| 久久精品人妻少妇| 成人国产麻豆网| 欧美精品国产亚洲| 综合色丁香网| 男插女下体视频免费在线播放| 久久久久性生活片| 国产综合懂色| 色5月婷婷丁香| 一级黄色大片毛片| 99国产极品粉嫩在线观看| 热99在线观看视频| 亚洲内射少妇av| 国产黄色小视频在线观看| 午夜免费激情av| 国产黄色视频一区二区在线观看 | 美女免费视频网站| 久久久久久久久大av| 国国产精品蜜臀av免费| 免费人成视频x8x8入口观看| 国产片特级美女逼逼视频| 成人二区视频| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 国产精品综合久久久久久久免费| www日本黄色视频网| 久久人人爽人人爽人人片va| 在线观看美女被高潮喷水网站| 免费观看的影片在线观看| 欧美成人精品欧美一级黄| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 在线天堂最新版资源| 久久人人精品亚洲av| 精品久久久久久久久av| 露出奶头的视频| 亚洲内射少妇av| 亚洲av第一区精品v没综合| АⅤ资源中文在线天堂| 日日摸夜夜添夜夜爱| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 99精品在免费线老司机午夜| 国内精品一区二区在线观看| 国产高潮美女av| 久久这里只有精品中国| 99九九线精品视频在线观看视频| 亚洲欧美清纯卡通| 亚洲一区高清亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲精品av在线| 日本黄大片高清| 亚洲精品成人久久久久久| 国产高清视频在线观看网站| 欧美在线一区亚洲| 99热全是精品| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 91av网一区二区| 97超视频在线观看视频| 最近中文字幕高清免费大全6| 亚洲成人久久爱视频| 日韩欧美国产在线观看| 黄色一级大片看看| 99国产极品粉嫩在线观看| 色吧在线观看| 欧美激情在线99| aaaaa片日本免费| 国产探花在线观看一区二区| 亚洲av二区三区四区| 色在线成人网| 中文资源天堂在线| 在线观看免费视频日本深夜| 亚洲国产精品sss在线观看| 欧美一区二区亚洲| 人妻少妇偷人精品九色| 亚洲不卡免费看| 两性午夜刺激爽爽歪歪视频在线观看| 国产乱人视频| 国产精品免费一区二区三区在线| 日韩av在线大香蕉| 国产精品伦人一区二区| 中国美白少妇内射xxxbb| 一进一出抽搐gif免费好疼| 一进一出好大好爽视频| 亚洲av第一区精品v没综合| 麻豆精品久久久久久蜜桃| 精品国内亚洲2022精品成人| 免费av不卡在线播放| av国产免费在线观看| 欧美性感艳星| 最近2019中文字幕mv第一页| 青春草视频在线免费观看| 免费观看在线日韩| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 色av中文字幕| 国产伦一二天堂av在线观看| 久久精品人妻少妇| 九色成人免费人妻av| 亚洲va在线va天堂va国产| 亚洲图色成人| 亚洲精品一卡2卡三卡4卡5卡| 3wmmmm亚洲av在线观看| 日本a在线网址| 久久精品国产99精品国产亚洲性色| 国产亚洲精品av在线| 中文字幕av成人在线电影| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 丝袜喷水一区| 一级黄色大片毛片| 色综合亚洲欧美另类图片| 久久午夜福利片| 免费黄网站久久成人精品| 亚洲国产精品合色在线| 精品人妻视频免费看| 嫩草影院新地址| 色视频www国产| 成人永久免费在线观看视频| 亚洲乱码一区二区免费版| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 久久久久久久久中文| 日韩一本色道免费dvd| 久久久久久伊人网av| 嫩草影院入口| 男人狂女人下面高潮的视频| 国产午夜精品论理片| 久久人人精品亚洲av| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 久久久午夜欧美精品| 亚洲无线在线观看| 国产精品美女特级片免费视频播放器| 99热精品在线国产| 成人av一区二区三区在线看| 国国产精品蜜臀av免费| 韩国av在线不卡| 亚洲精华国产精华液的使用体验 | 国产免费一级a男人的天堂| 国产成年人精品一区二区| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 亚洲欧美精品自产自拍| 99热只有精品国产| 日本一二三区视频观看| 中文在线观看免费www的网站| 亚洲欧美精品自产自拍| 十八禁网站免费在线| 老司机影院成人| 精品一区二区三区av网在线观看| 国产成人精品久久久久久| 亚洲熟妇中文字幕五十中出| 欧美色视频一区免费| 日日摸夜夜添夜夜添小说| 久久精品人妻少妇| 久久久精品94久久精品| 国产美女午夜福利| 小蜜桃在线观看免费完整版高清| 97碰自拍视频| 国产高清有码在线观看视频| 99热这里只有精品一区| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄 | 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 丰满乱子伦码专区| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 亚洲婷婷狠狠爱综合网| 亚洲国产精品久久男人天堂| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 久久久色成人| 国产激情偷乱视频一区二区| 婷婷精品国产亚洲av在线| 欧美性感艳星| 成熟少妇高潮喷水视频| 三级经典国产精品| 久久婷婷人人爽人人干人人爱| 久久午夜福利片| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 午夜福利在线在线| 舔av片在线| 久久草成人影院| 亚洲色图av天堂| 香蕉av资源在线| av女优亚洲男人天堂| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 亚洲图色成人| 精品一区二区三区视频在线观看免费| 成年女人永久免费观看视频| 干丝袜人妻中文字幕| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 国产精品伦人一区二区| 看十八女毛片水多多多| 精品乱码久久久久久99久播| 老司机影院成人| 国产精品人妻久久久久久| 深夜a级毛片| 性色avwww在线观看| 国产色爽女视频免费观看| 1000部很黄的大片| 久久久久久久午夜电影| 久久久国产成人精品二区| 欧美最新免费一区二区三区| АⅤ资源中文在线天堂| 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 黄色一级大片看看| 亚洲18禁久久av| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 日本五十路高清| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 午夜福利在线在线| 欧美激情在线99| 国产精品一区二区免费欧美| 国产爱豆传媒在线观看| 搡老妇女老女人老熟妇| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 露出奶头的视频| 老司机福利观看| 精品一区二区三区人妻视频| 18禁在线播放成人免费| 欧美国产日韩亚洲一区| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 不卡一级毛片| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 国产熟女欧美一区二区| 变态另类丝袜制服| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 久久久久久伊人网av| 热99re8久久精品国产| 亚洲欧美成人精品一区二区| 少妇丰满av| 在现免费观看毛片| 在线播放无遮挡| 久久亚洲精品不卡| 午夜老司机福利剧场| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 99久久无色码亚洲精品果冻| 精品久久久久久久久久免费视频| 国产三级中文精品| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 日韩人妻高清精品专区| 男女之事视频高清在线观看| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 午夜久久久久精精品| 久久热精品热| 成人午夜高清在线视频| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 国产综合懂色| 欧美又色又爽又黄视频| 久久韩国三级中文字幕| 亚洲人成网站高清观看| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 精品一区二区免费观看| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| 变态另类丝袜制服| 内地一区二区视频在线| 日韩人妻高清精品专区| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 成人av在线播放网站| 日韩,欧美,国产一区二区三区 | 天堂影院成人在线观看| 12—13女人毛片做爰片一| 最近中文字幕高清免费大全6| 最近最新中文字幕大全电影3| 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 99久久精品一区二区三区| 男人舔女人下体高潮全视频| 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 老司机福利观看| 国产女主播在线喷水免费视频网站 | 婷婷精品国产亚洲av在线| 亚洲欧美清纯卡通| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 一夜夜www| 亚洲三级黄色毛片| 18禁黄网站禁片免费观看直播| 午夜精品在线福利| 亚洲国产精品合色在线| 国产高清视频在线观看网站| 午夜福利成人在线免费观看| 天天躁夜夜躁狠狠久久av| 男插女下体视频免费在线播放| 黄色配什么色好看| 波多野结衣高清作品| 人妻久久中文字幕网| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 久久精品国产99精品国产亚洲性色| 免费电影在线观看免费观看| 99热这里只有是精品在线观看| 亚洲一区二区三区色噜噜| 中国美女看黄片| 国产亚洲精品综合一区在线观看| 99国产极品粉嫩在线观看| 18禁在线无遮挡免费观看视频 | 久久精品影院6| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 插阴视频在线观看视频| 欧美日本视频| 国产亚洲91精品色在线| 精品久久久久久成人av| 蜜臀久久99精品久久宅男| 性插视频无遮挡在线免费观看| 97超碰精品成人国产| 久久中文看片网| 中文字幕免费在线视频6| 天天躁夜夜躁狠狠久久av| 亚洲最大成人手机在线| 欧美绝顶高潮抽搐喷水| 成年女人永久免费观看视频| 国产大屁股一区二区在线视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产日韩欧美精品在线观看| 成年女人看的毛片在线观看| 69av精品久久久久久| 97超碰精品成人国产| 国产av不卡久久| 又爽又黄a免费视频| 精品久久久久久久久亚洲| aaaaa片日本免费| 国产爱豆传媒在线观看| 毛片女人毛片| 国产高清不卡午夜福利| av视频在线观看入口| 国产成人一区二区在线| 欧美精品国产亚洲| 老女人水多毛片| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| 男人舔奶头视频| 人妻少妇偷人精品九色| 永久网站在线| 一区二区三区免费毛片| 天天一区二区日本电影三级| 乱人视频在线观看| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 中出人妻视频一区二区| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 日本黄大片高清| 春色校园在线视频观看| 欧美不卡视频在线免费观看| 乱人视频在线观看| 亚洲av中文字字幕乱码综合| 国产黄a三级三级三级人| 亚洲在线观看片| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| av国产免费在线观看| 久久久国产成人精品二区| 最好的美女福利视频网| 51国产日韩欧美| 亚洲激情五月婷婷啪啪| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 春色校园在线视频观看| 女同久久另类99精品国产91| 亚洲av熟女| 久久鲁丝午夜福利片| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看| 深爱激情五月婷婷| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 国产精品三级大全| a级一级毛片免费在线观看| 精品久久国产蜜桃| 看片在线看免费视频| 精品久久国产蜜桃| 免费人成在线观看视频色| 日本精品一区二区三区蜜桃| 真实男女啪啪啪动态图| 亚州av有码| 国产综合懂色| 香蕉av资源在线| 老师上课跳d突然被开到最大视频| 久久这里只有精品中国| 精品久久久久久成人av| 午夜a级毛片| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件 | 日本熟妇午夜| 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 最近中文字幕高清免费大全6| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费a在线| 国产成人一区二区在线| 黄色欧美视频在线观看| 在线免费观看的www视频| av在线老鸭窝| 国产亚洲91精品色在线| 99精品在免费线老司机午夜| 色哟哟·www| 少妇的逼水好多| 露出奶头的视频| 亚洲性久久影院| 校园人妻丝袜中文字幕| 看免费成人av毛片| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 午夜老司机福利剧场| 亚洲中文字幕一区二区三区有码在线看| 99久国产av精品国产电影| 免费在线观看影片大全网站| 午夜爱爱视频在线播放| 在线观看av片永久免费下载| 久99久视频精品免费| 22中文网久久字幕| 热99re8久久精品国产| 婷婷精品国产亚洲av在线| 午夜激情欧美在线| 免费看a级黄色片| 免费看av在线观看网站| 91av网一区二区| 午夜精品国产一区二区电影 | 亚洲欧美精品综合久久99| 成人三级黄色视频| 精品日产1卡2卡| 国产高清激情床上av| 国产大屁股一区二区在线视频| 久久中文看片网| 午夜精品一区二区三区免费看| 国产男人的电影天堂91| 国产伦精品一区二区三区四那| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图| 欧美激情国产日韩精品一区| av在线播放精品| 黄色日韩在线| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 美女 人体艺术 gogo| 国产一区二区三区av在线 | 欧美成人免费av一区二区三区| 久久这里只有精品中国| 国产色爽女视频免费观看| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 天堂av国产一区二区熟女人妻| 丰满乱子伦码专区| 国产伦在线观看视频一区| 两个人视频免费观看高清| 欧美最新免费一区二区三区| 18禁裸乳无遮挡免费网站照片| 1000部很黄的大片| 久久人人爽人人片av| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 丰满人妻一区二区三区视频av| 亚洲三级黄色毛片| 欧美性猛交╳xxx乱大交人| 黄色一级大片看看| 午夜福利视频1000在线观看| 成人av一区二区三区在线看| 久久人人爽人人片av| 深夜a级毛片| 午夜久久久久精精品| 精品久久国产蜜桃| 亚洲中文日韩欧美视频| 亚洲av一区综合| 少妇高潮的动态图| videossex国产| 寂寞人妻少妇视频99o| 秋霞在线观看毛片| 黄片wwwwww|