• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Compressive Strength of Various SCC Mixes Using Relevance Vector Machine

    2018-03-07 06:26:07JayaprakashandMuthuraj
    Computers Materials&Continua 2018年1期

    G. Jayaprakash and M. P. Muthuraj

    1 Introduction

    Concrete has been one of the most commonly used construction materials in the world.One of the major problems civil engineers face today is concerned with preservation,maintenance and retrofitting of structures. It is well know that the self compacting concrete is developed in view of free flow of concrete without segregation where reinforcement is congested. The Self compacting concrete (SCC) is a concrete which has the ability to flow by its own weight and achieve good compaction with no external vibration. In addition,SCC is found to have resistance to segregation and bleeding because of its cohesive properties [Okamura and Ouchi (2003)]. The raw material selection is an important aspect of the mix design process for SCC, since it influences significantly the stability as well as the cost of the mix, which are two primarily elements in the successful use of SCC.

    There is no standard method for SCC mix design, but many educational institutions, precast and contracting companies and admixture ready-mix have developed their own mix proportioning methods for SCC mix design. Mix designs generally employ volume based procedure as one of the key parameters for design. It may be due to filling of voids between the aggregate particles. Some studies were reported in the literature on the use of ingredients in optimized way [European Project Group (2005)]. However, any SCC mix must satisfy the criteria on filling ability, passing ability and segregation resistance. The base for SCC mix design is the general method developed by the University of Tokyo and since then, many attempts were made to modify this method to suit local conditions or specific requirements [Hodws, Sheinn, Ng et al. (2001)]. Broadly, there are some thumb rules, rational methods and EFNARC guidelines for proportioning and design of SCC mix[European Project Group 2005; Collepardi (2006); Okamura and Ozawa (1995)].

    In view of difficulty in conducting experiments several times and to reduce time and effort,some times, analytical models to predict the required data will be very much useful. There are several advanced statistical models such as Artificial Neural Network, Gaussian regression process, least squares support vector machine, relevance vector machine,extreme learning machine and multivariate adaptive regression splines to predict the response of the structural components or concrete mixes [Yuvaraj, Murthy, Iyer et al.(2013a); Yuvaraj, Murthy, Iyer et al. (2013b); Yuvaraj, Murthy, Iyer et al. (2014a);Yuvaraj, Murthy, Iyer et al. (2014b); Shantaram, Shah, Samui et al. (2014); Shah, Shah,Samui et al. (2014); Dutta, Murthy, Kim et al. (2017); Kaur and Kaur (2017)]. In the present investigation, it is proposed to employ relevance vector machine to predict the compressive strength of various SCC mixes.

    Tipping [Tipping (2001)] proposed a model, namely, relevance vector machine (RVM)which has additional advantages than the base model of support vector machine (SVM). In SVM, the target function minimises a measure of error on the training set and simultaneously maximises the ‘margin’ between the two classes (in the feature space implicitly defined by the kernel). In order to avoid over fitting, this is an effective mechanism [Tipping (2001)]. Though there are good predictions of SVM, it was found that there are several limitations and demerits [Tipping (2000); Caesarendra, Widodo and Yang(2009)]. RVM is a special case of a sparse kernel model, which consists of a Bayesian treatment of a generalized linear model of identical functional form as in the case of support vector machine (SVM). RVM differs from SVM in the case of solution, which is based on probabilistic interpretation of its output [Wei, Yang, Nishikawa et al. (2005)]. RVM evades the complexity by producing simple models that have both a structure and a parameterization process together in relation to the data type. RVM is a probabilistic based approach, introduces a prior over the model weights governed by a set of hyperparameters associated with each weight, whose most probable values are iteratively estimated from the data. The important feature of RVM is that it requires less kernel functions. RVM based regression and classifications are popular in many fields [Han, Cluckie, Kang et al. (2002);Wei, Yang, Nishikawa (2005); Das and Samui (2008); Widodo, Kim, Son et al. (2009);Wang and Duanmu (2009); Liu and Xu (2011); Yuvaraj, Murthy, Iyer et al. (2014b)]. From the above literature, it was found that RVM based models for prediction of data in the field of structural engineering is limited.

    In the present study, compressive strength values for SCC mixes are predicted by developing a regression model based on relevance vector machine approach.

    2 Compressive strength of various SCC mixes

    For various SCC mixes, compressive strength data available in the literature has been compiled and the data is presented in Tab. 1. Compressive strength is compiled against water to binder ratio and water to cement ratio.

    Table 1: Compressive strength of various SCC mixes

    0.36 0.47 64.0 0.34 0.44 66.9 Parra (2011) 0.37 0.65 32.58 0.34 0.55 39.83 0.34 0.55 48.46 0.31 0.45 62.67 Dinakar (2008) 0.41 2.71 14.64 0.34 1.13 34.9 0.33 1.1 34.83 0.34 0.68 57.9 0.34 0.68 50.07 0.31 0.44 77.08 0.36 0.51 71.62 0.29 0.322 86.41 Girish (2007) 0.325 0.487 56.3 0.33 0.56 47.6 0.34 0.65 43.8 0.35 0.78 37.0 0.356 0.87 31.0 0.361 0.975 26.5 0.365 0.5 73.3 0.371 0.5 66.0 0.373 0.5 67.3 0.376 0.5 71.8 0.377 0.5 65.0 Mounir (2014) 0.4 30.3 Brouwers (2005) 0.34 0.55 51.2 0.36 0.55 50.7 0.37 0.55 53.6 Marco (2017) 0.32 0.5 72.22 Rahmat (2012) 0.32 0.32 45 0.32 0.34 49.5 0.32 0.36 54 0.32 0.38 52 0.32 0.40 47

    0.38 0.38 41.5 0.38 0.40 45.5 0.38 0.42 49.5 0.38 0.45 49.5 0.38 0.475 45.5 0.45 0.45 31 0.45 0.47 33 0.45 0.50 37 0.45 0.53 38 0.45 0.56 35 Subhan (2017) 0.396 44.44 Alireza (2014) 0.48 0.48 47.64 Sherif (2016) 0.36 0.45 72.1 Thiago (2016) 0.34 0.478 43.7 0.40 0.573 44.4 Valeria (2011) 0.35 0.4 54 Farhad (2013) 0.52 1.3 39.96 Abbas (2013) 0.32 0.49 35.4 Krishnarao and Ravindra (2010)0.31 0.62 43.51

    3 Relevance vector machine

    This section provides a brief description about RVM. Full details about model can be found in Tipping [Tipping (2000, 2001)]. RVM is a specialization of a spares Bayesian model which uses the same data dependent kernel basis [Tipping (2001)]. The key feature of RVM is that the inferred predictors are exceedingly sparse in that they contain relatively few‘‘relevance vectors”, as well as offers a generalized performance.

    RVM starts with the concept of linear models, i.e. the function of y(x) to be predicted at some arbitrary point x given a set of (typically noisy) measurements of the function t=(t1,y, tN) and with some training points x=(x1, y, xN):

    where εiis the noise component of the measurement with mean 0 and variance σ2. With a linear model assumption, the unknown function y(x) is a linear combination of some known basis function i.e.

    where, wi=(w1,…,wM) = a vector consisting of the linear combination weights y(x) = the output which is a linearly-weighted sum of M, generally nonlinear and fixed basis functions

    Analysis of functions shown in Eq. (2) is available in Tipping [Tipping (2001)]. During the development of model, the majority of parameters are automatically set to zero in view of good predictions [Tipping (2000, 2001)].

    As a supervised learning, RVM starts with a set of data inputand their corresponding target vector. The basic aim of the ‘training’ set is to learn a model of the dependency of the target vectors on the inputs to make accurate prediction of t for previously unseen value of x.For the case of support vector machine (SVM), the prediction is made based on a function of the form

    where, wi= (w1, w2,…, wN) is weight vectors

    K(x,xi) = a kernel function and w0is the bias

    In the present study, Radial basis kernel function is used and the related equation is given below

    where, xiand x are the training and test patterns, respectively.

    d = a dimension of the input vector, σ = width of the basis function.

    For a given a dataset of input-target pairs, it is assumed that p(t|x) is Gaussian N(t|y(x), σ2). The mean of this distribution for a given x was modelled by y(x) as mentioned in Eq. (4). The likelihood of dataset can be expressed as

    It was mentioned in the literature [Tipping (2001)] that the maximum likelihood estimation of w and σ2by using Eq. (6) in general results in overfitting. Tipping [Tipping (2001)]recommended by imposing prior constrains on the parameters w by adding a complexity to the likelihood or error function. This is a priori information that controls the generalization ability of the learning process. Generally, new higher-level parameters are preferred to constrain an explicit zero-mean Gaussian prior probability distribution to the weights

    where α is a vector of (N+1) hyperparameters which controls the deviation of weight[Caesarendr (2010)]. By using Bayes’ rule, the posterior over all unknowns can be computed, given the defined non-informative prior-distributions. In order to complete the specification of the prior-distribution, one must define hyperpriors over α and noise variance σ2. These quantities are typical scale parameters and suitable prior are Gamma Distributions [Tipping (2000)]

    Where, β = σ-2.

    Hence, for α and σ, the distribution is gamma distribution and for w, it is normal distribution and after the prior-distributions, Bayes rule is applied.

    Then, for a given a new test point (X*), predictions were performed for the corresponding target (t*), in terms of the predictive distribution :

    The preferred solution is decomposition of the posterior as shown in Eq. (9)

    It can be noted that one can compute analytically the posterior distribution over the weights because its normalization integral is convolution of gaussians [Tipping (2000)]. Hence, to obtain a solution, Eq. (10) shows the posterior distribution of weights

    the posterior over the weights is then obtained from Bayes rule

    The analytical solution for Eq. (11) in terms of the posterior covariance and mean are

    It can be noted that σ2is also treated as a hyperparameter, which may be obtained from the data.

    Therefore, machine learning process becomes a search for the hyperparameters posterior most probable,

    Tipping [Tipping (2000)] arrived at this approximation and found that this is effective after confirmation with several experiments. Bayesian models of Eq. (18a) refer to the marginal likelihood, and its maximization is known as the type II-maximum likelihood method[Ghosh and Mujumdar (2008)]. Hyperparameter estimation is generally performed with an iterative formula, namely, a gradient ascent on the objective function [Tipping (2000);Ghosh and Mujumdar (2008)]. Predictions for a new data were then made as per integration of the weights to arrive at the marginal likelihood for the hyperparameters. The predictive distribution for a given input vector, {x} can be estimated by using following equation.The predictions were made based on the posterior distribution over the weights,conditioned on the maximized most probable values of α andandrespectively.

    the outcome of the optimization involved in RVM (i.e. max of)), is that many of α go to infinity such that 'w' will have only a few nonzero weights that can be considered as relevant vectors [Ghosh and Mujumdar (2008)]. The relevant vectors (RVs) can be viewed as counterparts of support vectors (SVs) in SVM. Thus , the developed model contains the benefits of SVM (sparsity and generalization) and in addition, provides estimates of uncertainty bounds in the predictions [Ghosh and Mujumdar (2008)].

    4 RVM based analysis

    For prediction of the compressive strength, RVM model has been developed. From the experimental studies (Tab. 2), it can be noted that the compressive strength is influenced by the water binder ratio and water cement ratio. These two parameters from the input vector and it can also be noted that the input vector has different quantitative limit as shown in Tab. 2. Hence, a normalization of the data has been performed before presenting the input patterns to statistical machine learning algorithm. Thus, Eq. (29) has been used for the linear normalization of the data to the data values between 0 and 1.

    Table 2: Training data set of various SCC mixes

    33 0.37 0.55 53.6 34 0.32 0.5 72.22 35 0.32 0.32 45 36 0.32 0.34 49.5 37 0.32 0.36 54 38 0.32 0.38 52 39 0.32 0.40 47 40 0.38 0.38 41.5 41 0.38 0.40 45.5 42 0.38 0.42 49.5 43 0.38 0.45 49.5 44 0.38 0.475 45.5 45 0.45 0.45 31 46 0.45 0.47 33 47 0.45 0.50 37 48 0.45 0.53 38 49 0.45 0.56 35 50 0.396 44.44 51 0.48 0.48 47.64 52 0.36 0.45 72.1 53 0.34 0.478 43.7 54 0.40 0.573 44.4 55 0.35 0.4 54 56 0.52 1.3 39.96 57 0.32 0.49 35.4 58 0.31 0.62 43.51

    4.1 Development of RVM model

    A Total of 82 data sets were collected from the literature for various SCC mixes. About 70% of data set is used for the development of RVM model and about 30% of the data set is used for testing and verification of the developed model. Testing and verification of the model is done by comparing the experimental compressive strength with the predicted compressive strength by using the RVM model. The key aspect of development of RVM model is the selection of kernel width which was done by using post modelling analysis[Caesarendr, Widodo, Yang et al. (2010)]. Post-modelling analysis of the training and testing R values is related to number of relevance vectors (NRV) involved in the model and their corresponding weights and variation in the kernel width. The value of σ is assumed initially as 0.13 and for the assumed valued of σ, the model is developed. Fig. 1 shows the schematic diagram of RVM model. The developed model gives the NRVs used and their corresponding weights (wi). The quality of the developed model is assessed based on the coefficient of correlation (R) value which is determined using the Eq. (20).

    where, Eaiand Epiare the actual and predicted values, respectivelyandare mean of actual and predicted E values corresponding to n patterns. In each iteration, R value is computed and the model is finalized when the R value is closer to one.

    Figure 1: Schematic diagram-development of RVM models

    It is observed that the testing R value achieved its maximum at kernel widths shown in Tab. 3 for the corresponding models, involving minimum number of relevance vectors.

    The training and testing R values obtained for models are presented in Tab. 3.

    Table 3: Performance of developed RVM models

    Tab. 4 shows the weights for RVM model.

    Table 4: Values of weights (wi) for RVM models

    25 0 54 0 26 0 55 0 27 0.2431 56 0.5263 28 0.0842 57 0.0904 29 0.0983 58 0.0983

    From Eq. (14), (15) and Tab. 4(b) with woas zero, the following equation has been obtained from the developed RVM model.

    The values of weights, wifor all the training data sets are available in Tab. 4.

    Variance for training and testing data set for the developed model are plotted and shown in Fig. 2 and Fig. 3.

    Figure 2: Variance of training data set for compressive strength

    Figure 3: Variance of testing data set for compressive strength

    The developed RVM model has been verified with the remaining 24 data sets and the results are shown in Tab. 5.

    Table 5: Predicted and experimental compressive strength

    17 0.33 0.42 61.8 57.65 18 0.35 0.45 63.1 59.54 19 0.36 0.46 60.8 58.21 20 0.40 0.51 52.0 49.64 21 0.46 0.59 48.7 44.78 22 0.40 0.53 60.5 56.21 23 0.43 0.56 51.6 48.31 24 0.36 0.47 64.0 59.21

    The normalised output vector obtained from the RVM model is converted back to original value by using the equation below.

    From Tab. 5, it can be observed that the predicted compressive strength is in very good agreement with the corresponding experimental observations. Fig. 4 shows the comparison plot of predicted and the corresponding experimental compressive strength. From Tab. 4 and Fig. 4, it can be concluded that the developed model is robust and reliable.

    Figure 4: Predicted and experimental compressive strength

    5 Summary and conclusions

    Relevance vector machine, one of the advanced statistical models was developed to predict a compressive strength for various SCC mixes. The input parameters are water cement ratio and water binder ratio. Compressive strength data available in the literature for various SCC mixes has been consolidated to develop and test the model. MATLAB software has been used for training and prediction. About 75% of the data has been used for development of model and 30% of the data is used validation. The predicted compressive strength for SCC mixes is found to be in very good agreement with those of the corresponding experimental observations available in the literature. The developed equation for prediction of compressive strength can be used for all practical purposes. The R value for the developed model is found to be closer to 1 indicating better predictability of the models.From the overall study, it can be concluded that the developed RVM model is found to be robust and reliable.

    Ameeri, A. A. (2013): The effect of steel fiber on some mechanical properties of selfcompacting concrete. American Journal of Civil Engineering, vol. 1, no. 3, pp.102-110.

    Aslani, F.; Nejadi, S. (2013): Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture,compressive stress-strain curve, and energy dissipated under compression. Composites:Part B, vol. 53, no. 5, pp. 121-133.

    Ahmad, S.; Umar, A.; Masood, A. (2017): Properties of normal concrete, self-compacting concrete and glass fibre reinforced self-compacting concrete: An experimental study. Procedia Engineering, vol. 173, pp. 807-813.

    Brouwers, H. J. H.; Radix, H. J. (2005): Self-Compacting Concrete: Theoretical and experimental study. Cement and Concrete Research, vol. 35, pp. 2116-2136

    Collepardi, M. (2006): Main ingredients and basic principles for SCC production.Department of Applied Physical Chemistry, Politecnico of Milan, Italy.

    Corinaldesi, V.; Moriconi, G. (2011): Characterization of self-compacting concretes prepared with different fibers and mineral additions. Cement & Concrete Composites, vol.33, pp. 596-601.

    Caesarendr, W.; Widodo, A.; Yang, B. S. (2010): Application of relevance vector machine and logistic regression for machine degradation assessment. Mechanical Systems and Signal Processing. vol. 24, no. 4, pp. 1161-1171.

    Caesarendr, W.; Widodo, A.; Yang, B. S. (2009): Application of relevance vector machine and logistic regression for machine degradation assessment. Journal of Mechanical Systems and Signal Processing, vol. 24, pp. 1161-1171.

    Das, S. K.; Samui, P. (2008): Prediction of Liquefaction Potential Based on CPT Data: A Relevance Vector Machine Approach. 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, October, 2008, India.

    Dinakar, P.; Babu, K. G.; Santhanam, M. (2008): Mechanical properties of high-volume fly ash self-compacting concrete mixtures. Structural Concrete, vol. 9, no. 2, pp. 109-116.Dutta, S.; Murthy, A. R.; Kim, D.; Samui, P. (2017): Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling. Computers,Materials & Continua, vol. 53, no. 2, pp. 157-174.

    European Project Group. (2005): The European Guidelines for Self-Compacting Concrete: Specification, Production and Use, pp. 63.

    Felekoglu, B.; Türkel, S.; Baradan, B. (2007): Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, vol. 42,no. 4, pp. 1795-1802.

    Ghosh, S.; Mujumdar, P. P. (2008): Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, vol. 31, no. 1,pp. 132-146.

    Grabois, T. M.; Cordeiro, G. C.; Filho, R. D. T. (2016): Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers.Construction and Building Materials, vol. 104, pp. 284-292.

    Girish, S.; Jagadish Vengala; Ranganath, R.V. (2007): Volume fractions in self compacting concrete - A review. 5th International RILEM symposium on self-compacting concrete, 3-5 September, 2007, Ghent, Belgium, pp. 73-81.

    Hodws, D. W.; Sheinn, A. M.; Ng, C. C.; Lim, W. B.; Tam, C. T. (2001): Selfcompaction concrete for Singapore. 26th Conference on Our World in Concrete and Structures, 26-28 August, Singapore.

    Han, D.; Cluckie, I.; Kang, W.; Xiong Y. (2012): Flow modelling using Relevance Vector Machine (RVM). Hydroinformatics 2002: Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK.

    Kaur, J.; Kaur, K. (2017): A Fuzzy Approach for an IoT-based Automated Employee Performance Appraisal. Computers, Materials & Continua, vol. 53, no. 1, pp. 23-36.

    Krishna Rao, B.; Ravindra, V. (2010): Steel fiber reinforced selfcompacting concrete incorporating class f fly ash. International Journal of Engineering Science and Technology,vol. 2, no. 9, pp. 4936-4943.

    Khaloo, A.; Raisi, E. M.; Hosseini, P.; Tahsiri, H. (2014): Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials.vol.51, no. 2, pp. 179-186.

    Kamal, M. M.; Safan, M. A.; Etman, Z. A.; Kasem, B. M. (2014): Mechanical properties of self-compacted fiber concrete mixes. Housing and Building National Research Center,vol. 10, no. 1, pp. 25-34.

    Leemann, A.; Hoffmann, C. (2005): Properties of self-compacting and conventional concrete-differences and similarities. Magazine of Concrete Research, vol. 57, no. 6, pp.315-319.

    Liu, K.; Xu, Z. (2011): Traffic Flow Prediction of Highway Based on Wavelet Relevance Vector Machine. Journal of Information & Computational Science. vol. 8, no. 9, pp. 1641-1647.

    Madandoust, R.; Mousavi, S. Y. (2012): Fresh and hardened properties of selfcompacting concrete containing metakaolin. Construction and Building Materials, vol. 35,no. 10, pp. 752-760.

    Nikbin, I. N.; Beygi, M. H. A.; Kazemi, M. T.; Vaseghi Amiri, J.; Rabbanifar, S. et al.(2014): A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete. Construction and Building Materials, vol. 57, pp. 69-80.

    Okamura, H.; Ouchi, M. (2003): Self-Compacting Concrete. Journal of Advanced Concrete Technology, vol. 1, no. 1, pp. 5-15.

    Okamura, H.; Ozawa, K. (1995): Mix design for self-compacting concrete. Concrete Library of JSCE, no. 25, pp. 107-120.

    Parra, C.; Valcuende, M.; Gómez, F. (2011): Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials, vol. 25, pp.201-207.

    Parab, S.; Srivastava, S.; Samui, P. Murthy, A. R. (2014): Prediction of fracture parameters of high strength and ultra-high strength concrete beams using Gaussian process regression and Least squares support vector machine. Computer Modeling in Engineering& Sciences, vol. 101, no. 2, pp. 139-158.

    Shah, V. S.; Shah, H. R.; Samui, P.; Murthy, A. R. (2014): Prediction of Fracture Parameters of High Strength and Ultra-High Strength Concrete Beams using Minimax Probability Machine Regression and Extreme Learning Machine. Computers, Materials &Continua, vol. 44, no. 2, pp. 73-84.

    Silva, M. A. D.; Pepe, M.; Pfeil, S.; Filho, T. (2017): Rheological and mechanical behavior of High Strength Steel Fiber-River Gravel Self Compacting Concrete.Construction and Building Materials, vol. 150, pp. 606-618.

    Tipping, M. E. (2000): The Relevance Vector Machine. Advances in Neural Information Processing Systems, vol. 12, pp. 652-658.

    Tipping, M. E. (2001): Sparse Bayesian learning and the relevance vector machine.Journal of machine learning research, vol. 1, pp. 211-244.

    Wang, X.; Ye, M.; Duanmu, C. J. (2009): Classification of data from electronic nose using relevance vector machines. Sensors and Actuators B, vol. 140, no. 1, pp. 143-148.Widodo, A.; Kim, E. Y.; Son, J. D.; Yang, B. S.; Tan, C. C. et al. (2009): Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine.Expert Systems with Applications, vol. 36, no. 3, pp. 7252-7261.

    Wei, L.; Yang, Y.; Nishikawa, R. M.; Wernick, M. N.; Edwards, A. (2005): Relevance Vector Machine for Automatic Detection of Clustered Micro-calcifications. IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1278-285.

    Yuvaraj, P.; Murthy, R. A.; Iyer, N. R; Sekar, S. K.; Samui, P. (2013a): Support Vector Regression based Models to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams. Engineering Fracture Mechanics, vol. 98, pp. 29-43.

    Yuvaraj, P.; Murthy, R. A.; Iyer, N. R; Samui, P.; Sekar, S. K. (2013b): Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams. Computers, Materials & Continua, vol. 36, no.1, pp. 73-97.

    Yuvaraj, P.; Murthy, R. A.; Iyer, N. R; Samui, P.; Sekar, S. K. (2014a): ANN Model to Predict Fracture Characteristics of High strength and Ultra high strength Concrete beams.Computers, Materials & Continua, vol. 41, no. 3, pp. 193-213.

    Yuvaraj, P.; Murthy, R. A.; Iyer, N. R; Samui, P.; Sekar, S. K. (2014b): Prediction of Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams based on Relevance Vector Machine. International Journal of Damage Mechanics, vol. 23. no.7, pp. 979-1004.

    Yehia, S.; Douba, A. E.; Abdullahi, O.; Farrag, S. (2016): Mechanical and durability evaluation of fiber-reinforced self-compacting concrete. Construction and Building Materials, vol. 121, pp. 120-133.

    久久午夜亚洲精品久久| 妹子高潮喷水视频| 国产蜜桃级精品一区二区三区 | 美女国产高潮福利片在线看| 国产成人系列免费观看| 国产男女超爽视频在线观看| 国产精品美女特级片免费视频播放器 | www.熟女人妻精品国产| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线观看免费 | 久久久久久人人人人人| 女人久久www免费人成看片| 国产色视频综合| www.熟女人妻精品国产| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 黄频高清免费视频| 亚洲av美国av| 精品视频人人做人人爽| 国产淫语在线视频| 国产欧美日韩一区二区三| 精品一区二区三区视频在线观看免费 | 久久精品国产a三级三级三级| 国产在线一区二区三区精| 国产精品一区二区精品视频观看| 日韩免费高清中文字幕av| 91九色精品人成在线观看| 午夜91福利影院| 国产精品国产高清国产av | 日本a在线网址| 欧美日韩乱码在线| 精品福利永久在线观看| 午夜精品在线福利| 日韩有码中文字幕| 精品午夜福利视频在线观看一区| 国产精品一区二区免费欧美| 欧美乱码精品一区二区三区| 亚洲第一av免费看| 一级,二级,三级黄色视频| 一级片'在线观看视频| 亚洲成人手机| 12—13女人毛片做爰片一| 一本一本久久a久久精品综合妖精| 中国美女看黄片| 国产成人啪精品午夜网站| 亚洲色图av天堂| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 成年人午夜在线观看视频| 丁香欧美五月| 黄频高清免费视频| 伦理电影免费视频| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 一边摸一边抽搐一进一小说 | 视频区欧美日本亚洲| 99香蕉大伊视频| 最近最新中文字幕大全电影3 | 亚洲av熟女| 久久久国产成人精品二区 | 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 99在线人妻在线中文字幕 | 在线观看一区二区三区激情| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| 免费一级毛片在线播放高清视频 | 国产精品亚洲一级av第二区| 在线观看免费视频网站a站| 搡老岳熟女国产| 国产单亲对白刺激| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 身体一侧抽搐| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 久久性视频一级片| 国产亚洲欧美98| av网站在线播放免费| 免费一级毛片在线播放高清视频 | 高清黄色对白视频在线免费看| 99香蕉大伊视频| 欧美精品av麻豆av| 成年版毛片免费区| 国产精品99久久99久久久不卡| 一级a爱片免费观看的视频| 黄片小视频在线播放| 少妇裸体淫交视频免费看高清 | 欧美日韩视频精品一区| 久久精品国产99精品国产亚洲性色 | 老司机深夜福利视频在线观看| 美女视频免费永久观看网站| 日本欧美视频一区| 欧美黄色片欧美黄色片| 99精国产麻豆久久婷婷| 男女下面插进去视频免费观看| 99精国产麻豆久久婷婷| 母亲3免费完整高清在线观看| 久久99一区二区三区| 色精品久久人妻99蜜桃| 性少妇av在线| 色精品久久人妻99蜜桃| 日本撒尿小便嘘嘘汇集6| 高潮久久久久久久久久久不卡| 天堂俺去俺来也www色官网| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯 | 激情视频va一区二区三区| av中文乱码字幕在线| 日韩三级视频一区二区三区| 国产欧美日韩一区二区三| 91av网站免费观看| 无人区码免费观看不卡| 婷婷丁香在线五月| 久久香蕉激情| 一级片'在线观看视频| 成熟少妇高潮喷水视频| 国产精品电影一区二区三区 | 午夜福利,免费看| 国产一卡二卡三卡精品| 国内毛片毛片毛片毛片毛片| 中国美女看黄片| 18禁裸乳无遮挡动漫免费视频| 两个人看的免费小视频| 久久精品亚洲熟妇少妇任你| 国产亚洲精品久久久久久毛片 | 免费在线观看亚洲国产| 精品第一国产精品| 一本综合久久免费| 国产精品久久久久久精品古装| 美女午夜性视频免费| 色94色欧美一区二区| 99香蕉大伊视频| 国产亚洲精品一区二区www | 韩国av一区二区三区四区| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片| av电影中文网址| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 在线观看日韩欧美| 91在线观看av| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻在线不人妻| 又大又爽又粗| 91在线观看av| 在线免费观看的www视频| 午夜老司机福利片| 女性被躁到高潮视频| 久久久精品免费免费高清| 中文欧美无线码| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 亚洲精品久久午夜乱码| 99re在线观看精品视频| 欧美日韩视频精品一区| 香蕉久久夜色| 1024香蕉在线观看| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区黑人| 91老司机精品| 国产淫语在线视频| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 18在线观看网站| 欧美激情极品国产一区二区三区| 亚洲午夜理论影院| 窝窝影院91人妻| 国产高清videossex| 成熟少妇高潮喷水视频| 国产1区2区3区精品| 91老司机精品| 女人被狂操c到高潮| 在线av久久热| 中文欧美无线码| 精品国产乱码久久久久久男人| 午夜福利在线观看吧| 免费在线观看亚洲国产| av天堂久久9| 91在线观看av| 一二三四在线观看免费中文在| 日韩免费av在线播放| 久久精品国产清高在天天线| 狠狠婷婷综合久久久久久88av| 国产精品美女特级片免费视频播放器 | 欧美中文综合在线视频| 99国产精品一区二区三区| 国产男靠女视频免费网站| 欧美黑人欧美精品刺激| 精品福利永久在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲三区欧美一区| 在线观看免费视频网站a站| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 人成视频在线观看免费观看| 久久久国产一区二区| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 午夜影院日韩av| 男女下面插进去视频免费观看| 中出人妻视频一区二区| 午夜日韩欧美国产| 女性被躁到高潮视频| 国产高清视频在线播放一区| 啦啦啦 在线观看视频| 91国产中文字幕| 99热网站在线观看| 好看av亚洲va欧美ⅴa在| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 亚洲少妇的诱惑av| 久久中文字幕一级| 精品久久久久久电影网| 看片在线看免费视频| 不卡一级毛片| 黄色视频不卡| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| 999久久久精品免费观看国产| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产一区二区精华液| 老司机靠b影院| 欧美在线一区亚洲| 欧美人与性动交α欧美软件| 人人妻人人澡人人爽人人夜夜| 法律面前人人平等表现在哪些方面| 日韩制服丝袜自拍偷拍| 青草久久国产| 手机成人av网站| 精品乱码久久久久久99久播| 黄色片一级片一级黄色片| 久久久国产一区二区| 国产三级黄色录像| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 香蕉国产在线看| 91国产中文字幕| bbb黄色大片| 无限看片的www在线观看| 两个人免费观看高清视频| 国产成人影院久久av| 国产日韩一区二区三区精品不卡| 国产成人欧美| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 日日爽夜夜爽网站| 免费看a级黄色片| 啪啪无遮挡十八禁网站| 免费不卡黄色视频| 欧美激情久久久久久爽电影 | 最新的欧美精品一区二区| 久久久久国产一级毛片高清牌| 久久国产亚洲av麻豆专区| 悠悠久久av| 欧美激情 高清一区二区三区| 久久精品成人免费网站| 伦理电影免费视频| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| av网站免费在线观看视频| 91老司机精品| av天堂在线播放| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 热99国产精品久久久久久7| 欧美av亚洲av综合av国产av| 午夜亚洲福利在线播放| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡| 久久中文看片网| 精品熟女少妇八av免费久了| 日韩免费高清中文字幕av| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| videos熟女内射| 欧美日韩福利视频一区二区| 在线观看www视频免费| 啪啪无遮挡十八禁网站| 男人舔女人的私密视频| 亚洲久久久国产精品| 成年人黄色毛片网站| 香蕉久久夜色| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 黄色怎么调成土黄色| 婷婷精品国产亚洲av在线 | av不卡在线播放| avwww免费| 18禁裸乳无遮挡免费网站照片 | 一级毛片女人18水好多| 人人妻,人人澡人人爽秒播| 大型av网站在线播放| 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网| 满18在线观看网站| 一级毛片女人18水好多| 国产在线观看jvid| а√天堂www在线а√下载 | 一本一本久久a久久精品综合妖精| 无人区码免费观看不卡| 少妇粗大呻吟视频| 亚洲熟女精品中文字幕| 午夜福利影视在线免费观看| 久久香蕉精品热| 窝窝影院91人妻| 日本五十路高清| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 国产精品综合久久久久久久免费 | 久久精品91无色码中文字幕| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 久久午夜亚洲精品久久| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 国产区一区二久久| 国产视频一区二区在线看| 国产欧美亚洲国产| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 亚洲中文日韩欧美视频| 久久狼人影院| 法律面前人人平等表现在哪些方面| 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲| 多毛熟女@视频| 在线观看免费视频网站a站| 亚洲综合色网址| 波多野结衣av一区二区av| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 激情视频va一区二区三区| 超色免费av| 亚洲五月色婷婷综合| 少妇裸体淫交视频免费看高清 | 丰满的人妻完整版| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 夫妻午夜视频| 久久精品aⅴ一区二区三区四区| 国产男女内射视频| 国产精品香港三级国产av潘金莲| 成人18禁在线播放| 在线免费观看的www视频| 丰满迷人的少妇在线观看| 精品国产美女av久久久久小说| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 黄色怎么调成土黄色| 天堂动漫精品| av国产精品久久久久影院| www.999成人在线观看| 黄片播放在线免费| 国产精品九九99| 99国产精品99久久久久| 俄罗斯特黄特色一大片| 女性被躁到高潮视频| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费 | 成人永久免费在线观看视频| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 如日韩欧美国产精品一区二区三区| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 午夜视频精品福利| 亚洲精品自拍成人| 9191精品国产免费久久| 国产91精品成人一区二区三区| 亚洲成国产人片在线观看| 老司机靠b影院| 亚洲五月天丁香| 精品少妇一区二区三区视频日本电影| 成年人黄色毛片网站| 美女视频免费永久观看网站| 亚洲人成伊人成综合网2020| 久久久国产欧美日韩av| 亚洲avbb在线观看| a级片在线免费高清观看视频| 国产精品一区二区免费欧美| 国产午夜精品久久久久久| 高潮久久久久久久久久久不卡| 啦啦啦 在线观看视频| 一区二区三区国产精品乱码| 黄色视频,在线免费观看| 无限看片的www在线观看| 久久99一区二区三区| 午夜激情av网站| a在线观看视频网站| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 伊人久久大香线蕉亚洲五| 无人区码免费观看不卡| 丁香欧美五月| 国产人伦9x9x在线观看| 黄色视频不卡| 中文字幕精品免费在线观看视频| 电影成人av| 亚洲三区欧美一区| 日本一区二区免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国内久久婷婷六月综合欲色啪| 人妻一区二区av| 中文字幕av电影在线播放| 国产一区二区三区在线臀色熟女 | 久久久国产欧美日韩av| 国产精品欧美亚洲77777| 在线免费观看的www视频| av国产精品久久久久影院| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| www.自偷自拍.com| 色综合欧美亚洲国产小说| 他把我摸到了高潮在线观看| 亚洲 欧美一区二区三区| 黑丝袜美女国产一区| 国产精品久久久久成人av| 男女下面插进去视频免费观看| 国产一区二区三区综合在线观看| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 精品卡一卡二卡四卡免费| 国产欧美日韩精品亚洲av| 99久久综合精品五月天人人| ponron亚洲| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 久久中文字幕人妻熟女| 国产激情欧美一区二区| 人人妻人人爽人人添夜夜欢视频| 黄色丝袜av网址大全| 久久亚洲精品不卡| 女人被狂操c到高潮| 日韩欧美国产一区二区入口| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 欧美不卡视频在线免费观看 | 好男人电影高清在线观看| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 免费观看精品视频网站| 在线免费观看的www视频| 99国产精品99久久久久| cao死你这个sao货| 飞空精品影院首页| 欧美一级毛片孕妇| 日本精品一区二区三区蜜桃| 国产亚洲精品一区二区www | 乱人伦中国视频| 美女扒开内裤让男人捅视频| 国产一区二区三区综合在线观看| av电影中文网址| 一边摸一边抽搐一进一小说 | 久久久久国产一级毛片高清牌| 国产一卡二卡三卡精品| 精品卡一卡二卡四卡免费| 亚洲av欧美aⅴ国产| 老司机靠b影院| 可以免费在线观看a视频的电影网站| 亚洲视频免费观看视频| 美女福利国产在线| 亚洲国产欧美一区二区综合| 国产99白浆流出| 在线av久久热| 亚洲男人天堂网一区| 天天躁日日躁夜夜躁夜夜| 中国美女看黄片| 欧美+亚洲+日韩+国产| 国产亚洲欧美精品永久| 国产精品二区激情视频| 高清欧美精品videossex| 免费看十八禁软件| 欧美+亚洲+日韩+国产| www.精华液| 国产一区二区激情短视频| 成年人午夜在线观看视频| 亚洲熟女精品中文字幕| 免费少妇av软件| 50天的宝宝边吃奶边哭怎么回事| 久久人妻熟女aⅴ| 色老头精品视频在线观看| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 亚洲成人免费电影在线观看| 亚洲性夜色夜夜综合| 精品久久久精品久久久| 国产亚洲精品久久久久5区| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 亚洲在线自拍视频| 久久久精品免费免费高清| 黄色丝袜av网址大全| 国产精品二区激情视频| 亚洲精品久久午夜乱码| 欧美午夜高清在线| 精品第一国产精品| 久久精品亚洲熟妇少妇任你| 日韩欧美一区二区三区在线观看 | 黄片大片在线免费观看| 在线观看www视频免费| 一区在线观看完整版| 亚洲专区中文字幕在线| 久久香蕉激情| 乱人伦中国视频| 国产97色在线日韩免费| 亚洲美女黄片视频| 免费不卡黄色视频| 在线观看一区二区三区激情| 熟女少妇亚洲综合色aaa.| 丰满的人妻完整版| 9色porny在线观看| 欧美黑人精品巨大| 三级毛片av免费| 免费黄频网站在线观看国产| 91麻豆av在线| 一进一出好大好爽视频| 脱女人内裤的视频| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边抽搐一进一出视频| 在线观看午夜福利视频| 国产亚洲一区二区精品| 久99久视频精品免费| 嫩草影视91久久| 国产单亲对白刺激| 一区二区日韩欧美中文字幕| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 一级片免费观看大全| a级毛片黄视频| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 18在线观看网站| 午夜视频精品福利| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 9热在线视频观看99| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 日本撒尿小便嘘嘘汇集6| 91字幕亚洲| av片东京热男人的天堂| 久久亚洲精品不卡| 欧美大码av| 日韩三级视频一区二区三区| 欧美乱色亚洲激情| 午夜福利在线观看吧| 欧美 日韩 精品 国产| 欧美丝袜亚洲另类 | 精品人妻1区二区| 欧美丝袜亚洲另类 | 中文字幕人妻丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| 国产精品一区二区在线不卡| 亚洲九九香蕉| 一进一出抽搐gif免费好疼 | 亚洲欧美日韩另类电影网站| 夜夜夜夜夜久久久久| 成年人免费黄色播放视频| 亚洲欧美日韩另类电影网站| 亚洲第一欧美日韩一区二区三区| 成年人免费黄色播放视频| 女同久久另类99精品国产91| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 在线观看www视频免费| 亚洲国产中文字幕在线视频| 欧美日韩亚洲综合一区二区三区_| 老汉色∧v一级毛片| av一本久久久久|