• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence

    2018-03-07 06:25:56YiXueFaningDangRongjianLiLiumingFanQinHaoLinMuYuanyuanXia
    Computers Materials&Continua 2018年1期

    Yi Xue, Faning Dang Rongjian Li Liuming Fan Qin Hao, Lin MuYuanyuan Xia

    1 Introduction

    Coal usually occurs in deep geo-stress and gas coupled environment. When it is affected by external factors such as mining disturbance, the initiation, expansion and coalescence of microcracks will emerge in coal, and the coal will be damaged and fractured [Wold,Connell and Choi (2008); Cao and Zhou (2015); Xue, Gao and Liu (2015); Salmi, Nazem and Karakus (2016); Newman, Agioutantis and Leon (2017)]. Damage causes the degradation of coal mechanical performance, and significantly changes the seepage performance [Durucan and Edwards (1986); Xue, Ranjith, Gao et al. (2017); Domingues,Baptista and Diogo (2017)]. In addition, the coal mechanical properties and permeability changes will affect the behavior of fluid seepage in coal, and then affect the distribution of effective stress and pore pressure in coal. In turn, coal stress and pore pressure changes will lead to changes in effective stress, which leads to the further development of the internal damage of coal. This mutual influence is seepage-stress-damage coupled influence [Zhu and Tang (2004); Li, Yang, Liang et al. (2011); Xue, Zhu, Zhang et al.(2016); Cao, Du, Xu et al. (2017)].

    The excavation process of underground coal seam is a dynamic process comprised of a series of coupled effects and interactions such as coal deformation, gas flow, coal damage and the evolution of porosity and permeability. The tunnel excavation has been studied comprehensively. Cao et al. [Cao, Li, Tao et al. (2016)] explored the dynamic unloading excavation process by PFC after verifications against the theoretical results and studied the characteristics of unloading waveform under high initial stress under various ratios of horizontal and vertical in situ stresses. Zhang et al. [Zhang, Xu, Wang et al. (2016)]developed a coupled elastoplastic damage model for brittle rocks and deduced the constitutive relationships under three different loading conditions: damage, plastic and coupled plastic damage. Ren et al. [Ren, Zuo, Xie et al. (2014)] presented an updated method for finding the optimal shape of an underground excavation using the latest bi-directional evolutionary structural optimization techniques and discussed its engineering application through illustrated examples. However, the coal mass is a special rock material. It has a strong adsorption and heterogeneity characteristics, unlike sandstone, granite, marble and other rock materials. A fewer publications are available to account for the coupled effects with adsorption and heterogeneity characteristics.

    Considering the heterogeneity of mechanical parameters of coal material, a seepage-stress-damage coupled model is established for analyzing the fracture evolution of coal. The numerical solution of the model is achieved through finite element software and the correctness of the model is verified by an example.

    2 Coupled seepage-stress-damage model

    2.1 Parameter assignment method of coal based on statistical distribution

    Coal is a mixture including different mineral particles, cementation, pore fissure defects and so on. Therefore, the properties distribution of different mesoscopic elements is usually nonuniform in coal material. The heterogeneity of coal materials is very important for simulating the localized fracture phenomenon of coal. In this paper, the statistical mathematics method is used to describe the heterogeneity of physical and mechanical parameters of coal materials.

    In order to describe the heterogeneity of coal materials, it is assumed that coal is consisted of a large number of microscopic elements. Assuming that the mechanical properties of these units obey Weibull distribution, the distribution can be defined according to the following density distribution function.

    Where u satisfies the numerical value of the Weibull distribution function,0uis a parameter related to the average value of all the unit parameters, and the shape parameter m gives the shape of the distribution density function.

    Figure 1: Distribution of mechanical properties in coal

    Fig. 1 gives the distribution of the mechanical properties of microscopic elements of coal material under different homogenization coefficients.According to the basic properties ofthe Weibull distribution, the greater the parameter,better the uniformity of the material unit, and vice versa. Therefore and are called the distribution parameters of materials. Using the Eq. (1), the inhomogeneous parameters of the coal materials can be generated in the numerical calculation. These parameters are closer to the true sample parameters in the laboratory test.

    2.2 Deformable control equation

    According to the theory of porous elasticity, the unit of coal satisfies the following equilibrium equation

    The coal is regarded as a porous medium, and the coal element satisfies the constitutive equation. It can be expressed by stress, strain and pore pressure as follows

    where is the shear modulus of coal,is the Poisson's ratio of coal,is the symbol of Kronecker,is the Biot coefficient of coal,;is the bulk modulus of coal matrix,is the volume modulus of coal,is the component of strain tensor, andis the component of stress tensor.

    The following geometric equations are obtained according to the continuous deformation condition:

    The stress equilibrium equation can be expressed by displacement, pore pressure and adsorption expansion

    2.3 Gas seepage equation

    The seepage of gas follows the law of conservation of mass.

    where m is the unit volume for the gas in the coal;is the gas density;is the Darcy velocity;is the source or sink; t is the time variable. The mass of the gas m is composed of free term and adsorption term, which can be expressed as:

    Under the function of pressure gradient, the gas seepage equation in the fractured medium is as follows

    Because of the compressibility of the gas, the relation between the gas density and the pressure is:

    The continuity equation of gas seepage can be obtained as

    2.4 Permeability model of coal

    The basic skeleton of coal is deformed under the affection of gas pressure, which changes the porosity of coal, and affects the seepage of gas in coal. The coal is subjected to the double action of external stress and pore pressure. According to the principle of Terzaghi effective stress, the following equation can be obtained

    The change rate of porosity is as follows:

    Then the following equation can be obtained:

    The permeability of the coal body is related to the porosity, which can be expressed by the Kozeny-Carman equation:

    where φis the porosity, C is the KC constant, which is associated with fracture tortuosity; S is the fracture surface area of porous medium per unit volume.

    In the elastic stage, when the coal body deforms under the effect of external force, C and S are regarded as constants. And for coal seam, 1φ, permeability can be expressed as cubic law

    The permeability of coal can be expressed as

    The porosity of coal can be expressed in strain forms

    Eqs. (19) and (20) are permeability models in stress form, Eq. (23) is permeability model in strain form, both of which can effectively evaluate the permeability evolution characteristics of coal seam. According to the theory of elastic porous media, these two kinds of permeability models can be deduced and verified by each other.

    2.5 Analysis of damage theory

    The maximum tensile stress criterion is used to determine the tensile damage of coal, and the Mohr-Coulomb criterion is used to determine the shear damage of coal, as shown in Fig. 2.

    Figure 2: The constitutive law of coal under uniaxial stress condition

    Based on the strain, the damage variable of coal units can be expressed using the following expression:

    According to the elastic damage theory, the elastic modulus of coal under damage state can be expressed as follows:

    When the coal is damaged, the effect of the coal damage on the permeability can be described as

    2.6 Numerical realization of computational model

    In this paper, a coupled seepage-stress-damage model for coal is proposed, which regards damage as a process. One of the most effective methods to solve the problem of fluid-solid coupled problem is to analyze it by using the multi-physical field coupled software COMSOL Multiphsics. In this paper, COMSOL Multiphsics and MATLAB are used to achieve the coupled solution of solid field, fluid field and damage field. The calculation process is shown in Fig. 3.

    Figure 3: Flowchart for computational procedure of the approach

    3 Numerical simulation of coupled process of coal

    3.1 Example I: compression seepage coupled process of fractured coal

    First, we use the proposed model to carry out the compression seepage coupled numerical simulation test of standard coal samples, and compare the numerical simulation results with the existing test results to verify the effectiveness of this model in simulating the deformation, fracture and seepage behavior of coal.

    The basic model of numerical experiments is shown in Fig. 4. The size of the simulated coal sample is 50 mm×100 mm. In order to characterize the heterogeneity of coal materials, it is assumed that the initial mechanical parameters and seepage parameters of coal meet the Weibull distribution. The initial attribute parameters of each mesoscopic unit are generated by Monte-Carlo stochastic simulation method. The spatial distribution of the initial elastic modulus of coal is shown in Fig. 5. The mechanical parameters and percolation parameters used in the calculation are shown in Tab. 1. Similar with the conventional triaxial loading process, a constant confining pressure is applied on the left and right boundaries of the model, the bottom boundary is fixed. The axial load increment) is applied on the top boundary to control the loading until the sample completely loses the bearing capacity. The seepage behavior in numerical experiments is simulated by steady state seepage model. The left and right boundary of the sample is impermeable, and the upper and lower boundary is applied constant gas pressure. The lower boundary is atmospheric pressure and the pressure difference isnumerical simulation is consistent with the conventional coal gas seepage test in the laboratory.

    Figure 4: Calculation model of coal specimen under loading

    Figure 5: Heterogeneous properties of coal medium

    Table 1: Material parameters for numerical tests of coal under loading

    In order to investigate the damage, fracture and permeability evolution law of coal specimen during axial loading process, the homogeneous degree coefficient of initialelastic modulus distribution of coal specimen is . During the loading process, the specimen is subjected to the confining pressureand gas pressure.Fig. 6 shows the damage distribution of coal during the loading process. The positive value of the color bar indicates the shear failure and the negative value indicates the tensile failure.

    The whole loading process of coal samples can be divided into four stages: linear elastic stage, plastic deformation stage, stress drop stage and residual strength stage. Each stage is related to the deformation of coal and the initiation and development of internal cracks.The crack initiation of coal can be seen from the figures. In the initial loading process, a random distribution of damage points is found inside the specimen. Then, with the loading of stress, the random distribution of the damage zone continues to expand and converge. The failure of coal is mainly shear failure. Finally, a macroscopic fracture zone,which is composed of massive fracture units, is formed. This macroscopic fracture zone is consistent with phenomena observed in a large number of coal mechanics experiments.Therefore, the seepage-stress-damage coupled model can be used to simulate the failure process of coal under compression conditions.

    Figure 6: The fracture evolution process of coal specimen during the loading process

    Fig. 7 is the permeability distribution during the loading process. It can be seen that the damage and destruction of coal resulted in the increase of permeability. However,because there was no obvious breakthrough in coal in the initial stage, the macroscopic flow behavior of the coal sample was not violent. Gas gas flows rapidly in the macroscopic shear zone, while the area outside the shear zone is comparatively slow due to the smaller permeability coefficient.

    Fig. 8 gives a cloud map of the vectorial field distribution after the specimen is destroyed.The size of the arrow indicates the velocity of the flow field. It can be seen that the gas flow is mainly along the high permeability region, that is, the damaged region, and the flow in the low permeability region is slow. The damage of coal resulted in a large increase in permeability. The numerical simulation simulated the change of coal sample from the random distribution of mesoscopic damage to macroscopic fracture throug self organization evolution process and the local characteristics in the evolution of seepage field. These effectively prove the validity of the simulation model of fracture process and corresponding seepage behavior of coal.

    Figure 7: The permeability evolution process of coal specimen during the loading process

    Figure 8: Distribution of flow vector in coal specimen

    Figure 9: Calculation model of coal specimen with circular hole under loading process

    3.2 Example Ⅱ: numerical simulation of failure process of coal with hole

    The model is used to simulate numerical compression experiment of square coal with circular hole. The parameters in Tab. 1 are still used in this calculation. The size of the coal is 1000 mm×1000 mm, the circular hole is located at the center of the coal and the diameter is 20 mm. The schematic diagram of the model is shown in Fig. 9. The stress loading mode of coal is biaxial compression. The vertical stress and horizontal stress are increased uniformly at the same time to simulate the hydrostatic pressure loading method,The crack propagation of the coal during the loading process is shown in Fig. 10. It can be seen that under the action of horizontal and vertical stresses, the coal are subjected to the action of hydrostatic pressure. According to the elastic mechanics theory, when the hole size is far smaller than the size of the elastic model and the hole distance is far away from the boundary of model, the stress concentration will appear around the hole under the function of uniform stress. The analytical solution of coal isare the main stresses in two directions.

    According to the Mohr-Coulomb criterion, it is known that the coal reached the damage strength firstly at the edge of the hole. In the numerical simulation results, the damage first appears around the circular hole. Due to the heterogeneity of the mechanical parameters of the coal units, some units on the edge of the hole first reach the criterion of failure criterion and destroy.

    The random distribution of the material properties of the coal leads to the random occurrence of the damage point in the coal. Subsequently, due to the failure of these units,the bearing capacity was further reduced and the damage was further developed, and obvious crack expansion appeared. It can be seen that under the action of confining pressure, the coal have been subjected to pressure shear failure. Due to the randomness of the mechanical properties distribution of coal, the number and direction of the cracks are also random distribution. This is consistent with the failure characteristics of the coal test in laboratory and it verifies the correctness of the numerical model.

    Figure 10: The fracture evolution process of coal specimen during the loading process

    4 Conclusions

    Based on the damage mechanics, elastic mechanics and seepage mechanics theory, we consider the effect of damage on the mechanical property and seepage characteristic of coal, and establish the seepage-stress-damage coupled model of coal in the representative elementary volume (REV) level. The numerical model is solved through the finite element software COMSOL combined with MATLAB.

    The numerical model establishes the relationship between microcosmic damage evolution and macroscopical fracture and simulates the whole process of coal from microcosmic damage to macroscopical fracture, and the dynamic simulation of fluid flow in this process.

    The compression seepage coupled numerical experiment is conducted in this paper and the numerical results show that in the initial loading process, a random distribution of damage points is found inside the specimen. Then, with the loading of stress, the random distribution of the damage zone continues to expand and converge, finally forming a macroscopic fracture zone. These effectively prove the validity of the simulation model of fracture process and corresponding seepage behavior of coal.

    Cao, W.; Li, X.; Tao, M.; Zhou, Z. (2016): Vibrations induced by high initial stress release during underground excavations. Tunnelling and Underground Space Technology, vol.53, pp. 78-95.

    Cao, Z. Z.; Zhou, Y. J. (2015): Research on coal pillar width in roadway driving along goaf based on the stability of key block. Computers, Materials & Continua, vol. 48, no. 2,pp. 77-90.

    Cao, Z. Z.; Du, F.; Xu, P.; Lin, H. X.; Xue, Y. et al. (2017): Control Mechanism of Surface Subsidence and Overburden Movement in Backfilling Mining based on Laminated Plate Theory. Computers, Materials & Continua, vol. 53, no. 3, pp. 187-202.

    Domingues, M. S.; Baptista, A. L.; Diogo, M. T. (2017): Engineering complex systems applied to risk management in the mining industry. International Journal of Mining Science and Technology, vol. 27, no. 4, pp. 611-616.

    Durucan, S.; Edwards, J. S. (1986): The effects of stress and fracturing on permeability of coal. Mining Science and Technology, vol. 3, no. 3, pp. 205-216.

    Li, L. C.; Yang, T. H.; Liang, Z. Z.; Zhu, W. C.; Tang, C. A. (2011): Numerical investigation of groundwater outbursts near faults in underground coal mines. International Journal of Coal Geology, vol. 85, no. 3, pp. 276-288.

    Newman, C.; Agioutantis, Z.; Leon, G. B. J. (2017): Assessment of potential impacts to surface and subsurface water bodies due to longwall mining. International Journal of Mining Science and Technology, vol. 27, no. 1, pp. 57-64.

    Ren, G.; Zuo, Z. H.; Xie, Y. M.; Smith, J. V. (2014): Underground excavation shape optimization considering material nonlinearities. Computers and Geotechnics, vol. 58, pp. 81-87.

    Salmi, E. F.; Nazem, M.; Karakus, M. (2017): The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines. International Journal of Rock Mechanics and Mining Sciences, vol. 91, pp. 59-71.

    Wold, M. B.; Connell, L. D.; Choi, S. K. (2008): The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining. International Journal of Coal Geology, vol. 75, no. 1, pp. 1-14.

    Xue, S.; Zhu, X.; Zhang, L.; Zhu, S.; Ye, G. et al. (2016): Research on the damage of porosity and permeability due to perforation on sandstone in the compaction zone.Computers, Materials & Continua, vol. 51, no. 1, pp. 21-42.

    Xue, Y.; Gao, F.; Liu, X. G. (2015): Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining. Natural Hazards, vol. 79,no. 2, pp. 999-1013.

    Xue, Y.; Cao, Z. Z., Cai, C. Z.; Dang, F. N.; Hou, P. et al. (2017): A fully coupled thermo-hydro-mechanical model associated with inertia and slip effects. Thermal Science,vol. 21, no. S1, pp. 259-266.

    Zhang, J. C.; Xu, W. Y.; Wang, H. L.; Wang, R. B.; Meng, Q. X. et al. (2016): A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation. International Journal of Rock Mechanics and Mining Sciences, vol. 84, pp. 130-141.

    Zhu, W. C.; Tang, C. A. (2004): Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering, vol. 37, no. 1, pp. 25-56.

    少妇被粗大的猛进出69影院| 狠狠婷婷综合久久久久久88av| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 成年人免费黄色播放视频| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 丰满饥渴人妻一区二区三| av一本久久久久| 精品熟女少妇八av免费久了| 美女高潮到喷水免费观看| 女人久久www免费人成看片| 久久久久精品人妻al黑| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 多毛熟女@视频| 一本大道久久a久久精品| 国产视频一区二区在线看| 国产深夜福利视频在线观看| 久久久国产精品麻豆| 国产女主播在线喷水免费视频网站| 日韩伦理黄色片| 青春草亚洲视频在线观看| 亚洲一区中文字幕在线| 在线观看一区二区三区激情| 久久中文字幕一级| 成人国语在线视频| 亚洲欧美一区二区三区久久| 18禁观看日本| 黄色一级大片看看| 亚洲欧洲国产日韩| 黑人欧美特级aaaaaa片| 99热全是精品| 国产成人一区二区在线| 亚洲一区二区三区欧美精品| 国产精品三级大全| 97精品久久久久久久久久精品| 国产精品麻豆人妻色哟哟久久| 亚洲精品美女久久av网站| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 99久久99久久久精品蜜桃| 欧美成人精品欧美一级黄| 国产淫语在线视频| 欧美在线一区亚洲| 夫妻午夜视频| 一级黄片播放器| 欧美97在线视频| 国产av精品麻豆| 少妇人妻 视频| 欧美日韩视频高清一区二区三区二| 久热爱精品视频在线9| 欧美97在线视频| 国产伦人伦偷精品视频| 久久久久视频综合| 2021少妇久久久久久久久久久| 午夜免费成人在线视频| 五月开心婷婷网| 亚洲美女黄色视频免费看| av天堂久久9| 一级a爱视频在线免费观看| 久久狼人影院| 天堂中文最新版在线下载| 午夜av观看不卡| 亚洲av电影在线观看一区二区三区| 人妻人人澡人人爽人人| 国产日韩欧美在线精品| 美女大奶头黄色视频| 久久久国产一区二区| av不卡在线播放| 亚洲精品一区蜜桃| 亚洲九九香蕉| 国产精品人妻久久久影院| 无限看片的www在线观看| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av高清一级| 制服诱惑二区| 午夜福利视频精品| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| 自拍欧美九色日韩亚洲蝌蚪91| netflix在线观看网站| 国产高清视频在线播放一区 | 久久国产精品大桥未久av| 久9热在线精品视频| 精品一区二区三区av网在线观看 | 精品国产乱码久久久久久男人| bbb黄色大片| 国精品久久久久久国模美| 妹子高潮喷水视频| 国产在线视频一区二区| 亚洲伊人久久精品综合| 免费在线观看视频国产中文字幕亚洲 | 黑人猛操日本美女一级片| 波野结衣二区三区在线| 嫩草影视91久久| 久久99精品国语久久久| 亚洲熟女毛片儿| 美女福利国产在线| 国产成人影院久久av| 午夜免费男女啪啪视频观看| 欧美成人午夜精品| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩综合在线一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 爱豆传媒免费全集在线观看| 91精品伊人久久大香线蕉| a 毛片基地| 每晚都被弄得嗷嗷叫到高潮| 久久人人97超碰香蕉20202| h视频一区二区三区| 国产精品九九99| 天天添夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 欧美成狂野欧美在线观看| 日本色播在线视频| 狂野欧美激情性xxxx| 亚洲一区二区三区欧美精品| 国产黄频视频在线观看| 亚洲伊人久久精品综合| 日韩av不卡免费在线播放| 国产在线免费精品| 一区福利在线观看| 丰满饥渴人妻一区二区三| 美女中出高潮动态图| 男人添女人高潮全过程视频| 91字幕亚洲| 亚洲av美国av| 色精品久久人妻99蜜桃| 人人妻人人澡人人看| 国产精品一区二区在线不卡| 欧美日韩av久久| 国产老妇伦熟女老妇高清| 久久久久久久久免费视频了| 欧美另类一区| netflix在线观看网站| 老司机亚洲免费影院| 午夜精品国产一区二区电影| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 欧美人与性动交α欧美软件| h视频一区二区三区| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 国产一级毛片在线| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 99久久人妻综合| 国产av精品麻豆| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影 | 久久中文字幕一级| 国产一区二区 视频在线| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 亚洲av日韩精品久久久久久密 | 亚洲三区欧美一区| 欧美黑人精品巨大| 免费不卡黄色视频| 麻豆乱淫一区二区| 人体艺术视频欧美日本| 丰满迷人的少妇在线观看| 18禁观看日本| 一级,二级,三级黄色视频| 精品少妇久久久久久888优播| av线在线观看网站| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品日韩在线中文字幕| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| av在线老鸭窝| 国产成人影院久久av| 美女福利国产在线| 青春草视频在线免费观看| 中国美女看黄片| 黄色毛片三级朝国网站| 久热这里只有精品99| 国产精品一国产av| 热99国产精品久久久久久7| 亚洲第一青青草原| 欧美黄色淫秽网站| 国产精品一二三区在线看| 久久久国产精品麻豆| 高清av免费在线| 国产精品一二三区在线看| 精品久久久久久久毛片微露脸 | 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 日本午夜av视频| 一级毛片我不卡| 欧美黑人精品巨大| 成人国语在线视频| 免费看av在线观看网站| 90打野战视频偷拍视频| 美女主播在线视频| 一本色道久久久久久精品综合| 色综合欧美亚洲国产小说| 最新在线观看一区二区三区 | 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| 国产精品一区二区在线不卡| www.熟女人妻精品国产| 精品熟女少妇八av免费久了| av视频免费观看在线观看| 日本五十路高清| 黄色 视频免费看| 在线观看www视频免费| 欧美亚洲日本最大视频资源| 在线精品无人区一区二区三| 69精品国产乱码久久久| 免费一级毛片在线播放高清视频 | 日韩精品免费视频一区二区三区| 色网站视频免费| 国产成人91sexporn| 免费在线观看日本一区| 脱女人内裤的视频| 日韩中文字幕欧美一区二区 | 亚洲五月婷婷丁香| 亚洲精品乱久久久久久| 黄片播放在线免费| 免费不卡黄色视频| 亚洲激情五月婷婷啪啪| 亚洲一区二区三区欧美精品| 纵有疾风起免费观看全集完整版| 国产亚洲精品久久久久5区| 婷婷色综合大香蕉| 多毛熟女@视频| 男人爽女人下面视频在线观看| 在线观看免费视频网站a站| 美女脱内裤让男人舔精品视频| 人成视频在线观看免费观看| 永久免费av网站大全| 最近最新中文字幕大全免费视频 | 少妇粗大呻吟视频| 亚洲,欧美精品.| 免费观看av网站的网址| 性少妇av在线| 国产av国产精品国产| 欧美亚洲日本最大视频资源| 视频区欧美日本亚洲| 首页视频小说图片口味搜索 | 久久久精品国产亚洲av高清涩受| 一二三四在线观看免费中文在| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 久久毛片免费看一区二区三区| 99热网站在线观看| 免费在线观看影片大全网站 | 我要看黄色一级片免费的| 99国产精品免费福利视频| 亚洲精品国产一区二区精华液| 国产爽快片一区二区三区| 母亲3免费完整高清在线观看| 99久久综合免费| 国产又色又爽无遮挡免| 日韩av免费高清视频| 嫩草影视91久久| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸 | 一本大道久久a久久精品| 久久久久精品人妻al黑| 丰满迷人的少妇在线观看| 天天影视国产精品| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 久久天躁狠狠躁夜夜2o2o | 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 亚洲av日韩精品久久久久久密 | av欧美777| 菩萨蛮人人尽说江南好唐韦庄| 建设人人有责人人尽责人人享有的| www.999成人在线观看| 国产精品免费大片| 亚洲精品中文字幕在线视频| 嫁个100分男人电影在线观看 | 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 国产成人精品久久二区二区91| 国产成人精品久久二区二区免费| 黄色视频不卡| 亚洲欧美日韩高清在线视频 | 男人添女人高潮全过程视频| 麻豆国产av国片精品| 桃花免费在线播放| 极品少妇高潮喷水抽搐| 免费在线观看黄色视频的| 在现免费观看毛片| 少妇裸体淫交视频免费看高清 | 久久热在线av| kizo精华| av又黄又爽大尺度在线免费看| 老汉色∧v一级毛片| 五月开心婷婷网| 国产一区二区 视频在线| 成年动漫av网址| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 久久人妻熟女aⅴ| 亚洲成人手机| 国产在线免费精品| 高清不卡的av网站| 宅男免费午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 亚洲 国产 日韩一| 国产av一区二区精品久久| 国产av精品麻豆| 成人亚洲欧美一区二区av| 亚洲成色77777| 成年女人毛片免费观看观看9 | 久久久亚洲精品成人影院| 欧美日韩亚洲综合一区二区三区_| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 我要看黄色一级片免费的| 啦啦啦 在线观看视频| 一区二区av电影网| 老司机亚洲免费影院| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲av成人不卡在线观看播放网 | tube8黄色片| 夫妻性生交免费视频一级片| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 日韩精品免费视频一区二区三区| 欧美精品一区二区大全| 激情五月婷婷亚洲| 国产亚洲av高清不卡| 国产一区二区激情短视频 | 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩高清在线视频 | 亚洲欧美成人综合另类久久久| 欧美国产精品va在线观看不卡| 亚洲成av片中文字幕在线观看| 亚洲综合色网址| 精品少妇一区二区三区视频日本电影| 黑丝袜美女国产一区| 一级毛片 在线播放| 欧美成人午夜精品| av有码第一页| 婷婷丁香在线五月| 天堂俺去俺来也www色官网| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 国产精品国产三级国产专区5o| 国产不卡av网站在线观看| 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 中文字幕人妻丝袜一区二区| 99热国产这里只有精品6| 欧美日韩精品网址| www.av在线官网国产| 首页视频小说图片口味搜索 | 久9热在线精品视频| 超碰97精品在线观看| 91国产中文字幕| 国产精品一二三区在线看| 十八禁人妻一区二区| 国产1区2区3区精品| www.自偷自拍.com| 免费看十八禁软件| 午夜91福利影院| 高清视频免费观看一区二区| 首页视频小说图片口味搜索 | 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 嫩草影视91久久| 久久九九热精品免费| 曰老女人黄片| 18禁国产床啪视频网站| 18在线观看网站| 丰满少妇做爰视频| 熟女av电影| 亚洲免费av在线视频| 国产亚洲av高清不卡| 色94色欧美一区二区| www.熟女人妻精品国产| tube8黄色片| 99精品久久久久人妻精品| 一级黄色大片毛片| 成人手机av| 美女视频免费永久观看网站| 国产极品粉嫩免费观看在线| 97在线人人人人妻| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 精品一区在线观看国产| www.999成人在线观看| 亚洲 欧美一区二区三区| 一二三四社区在线视频社区8| 久久青草综合色| 日韩,欧美,国产一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲第一青青草原| 久久青草综合色| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 亚洲九九香蕉| 女性被躁到高潮视频| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 国产欧美日韩一区二区三区在线| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 制服人妻中文乱码| 男人舔女人的私密视频| 日韩一本色道免费dvd| 好男人视频免费观看在线| 黄片小视频在线播放| 亚洲精品乱久久久久久| 性色av一级| 国产精品成人在线| 伊人久久大香线蕉亚洲五| 少妇人妻久久综合中文| 少妇精品久久久久久久| svipshipincom国产片| 免费看不卡的av| 黄片播放在线免费| 亚洲中文av在线| 久久精品国产综合久久久| 国产有黄有色有爽视频| 777久久人妻少妇嫩草av网站| 亚洲精品久久久久久婷婷小说| 老司机在亚洲福利影院| 久久性视频一级片| 午夜视频精品福利| 极品人妻少妇av视频| 久久久国产欧美日韩av| 多毛熟女@视频| 欧美激情 高清一区二区三区| 精品一区二区三区av网在线观看 | 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 国产精品99久久99久久久不卡| 91精品三级在线观看| 一级毛片 在线播放| 97精品久久久久久久久久精品| 香蕉丝袜av| 高清不卡的av网站| 亚洲第一青青草原| 2018国产大陆天天弄谢| 91成人精品电影| 国产国语露脸激情在线看| 国产精品国产三级国产专区5o| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 考比视频在线观看| 日本wwww免费看| 国产爽快片一区二区三区| 欧美人与性动交α欧美精品济南到| 在现免费观看毛片| 九草在线视频观看| 中国国产av一级| 少妇精品久久久久久久| 中文字幕人妻熟女乱码| 午夜激情av网站| 男女之事视频高清在线观看 | 国产三级黄色录像| 王馨瑶露胸无遮挡在线观看| 大型av网站在线播放| 精品少妇一区二区三区视频日本电影| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 一级片'在线观看视频| 宅男免费午夜| 99国产精品99久久久久| 精品免费久久久久久久清纯 | 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 美女午夜性视频免费| 国产日韩一区二区三区精品不卡| 亚洲国产日韩一区二区| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频 | 久9热在线精品视频| 少妇 在线观看| 国产高清不卡午夜福利| 国产有黄有色有爽视频| 91老司机精品| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 欧美人与性动交α欧美软件| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 久久久欧美国产精品| 日本vs欧美在线观看视频| 亚洲 国产 在线| 国产一区二区三区av在线| 亚洲av综合色区一区| 黄色片一级片一级黄色片| 久久国产精品男人的天堂亚洲| 国产精品欧美亚洲77777| 久久久久精品人妻al黑| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 久久久久网色| 国产熟女午夜一区二区三区| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 777久久人妻少妇嫩草av网站| 成人黄色视频免费在线看| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 日韩,欧美,国产一区二区三区| 咕卡用的链子| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码 | 精品免费久久久久久久清纯 | 国产麻豆69| 久久精品aⅴ一区二区三区四区| 一级毛片女人18水好多 | 一级黄片播放器| 99香蕉大伊视频| 国产日韩欧美在线精品| 精品一区二区三区av网在线观看 | 亚洲中文字幕日韩| 69精品国产乱码久久久| 在线观看人妻少妇| 国产精品欧美亚洲77777| 五月开心婷婷网| 日韩 亚洲 欧美在线| 成人手机av| 91成人精品电影| 婷婷丁香在线五月| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 日韩人妻精品一区2区三区| 中文字幕制服av| 中文字幕色久视频| 美女午夜性视频免费| 久久综合国产亚洲精品| 久久国产精品大桥未久av| 亚洲精品成人av观看孕妇| 成年人黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲情色 制服丝袜| 亚洲九九香蕉| 啦啦啦啦在线视频资源| av网站在线播放免费| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 欧美精品一区二区免费开放| 国产成人系列免费观看| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 欧美日韩黄片免| 婷婷丁香在线五月| 久久鲁丝午夜福利片| a级毛片黄视频| 在线观看免费午夜福利视频| 97在线人人人人妻| 两个人看的免费小视频| 人体艺术视频欧美日本| 久久久精品区二区三区| 精品一区二区三区四区五区乱码 | 91麻豆av在线| 欧美日本中文国产一区发布| 欧美日韩精品网址| 99热网站在线观看| 国产成人一区二区在线| 欧美性长视频在线观看| 亚洲人成电影免费在线| 久久久欧美国产精品| 丰满少妇做爰视频| 只有这里有精品99| 天天影视国产精品| 脱女人内裤的视频| 亚洲黑人精品在线| 亚洲av在线观看美女高潮| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频| 欧美黑人欧美精品刺激| 下体分泌物呈黄色| 极品人妻少妇av视频| 高清视频免费观看一区二区| 丝袜脚勾引网站| 极品人妻少妇av视频| 国产成人一区二区在线| 亚洲一区中文字幕在线| 亚洲欧洲国产日韩| 国产一卡二卡三卡精品| 日本欧美国产在线视频| 国产黄频视频在线观看| 亚洲专区中文字幕在线| 亚洲av成人精品一二三区| 日韩中文字幕视频在线看片| 国产爽快片一区二区三区| 日本一区二区免费在线视频| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 制服诱惑二区| 中文字幕亚洲精品专区| 少妇的丰满在线观看| 嫩草影视91久久|