• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grafting of Acrylamide and Trimethylolpropane Triglycidyl Ether onto the Gellan Gum: Synthesis and Characterization①

    2018-09-10 06:42:04XIONGYaoZHENGMeiXiaCAIKunQiZHANGYiZHANGLongTaoZHENGBaoDong
    結(jié)構(gòu)化學(xué) 2018年8期

    XIONG Yao ZHENG Mei-Xia CAI Kun-Qi ZHANG Yi ZHANG Long-Tao ZHENG Bao-Dong

    ?

    Grafting of Acrylamide and Trimethylolpropane Triglycidyl Ether onto the Gellan Gum: Synthesis and Characterization①

    XIONG Yaoa, b, c②ZHENG Mei-Xiad②CAI Kun-Qia, b, cZHANG Yia, b, cZHANG Long-Taoa, b, c③ZHENG Bao-Donga, b, c

    a(350002)b(350002)c(350002)d(350003)

    To improve the physiochemical properties of gellan gum (GG), GG was modified with acrylamide and trimethylolpropane triglycidyl ether (TTE). The structure and morphology ofmodified GG were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The characteristic peaks at 3448, 2788, 1654, 1411, 1117 and 1044 cm-1in the FT-IR spectrum confirm the modification. The XRD and DSC data revealed that the modification enhanced the thermal stability of GG. SEM analysis suggested the modification introduced a porous microstructure, resulting in the adsorption of crystal violet. In addition, the adsorption capacity, thermal stability and swelling property of GGTTE3 were superior to GGTTE1, GGTTE2, GGTTE4 and GGTTE5.

    gellan gum, modification, acrylamide, trimethylolpropane triglycidyl ether, crystal violet;

    1 INTRODUCTION

    Gellan gum (GG) is a new microbial polysac- charide derived from gram-negative bacterium. Due to its functional properties, such as high transparency and resistance to heat and acidic environments, GG has been widely used in foods, pharmaceutical production, and chemical engineering applications[1].

    There are many hydrophilic groups in the molecular chains of GG. Its property can be custo- mized and extended by hybridization with synthetic polymers. Vijan et al. (2012) synthesized acrylami- de-grafted-GG and applied it in drug delivery[2].Ferris et al. (2013) modified gellan gum for tissue engineering applications[3].Karthika et al. (2015) synthesizedGG-grafted-poly (2-dimethylamino) ethyl methacrylate, and it was evaluated as an adsorbent to remove methyl orange[4]. Karthika et al. (2015) grafted polyaniline (PANI) onto GG to improve its electrical conductivity[5]. Wang et al. (2005) synthesized the composite hydrogel of polyvinyl alcohol-GG-Ca2+with improved network structure and mechanical properties[1]. The chemical modification of polysaccharide and synthetic poly- mer resulted in new materials with obviously enhanced properties.

    Acrylamide (AM) is one of the most important grafting materials. Bakarich et al. (2012) used AM to prepare an interpenetrating polymer network hy- drogel[6]. Karthika et al. (2013) synthesized GG-g- Poly (AAm-co-IA) hydrogel and confirmed that the hydrogel exhibited a reasonable sensitivity to pH and ionic strength[7]. Trimethylolpropane triglycidyl ether (TTE) is usually used as a cross linking agent in the modification of macromolecules[8, 9].Until now, simultaneous grafting of AM and TTE onto GG has not been reported.

    Natural biopolymers are important in adsorption of dyes and metal ions[10-12]. Crystal violet (CV) is a common purple dye for textiles, such as cotton, wool, silk, a histological stain and in Gram’s Method of classifying bacteria. Because of its toxicity, dye removal from textile effluents is essential. The common removal methods include photocatalytic degradation[13],electrochemical methods[14], biode- gradation[15], and adsorption[16, 17]. Removal by adsorption shows the most potential and pros- pect[18].

    In this work, we focus on the synthesis of a new hydrogel. GG was grafted with AM and modified with TTE as a cross-linking agent using potassium persulfate (KPS) as an initiator. The adsorption capacity of the modified GG for CV from aqueous solution was investigated. The modified GG was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron micrograph (SEM). Details on the synthesis, characterization and functional are discussed below.

    2 EXPERIMENTAL

    2. 1 Materials

    GG (CAS number 71010-52-1, Sigma-Aldrich, Co.) was purchased from Fuzhou Bona Biotechno- logy co., LTD. AM (AR, 99.0%, PubChem CID: 6579; C3H5NO) was purchased from Sigma-Aldrich with a molar mass of 71.08.TTE (Tech, PubChem CID: 103015) was purchased from Sigma-Aldrich. All other chemical reagents were of analytical grade.

    2. 2 Modification of GG

    The modified GG was synthesized in a four- necked flask under N2gas environment and equip- ped with mechanical stirring, thermometer, and a reflux condenser. GG (0.3 g) was added to 150 mL distilled water and stirred at room temperature for 60 min until dissolved. Then, AM (10 g) and 85, 170, 260, 345, and 430 μL TTE were added to the GG solution sequentially and stirred under nitrogen. The temperature was held at 60 °C, and 0.3 g of KPS was added and reacted for 4 h to initiate the graft copolymer. The modified GG was precipitated using ethanol. The sediment was filtered, washed thoroughly with ethanol/water mixture (4:1, v/v) for 3 times under high-speed stirring, and soaked in an ethanol/water mixture (4:1, v/v) for 24 h. The modi- fied GG was collected by filtration and lyophiliza- tion. After drying, the modified GG was ground and milled, and sieved through a 250 μm membrane. This was used as GGTTE. For the modified GG, TTE dosages of 85 μL (1%, w/w), 170 μL (2%, w/w), 260 μL (3%, w/w), 345 μL (4%, w/w) and 430 μL (5%, w/w) were recorded as GGTTE1, GGTTE2, GGTTE3, GGTTE4 and GGTTE5, respectively.The percentage of grafting (, %) and that of monomer grafting (, %) were calculated via equations (1) and (2), respectively

    (%) = (1–0)/0× 100% (1)

    where0,1and2are the weight of GG, GGTTE and AM, respectively.

    (%) = (1–0)/2× 100% (2)

    where0,1and2are the weight of GG, GGTTE and AM, respectively.

    2. 3 Crystal violet adsorption

    The GGTTE sample (0.05 g) was transferred into 100 mL CV solution (60 mg/L) and equilibrated at 25 °C for 24 h. The CV working solution was prepared after dilution of the stock solution, which was prepared in distilled water. The concentrations of CV in the initial solution and the residual solutions were determined by recording the absorbance values at 590 nm. The adsorption capacity (Q, mg/g) was calculated via equation (3) and the removal rate (, %) was calculated via equation (4).

    Q= (CC)/m (3)

    = (CC)/× 100% (4)

    whereCandCare the initial and final CV concentrations (mg/L), respectively,is the volume of CV (L), and m is the weight in grams of GGTTE used for adsorption measurements.

    2. 4 Swelling properties of GGTTE

    The swelling properties of GGTTE hydrogel were determined by the water-sorption of dry GGTTE in ultrapure water at 20 °C. The swollen GGTTE was separated by filtering through a mesh nylon bag at predetermined time intervals and weighed immediately. The swelling rations () of GGTTE were calculated via equations (5) and (6), respectively.

    SR= (MM)/M(5)

    SR= (MM)/M(6)

    whereMis the initial weight in gram of dry GGTTE,Mis the weight in gram at equilibrium after water-sorption, andMis the weight in gram at timeduring water-sorption of GGTTE.

    2. 5 Characterization of GGTTE

    2. 5. 1 FT-IR analysis

    FT-IR spectra of GGTTE and GG were recorded in solid state using KBr pellets with a FT-IR spectrometer (Nicolet AVATAR 360) from 400 to 4000 cm-1at 2 cm-1resolution.

    2. 5. 2 XRD analysis

    The different phases of GGTTE and GG were determined using XRD. The XRD measurements were carried out using Empyrean XRD instrument (Rigaku, Miniflex 600) operating in the reflection mode with Curadiation. The X-ray generator was operated at 40 kV and 15 mA. The XRD chromato- grams were recorded over an angular range of 5° to 60° (2) at a scanning speed of 10 °/min and a step size of 0.02 (= 1.5406 nm).

    2. 5. 3 DSC analysis

    DSC measurements were carried out under N2flow (20 mL/min) using NETZSCH DSC 200F3 instruments from 45~500 °C at a heating rate of 10 °C/min. The sample mass was 10 mg.

    2. 5. 4 Microstructure analysis

    The microstructures of GGTTE3 and GG were examined with a SEM. SEM analyses were perfor- med using a JSM-6380LV (JEOL) operated with an accelerating voltage of 15.0 kV. The samples were coated with Au prior to imaging.

    3 RESULTS AND DISCUSSION

    3. 1 Adsorption capacity

    The adsorption capacity of GGTTE for crystal violet is shown in Fig. 1A. TheQof GGTTE1, GGTTE2, GGTTE3, GGTTE4 and GGTTE5 for CV were 33.70 ± 0.46, 31.41 ± 0.55, 33.75 ± 0.42, 32.20 ± 0.14 and 33.55 ± 0.12 mg/g, respectively at 25 °C for 24 h. The maximum ofQwas 33.75 ± 0.42 mg/g with GGTTE3. TheQvalues in this work were higher than those of guar gum grafted by acrylic acid/nanoclay (12.00 mg/g)[19]. Theof GGTTE1, GGTTE2, GGTTE3, GGTTE4 and GGTTE5 for CV were 56.17 ± 0.76, 52.35 ± 0.92, 56.75 ± 0.71, 53.20 ± 0.24 and 55.92 ± 0.20 %, respectively, at 25 °C for 24 h. The maximum ofwas also 56.75 ± 0.71 % with GGTTE3.

    3. 2 Swelling characteristics

    The swelling ratio of GGTTE in ultrapure water was between 17.7 and 41.2, as shown in Fig. 1B. The swelling equilibrium was achieved in 10 min, and the swelling ratio increased with increasing the TTE content. The swelling ratio andQ(mg/g) of GGTTE3 were the highest, compared to GGTTE1, GGTTE2, GGTTE4 and GGTTE5. GGTTE3 samples were used in the subsequent experiments.

    Fig. 1: A: Adsorption crystal violet by GGTTE; B: Swelling rations of GGTTE1 (black line), GGTTE2 (red line), GGTTE3 (blue line), GGTTE4 (rose red line) and GGTTE5 (green line) in ultrapure water at 20 °C calculated using Eqs. (5) and (6). The error bars represent the standard error

    3. 3 FT-IR analysis

    The FT-IR spectra of GG and GGTTE are shown in Fig. 2. There were no obvious spectra changes among GGTTE1, GGTTE2, GGTTE3, GGTTE4 and GGTTE5. To clearly indicate the differencesbetween GGTTE and GG,the spectra of GGTTE3 versus GG were compared. The spectrum of GG had a broad peak at 3422 cm-1due to the stretching vibrations of O–H groups. GG also had peaks at 1609 and 1413 cm-1due to the asymmetrical and symmetrical vibrations of COO- groups. GG had a peak at 1026 cm-1due to the characteristic absorption of C6-OH. Similar observations of GG absorbance spectra have been reported[5, 20]. The GGTTE3 sample had a broad peak at 3448 cm-1due to the stretching vibrations of O–H and N–H. For GGTTE3, the peak at 1654 cm-1was characteristic of absorption of CONH2. The bending vibration peak of C6-OH at 1044 cm-1decreased in the spectrum of GGTTE3. There were some new peaks in GGTTE3, and the peak at 2788 cm-1is due to the stretching vibration of N–H. The peak at 1411 cm-1is due to stretching vibration of C–N, and the absorption spectrum of NH2at 1117 cm-1results from the wagging band of NH2. All the spectral data confirmed the grafting of AM and TTE onto GG.

    Fig. 2. A: FT-IR spectra of GG (black line) and GGTTE3 (red line) from 4000 to 400 cm-1; B: FT-IR spectra of GG (black line), GGTTE1 (red line), GGTTE2 (blue line), GGTTE3 (gray line), GGTTE4 (rose red line) and GGTTE5 (purple line) from 4000 to 400 cm-1

    3. 4 XRD analysis

    XRD spectra of GG and GGTTE are shown in Fig. 3. There were two wide diffraction peaks at 2= 20.073°and 9.534°, which showed the amorphous nature of GG. There was only one wide diffraction peak roughly at 2= 22°, which meat the amor- phous nature of GGTTE. GGTTE1 and GGTTE4, for example, have wide diffraction peaks, and the ratios of peak area to curve area of GGTTE1 and GGTTE4 were larger than that of GG, suggesting that GGTTE had more regularity. The XRD parameters for GGTTE and GG are shown in Table 1. The crystalline interplanar spacing () decreased after GG was modified with AM and TTE, and the crystallinity of GGTTE increased, compared with GG. It could be inferred that the rearrangement in the morphology of GGTTE strengthened the GG intra- and inter-molecular hydrogen bond force and improved the regularity of the molecular arrange- ment. The XRD data confirmed the success of the hydrogel synthesis. The result is consistent with the FT-IR spectra, which indicate the chemical modifier reacted with -OH groups of GG and the polymer chain is regular, thus making it difficult for GGTTE to crystallize.

    Table 1. XRD parameters for GGTTE and GG

    Fig. 3. X-ray diffraction spectra of GG (black line), GGTTE1 (red line) and GGTTE4 (blue line). X-ray generator was operated at 40 kV and 15 mA. The XRD chromatograms were recorded over an angular range of 5° to 60° (2) at a scanning speed of 10 °/min and a step size of 0.02 (= 1.5406 nm)

    3. 5 Thermal analysis

    The DSC thermogram of GG and GGTTE is shown in Fig. 4, in which an endothermic curve at 50.1 °C and an exothermic peak at 253.3 °C were formed, respectively indicative of the moisture loss and thermal decomposition of GG[21, 22].

    Fig. 4. DSC curves of GG (black line), GGTTE1 (red line), GGTTE2 (blue line), GGTTE3 (rose red line), GGTTE4 (green line) and GGTTE5 (purple line) from 45 to 500 °C at a heating rate of 10 °C/min under N2flow (20 mL/min)

    Multiple endothermic peaks were observed in the DSC thermogram of GGTTE. The first broad endo- thermic peak at 50~70 °C is due to the loss in absorbed moisture in the samples. Melting of GGTTE1, GGTTE4 and GGTTE5 samples at 136~150°C as well as GGTTE2 and GGTTE3 samples at 190 °C resulted in the second peak. Furthermore, loss of ammonia was indicated by a third peak at 315.0 °C. The peak at 343.1 °C resulted from the decomposition of the imide group formed via cyclization. The last peak at 430 °C represented the decomposition of cyclized imide groups. Thus, we can conclude that the thermal stability of GG was improved by grafting AM and TTE.

    3. 6 SEM

    The morphological features of GG and GGTTE3 are shown in Fig. 5. The microstructure of GGTTE3 was more porous than that of GG. The changes in surface morphology supported the graft copolymeri- zation. These results also supported the results of FT-IR and XRD.

    Fig. 5. SEM micrographs of GGTTE3 (A) and GG (B). The illustrations are the macrostructures of GGTTE and GGTTE, respectively. SEM analyses were performed using a JSM-6380LV (JEOL) operated with an accelerating voltage of 15.0 kV. The samples were coated with the Au prior to measurement

    3. 7 Mechanism of GGTTE production

    The GGTTE hydrogel was prepared by grafting AM onto GG in the presence of cross-linking agent TTE caused by free radical initiator KPS. Scheme 1 outlines the proposed mechanism of grafting and chemical cross-linking. During polymerization, the KPS initiator decomposed to generate sulfate anion- radicals under heating. Sulfate anion-radicals reacted with the ring structure of D-glucose in the GG chain and formatted active groups such as alkoxy radicals. Sulfate anion-radicals simultaneously attacked AM and TTE molecules and formed AM and TTE-based radicals. Monomers of GG, AM and TTE near the reaction site became acceptors for radicals and ignited the chain initiation. Subsequently, the monomers became free radical donors to the neighboring molecules, which caused the graft chain to grow indefinitely. The polymer chains reacted with the end vinyl groups of TTE during chain propagation. The main chain of GG was extended with the reaction between the hydroxyl groups of GG reacting with AM. The TTE was connected to the polymer chain and became the cross-linking point because of the amino group of AM and the epoxy group of TTE participating in a ring-opening reaction upon heating. The copolymer GGTTE was comprised of a cross-linked and network structure.

    Scheme 1. Mechanism of GGTTE using TTE as a cross-linker. Sulfate radicals were generated under heating, and the sulfate radical abstracts hydrogen atoms from the GG molecules producing GG free radicals. The monomer molecules, which were in close vicinity to the reaction sites, become acceptors of the GG radicals resulting in chain initiation.Thereafter, they become free radical donors to the neighboring molecules causing the grafted chains to grow

    Table 2 summarizes the formulation details used in the synthesis. The G (%) varies from 3394% to 3717%, and the E (%) falls in the 102%~111% range.

    4 CONCLUSION

    GG was modified with AM and TTE to promote higher regularity, better thermal stability, and a more porous structure. The resulting hydrogel is capable of absorbing crystal violet. This implies that the modified GG (GGTTE1, GGTTE2, GGTTE3, GGTTE4 and GGTTE5) could have utility in the adsorption of heavy metal ions and dyes. This could purify the contaminated water.

    ACKONWLEDGMENT

    The work was financially supported by the International Science and Technology Cooperation and Exchange Program of Fujian Agriculture and Forestry University (KXGH17001). We thank LetPub (www.LetPub.com) for its linguistic assistance during the preparation of this manuscript.

    (1) Wang, X.; Liu, C. L.; Yang, C. Y.; Ping, X. U. Advances in biosynthesis of gellan gum.2005, 25, 32–36.

    (2) Vijan, V.; Kaity, S.; Biswas, S.; Isaac, J.; Ghosh, A. Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery.2012, 90, 496–506.

    (3) Ferris, C. J.; Gilmore, K. J.; Wallace, G. G.; Panhuis, M. I. H. Modified gellan gum hydrogels for tissue engineering applications.2013, 9, 3705–3711.

    (4) Karthika, J. S.; Vishalakshi, B. Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye.2015, 81, 648–655.

    (5) Karthika, J. S.; Vishalakshi, B.; Naik, J. Gellan gum-graft-polyaniline-an electrical conducting biopolymer.2015, 82, 61–67.

    (6) Bakarich, S. E.; Pidcock, G. C.; Balding, P.; Stevens, L.; Calvert, P.; Marc, I. H. P. Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links.2012, 8, 9985–9988.

    (7) Karthika, J. S.; Vishalakshi, B. Synthesis, swelling behaviour, salt- and pH-sensitivity of crosslinked gellan gum-graft-poly (acrylamide-co-itaconic acid) hydrogels.2013,5, 185–192.

    (8) Xiong, Y.; Zhang, X.; Liu, M. Z. Surface-crosslinked guar gum-g-sodium polyacrylate superabsorbents: swelling characteristics and mechanics performance.2015,729, 39–46.

    (9) Park, S. J.; Kim, T. J.; Kim, H. Y. Thermal and mechanical properties of diglycidylether of bisphenol a/trimethylolpropane triglycidylether epoxy blends cured with benzylpyrazinium salts.2002, 51, 386–392.

    (10) Pandey, S.; Mishra, S. B. Chromatographic resolution of racemic-amino acids: chiral stationary phase derived from modified xanthan gum.2013, 92, 2201–2205.

    (11) Pandey, S.; Nanda, K. K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring.2016,1, 55–62.

    (12) Pandey, S.; Ramontja, J. Sodium alginate stabilized silver nanoparticles-silica nanohybrid and their antibacterial characteristics.2016, 93, 712–723.

    (13) Sahoo, C.; Gupta, A. K.; Pal, A. Photocatalytic degradation of crystal violet (C.I. Basic Violet 3) on silver ion doped TiO2.2005, 66, 189–196.

    (14) Chen, C. C.; Chen, W. C.; Chiou, M. R.; Chen, S. W.; Chen, Y. Y.; Fan, H. J. Degradation of crystal violet by an FeGAC/H2O2process.2011, 196, 420–425.

    (15) Lin, Y.; He, X.; Han, G.; Tian, Q.; Hu, W. Removal of crystal violet from aqueous solution using powdered mycelial biomass ofP2.2011, 23, 2055–2062.

    (16) Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K. Adsorption of hazardous dye crystal violet from wastewater by waste materials.2010, 343, 463–473.

    (17) Rytwo, G.; Ruiz-Hitzky, E. Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite.2003, 71, 751–759.

    (18) Iqbal, M. J.; Ashiq, M. N. Adsorption of dyes from aqueous solutions on activated charcoal.2007, 139, 57–66.

    (19) Shruthi, S. B.; Bhat, C.; Bhaskar, S. P.; Preethi, G.; Sailaja, R. R. N. Microwave assisted synthesis of guar gum grafted acrylic acid/nanoclay superabsorbent composites and its use in crystal violet dye absorption.2016, 6, 11–25.

    (20) Singh, B.; Kim, K. Characterization and relevance of physicochemical interactions among components of a novel multiparticulate formulation for colonic delivery.2007, 341, 143–151.

    (21) Rodriguezhernandez, A. I.; Durand, S.; Garnier, C.; Tecante, A.; Doublier, J. L. Rheology-structure properties of gellan systems: evidence of network formation at low gellan concentrations.2003, 17, 621–628.

    (22) Nishinari, K.; Miyoshi, E.; Takaya, T.; Williams, P. A. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan.1996, 30, 193–207

    26 December 2017;

    13 April 2018

    ① The work was financially supported by the International Science and Technology Cooperation and Exchange Program of Fujian Agriculture and Forestry University (KXGH17001). We thank LetPub (www.LetPub.com) for its linguistic assistance during the preparation of this manuscript.

    ②These authors contribute equally to this work

    . Prof. Dr. Zhang Long-Tao (1979~). E-mails: zlongtao@fafu.edu.cn and zlongtao@hotmail.com

    10.14102/j.cnki.0254-5861.2011-1935

    亚洲熟妇熟女久久| 日日摸夜夜添夜夜爱| 老司机影院成人| 精品人妻一区二区三区麻豆 | www日本黄色视频网| 久久久久久国产a免费观看| 美女cb高潮喷水在线观看| 午夜精品国产一区二区电影 | 亚洲av二区三区四区| 免费看a级黄色片| 精品久久国产蜜桃| 在现免费观看毛片| 又黄又爽又刺激的免费视频.| 三级经典国产精品| 久久精品国产自在天天线| 亚洲av一区综合| 一级黄片播放器| 99热精品在线国产| 亚洲精品亚洲一区二区| 听说在线观看完整版免费高清| 午夜免费激情av| 国产久久久一区二区三区| 亚洲最大成人中文| 一a级毛片在线观看| 看十八女毛片水多多多| 一级a爱片免费观看的视频| 国产精品爽爽va在线观看网站| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 久久久成人免费电影| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 久久久久久伊人网av| 欧美zozozo另类| 色视频www国产| 91在线观看av| 久久国产乱子免费精品| 欧美激情在线99| 久久精品国产99精品国产亚洲性色| 免费av观看视频| 91久久精品电影网| 在线观看一区二区三区| 六月丁香七月| 99热这里只有是精品50| 日韩人妻高清精品专区| 一级毛片电影观看 | 国产黄a三级三级三级人| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆 | 久久6这里有精品| 国产单亲对白刺激| 白带黄色成豆腐渣| 99久久中文字幕三级久久日本| 日韩高清综合在线| 成人欧美大片| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 两个人视频免费观看高清| 性欧美人与动物交配| 亚洲性久久影院| 亚洲真实伦在线观看| 丰满乱子伦码专区| 国产精品久久久久久久久免| 国产黄片美女视频| 五月玫瑰六月丁香| a级毛色黄片| 91狼人影院| 午夜影院日韩av| 俄罗斯特黄特色一大片| 欧美高清性xxxxhd video| 成年版毛片免费区| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 少妇的逼水好多| 亚洲精品日韩在线中文字幕 | 久久精品国产亚洲网站| 欧美绝顶高潮抽搐喷水| 亚洲综合色惰| 久久午夜亚洲精品久久| 久久久欧美国产精品| 国产男靠女视频免费网站| 嫩草影院精品99| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| www日本黄色视频网| 色播亚洲综合网| 国产久久久一区二区三区| 女同久久另类99精品国产91| 99热只有精品国产| 少妇熟女欧美另类| 亚洲国产日韩欧美精品在线观看| 草草在线视频免费看| 精品久久久久久久末码| 亚洲人成网站高清观看| 免费在线观看影片大全网站| 日韩成人av中文字幕在线观看 | 99热只有精品国产| 久久99热6这里只有精品| 在线国产一区二区在线| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 午夜激情福利司机影院| 搞女人的毛片| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 欧美潮喷喷水| av国产免费在线观看| 六月丁香七月| 黄色欧美视频在线观看| 久久精品91蜜桃| АⅤ资源中文在线天堂| 欧美成人精品欧美一级黄| 免费无遮挡裸体视频| 日韩精品有码人妻一区| 听说在线观看完整版免费高清| 亚洲欧美日韩卡通动漫| 日本一二三区视频观看| 久99久视频精品免费| 最新在线观看一区二区三区| 在线播放国产精品三级| 国产精品电影一区二区三区| 国产探花极品一区二区| 麻豆久久精品国产亚洲av| 日本色播在线视频| 色哟哟·www| 亚洲国产精品成人综合色| 好男人在线观看高清免费视频| 极品教师在线视频| 国产伦精品一区二区三区四那| 亚洲av五月六月丁香网| 自拍偷自拍亚洲精品老妇| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 国产精品不卡视频一区二区| 国产成人91sexporn| 日韩亚洲欧美综合| 国产成人freesex在线 | 在线国产一区二区在线| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 男插女下体视频免费在线播放| 男女那种视频在线观看| 国产精品无大码| 亚洲精品影视一区二区三区av| 成人美女网站在线观看视频| 日韩欧美精品v在线| 国产成人a∨麻豆精品| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| 69av精品久久久久久| 国产 一区 欧美 日韩| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 乱码一卡2卡4卡精品| 日韩一本色道免费dvd| 精品免费久久久久久久清纯| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 最近手机中文字幕大全| 日韩国内少妇激情av| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 1000部很黄的大片| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 成人特级黄色片久久久久久久| 国产精品日韩av在线免费观看| 99久国产av精品| 九九在线视频观看精品| 在线观看美女被高潮喷水网站| 欧洲精品卡2卡3卡4卡5卡区| 此物有八面人人有两片| 美女cb高潮喷水在线观看| 91在线观看av| 免费高清视频大片| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 91久久精品国产一区二区三区| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 一级毛片久久久久久久久女| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 国产成人影院久久av| 日韩在线高清观看一区二区三区| 久久久成人免费电影| 午夜激情欧美在线| 精品一区二区三区视频在线观看免费| av在线播放精品| 精品久久久久久久久久免费视频| 色噜噜av男人的天堂激情| 国产淫片久久久久久久久| 搞女人的毛片| 一级毛片电影观看 | 精品久久久久久久末码| 91狼人影院| 99热只有精品国产| 亚洲美女搞黄在线观看 | 国产单亲对白刺激| 22中文网久久字幕| 一本久久中文字幕| 亚洲最大成人中文| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 色在线成人网| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 国产一区二区在线av高清观看| 如何舔出高潮| 婷婷精品国产亚洲av在线| 高清毛片免费观看视频网站| 人妻制服诱惑在线中文字幕| 亚洲精品国产成人久久av| 国产av一区在线观看免费| 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| 在线播放无遮挡| 高清日韩中文字幕在线| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 日韩av在线大香蕉| 免费av观看视频| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 国产精品久久久久久久电影| 天天躁日日操中文字幕| 欧美人与善性xxx| 天堂√8在线中文| 中文字幕免费在线视频6| 成人毛片a级毛片在线播放| 欧美激情在线99| 国产伦精品一区二区三区四那| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 在线天堂最新版资源| or卡值多少钱| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 精品一区二区三区视频在线| 波野结衣二区三区在线| 精品免费久久久久久久清纯| 午夜精品国产一区二区电影 | 99热这里只有是精品在线观看| 日韩大尺度精品在线看网址| 国产成人91sexporn| 麻豆乱淫一区二区| 99久久久亚洲精品蜜臀av| 99国产精品一区二区蜜桃av| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 亚洲图色成人| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 悠悠久久av| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 舔av片在线| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 特大巨黑吊av在线直播| 午夜影院日韩av| 别揉我奶头~嗯~啊~动态视频| 在线观看66精品国产| 精品免费久久久久久久清纯| 久久亚洲国产成人精品v| 十八禁网站免费在线| 日本在线视频免费播放| 精品久久久久久久久亚洲| 少妇人妻精品综合一区二区 | 91午夜精品亚洲一区二区三区| 97热精品久久久久久| 91狼人影院| 天堂√8在线中文| 国产在视频线在精品| eeuss影院久久| 日本黄色片子视频| 在线观看av片永久免费下载| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 亚洲熟妇熟女久久| 青春草视频在线免费观看| 亚洲综合色惰| 午夜精品国产一区二区电影 | 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| 欧美日韩一区二区视频在线观看视频在线 | 一级a爱片免费观看的视频| 日韩 亚洲 欧美在线| 亚洲专区国产一区二区| 夜夜爽天天搞| 国产白丝娇喘喷水9色精品| 一个人免费在线观看电影| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| 中国美女看黄片| 久久久久国产网址| 99九九线精品视频在线观看视频| 赤兔流量卡办理| 99在线人妻在线中文字幕| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 热99re8久久精品国产| 精品一区二区三区人妻视频| 久久九九热精品免费| 女同久久另类99精品国产91| 性色avwww在线观看| 欧美不卡视频在线免费观看| 国产成人a∨麻豆精品| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 中文字幕久久专区| 黑人高潮一二区| 色尼玛亚洲综合影院| 美女大奶头视频| 美女 人体艺术 gogo| 啦啦啦啦在线视频资源| 婷婷精品国产亚洲av在线| 精品人妻熟女av久视频| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频| 国产老妇女一区| 性插视频无遮挡在线免费观看| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 日韩,欧美,国产一区二区三区 | 久久精品影院6| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 99久久成人亚洲精品观看| 国产伦精品一区二区三区视频9| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 能在线免费观看的黄片| 悠悠久久av| 国产片特级美女逼逼视频| 亚洲中文字幕一区二区三区有码在线看| 国模一区二区三区四区视频| 在线天堂最新版资源| 插阴视频在线观看视频| av.在线天堂| 午夜老司机福利剧场| 日本成人三级电影网站| 高清毛片免费观看视频网站| 日本黄大片高清| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 日韩 亚洲 欧美在线| 22中文网久久字幕| 国产日本99.免费观看| 97碰自拍视频| 99热这里只有是精品在线观看| 此物有八面人人有两片| 麻豆精品久久久久久蜜桃| av天堂在线播放| 桃色一区二区三区在线观看| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 日本黄色片子视频| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 日韩欧美精品v在线| 亚洲精品456在线播放app| 国产精品无大码| 蜜桃亚洲精品一区二区三区| 国产不卡一卡二| 成年免费大片在线观看| 久久精品91蜜桃| 久久韩国三级中文字幕| 国产单亲对白刺激| a级毛片a级免费在线| 极品教师在线视频| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 成年女人永久免费观看视频| 又爽又黄a免费视频| 看非洲黑人一级黄片| 美女高潮的动态| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 一区二区三区高清视频在线| 1024手机看黄色片| 精品熟女少妇av免费看| 亚洲精品国产av成人精品 | 九九热线精品视视频播放| 一级毛片aaaaaa免费看小| 久久精品影院6| 国产综合懂色| 欧美+亚洲+日韩+国产| 一级毛片我不卡| 国产欧美日韩精品一区二区| 日本五十路高清| 熟女人妻精品中文字幕| 成年女人看的毛片在线观看| av卡一久久| 日韩欧美在线乱码| 亚洲精品色激情综合| 亚洲欧美精品综合久久99| 悠悠久久av| 日韩欧美精品免费久久| 免费看光身美女| 亚洲精品国产成人久久av| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| videossex国产| 人妻制服诱惑在线中文字幕| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 香蕉av资源在线| 校园春色视频在线观看| 99国产极品粉嫩在线观看| 国产真实乱freesex| 你懂的网址亚洲精品在线观看 | 此物有八面人人有两片| 欧美色视频一区免费| 婷婷精品国产亚洲av| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 国产真实伦视频高清在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲精品日韩在线中文字幕 | 国模一区二区三区四区视频| 日韩成人伦理影院| 黑人高潮一二区| 精品久久久久久成人av| av中文乱码字幕在线| 亚洲最大成人手机在线| 久久久精品94久久精品| 91精品国产九色| 亚洲美女黄片视频| 简卡轻食公司| 免费在线观看影片大全网站| 亚洲四区av| 中文字幕av成人在线电影| 一级av片app| 免费av毛片视频| 国内精品久久久久精免费| 嫩草影院精品99| 99久久九九国产精品国产免费| 亚洲精品国产av成人精品 | 蜜桃亚洲精品一区二区三区| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜添小说| 深爱激情五月婷婷| 日本成人三级电影网站| 国产麻豆成人av免费视频| 搡老岳熟女国产| 国产综合懂色| 久久久精品欧美日韩精品| 少妇高潮的动态图| 一本一本综合久久| 无遮挡黄片免费观看| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 男人舔奶头视频| 精品久久久久久成人av| 少妇的逼好多水| 搞女人的毛片| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av在线| 蜜桃久久精品国产亚洲av| 国产欧美日韩精品亚洲av| 久久久久免费精品人妻一区二区| 六月丁香七月| 又粗又爽又猛毛片免费看| 午夜精品国产一区二区电影 | 亚洲七黄色美女视频| 国产精品久久久久久久电影| 日本撒尿小便嘘嘘汇集6| 九九久久精品国产亚洲av麻豆| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 全区人妻精品视频| 欧美色欧美亚洲另类二区| 婷婷六月久久综合丁香| 免费观看精品视频网站| av在线播放精品| 不卡一级毛片| 一级av片app| 亚洲av美国av| 搡老熟女国产l中国老女人| 国模一区二区三区四区视频| 久久欧美精品欧美久久欧美| 亚洲国产精品国产精品| 亚洲无线在线观看| av福利片在线观看| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱| 99久久精品一区二区三区| 日本a在线网址| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲欧美98| 国产精品,欧美在线| 亚洲成av人片在线播放无| 午夜福利在线观看吧| 在线观看av片永久免费下载| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片电影观看 | 久久人妻av系列| 国产av不卡久久| 成人一区二区视频在线观看| 色综合站精品国产| 在线观看66精品国产| 国产精品一区www在线观看| 又粗又爽又猛毛片免费看| 99热这里只有是精品在线观看| 成人国产麻豆网| 国产欧美日韩精品一区二区| 99久久无色码亚洲精品果冻| 男女啪啪激烈高潮av片| 亚洲久久久久久中文字幕| 国产一区二区亚洲精品在线观看| 国语自产精品视频在线第100页| 成人性生交大片免费视频hd| 日本 av在线| a级一级毛片免费在线观看| 国产精品久久久久久av不卡| 久久欧美精品欧美久久欧美| 一本精品99久久精品77| 国产精品精品国产色婷婷| 九九在线视频观看精品| 干丝袜人妻中文字幕| 精品午夜福利在线看| 少妇熟女aⅴ在线视频| 亚洲欧美中文字幕日韩二区| 成人国产麻豆网| 久久久欧美国产精品| 最后的刺客免费高清国语| 亚洲精品一区av在线观看| 一本精品99久久精品77| 观看美女的网站| 寂寞人妻少妇视频99o| 亚洲欧美精品综合久久99| 国产成人福利小说| 婷婷精品国产亚洲av| 久久久久性生活片| 深夜精品福利| 日韩精品中文字幕看吧| 三级毛片av免费| 菩萨蛮人人尽说江南好唐韦庄 | 女人被狂操c到高潮| 日本精品一区二区三区蜜桃| 黄色一级大片看看| 午夜激情福利司机影院| 免费电影在线观看免费观看| 国产免费男女视频| 人妻少妇偷人精品九色| 国产精品久久久久久精品电影| 亚洲性久久影院| 亚洲av免费高清在线观看| 色噜噜av男人的天堂激情| 成人精品一区二区免费| av视频在线观看入口| 熟女电影av网| 乱系列少妇在线播放| 啦啦啦啦在线视频资源| 亚洲第一区二区三区不卡| 99在线视频只有这里精品首页| 老熟妇仑乱视频hdxx| 国产黄色视频一区二区在线观看 | 免费av观看视频| 禁无遮挡网站| 男女下面进入的视频免费午夜| 真人做人爱边吃奶动态| 一本久久中文字幕| 婷婷色综合大香蕉| 精品久久久久久久人妻蜜臀av| 国产成人影院久久av| 婷婷色综合大香蕉| 18+在线观看网站| 亚洲最大成人手机在线| 一区福利在线观看| 国产午夜精品论理片| 成人av在线播放网站| 久久久久久伊人网av| 天天一区二区日本电影三级| 午夜激情欧美在线| 国产一区亚洲一区在线观看| 久久久久国产精品人妻aⅴ院| 三级毛片av免费| 国产一区亚洲一区在线观看| 精品福利观看| 干丝袜人妻中文字幕| 国产一区二区亚洲精品在线观看| 中文亚洲av片在线观看爽| 精品日产1卡2卡| 乱人视频在线观看|