• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Structures, and Luminescence Properties of Two New Open-framework Zinc Phosphites Based on 1,2,4-Triazole Derivatives①

    2018-09-10 06:43:32YANJunZhiLULiPing
    結構化學 2018年8期

    YAN Jun-Zhi LU Li-Ping

    ?

    Syntheses, Structures, and Luminescence Properties of Two New Open-framework Zinc Phosphites Based on 1,2,4-Triazole Derivatives①

    YAN Juan-Zhia, bLU Li-Pinga②

    a(030006)b(030032)

    With 1,2,4-triazolederivatives as structure directing agents, two new open- framework zinc phosphites, [Zn(atrz) (HPO3)]n(1) and [Zn(dmatrz) (HPO3)]n(2)(atrz= 4-amino-1,2,4-triazole, dmatrz= 4-amino-3,5-dimethyl-1,2,4-triazole) have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder andsingle-crystal X-ray diffractions. Both compounds are isostructure and crystallize in the21/space group of monoclinic system. Compound 1:9.629(1),7.384(1),10.274(1)?,110.729(3),683.26(2)?3,4, M = 229.44, D= 2.230 g/cm3,(000)456,1.10,3.79mm–1,0.0181and0.0466 for 1121 observed reflections (> 2())Compound 2:10.786(2),8.921(1),9.749(1)?,107.3,895.6(3)?3,4, M = 257.49, D= 1.910 g/cm3,(000)520,1.00,2.90mm–1,0.018and0.051 for 1581 observed reflections (> 2())Both compounds are built up into 4.8-net 2open-frameworks of vertex-linked ZnO4and HPO3units (3.57 × 4.53 ?2for 1 and 4.43 × 5.90 ?2for 2). The structures consist of left-, right-handed helical chains that are connected through oxygen atoms to form an undulated 2sheet stack, which can be topologically regarded as 4.82nets.Solid-state luminescence properties and thermo gravimetric analyses of these two compounds were investigated, respectively.

    zinc phosphites, 1,2,4-triazole, structure, luminescence property;

    1 INTRODUCTION

    Open-framework structures with extra-large chan- nels (pore size larger than 12 polyhedra)are of great interest because of their versatile architectures[1-3]and potential applications in many fields, such as sensors, separation, molecular magnetism, photolu- minescence, catalysis, and others[4-6]. Zinc pho- sphites are now a well-established family of open frameworks, where 3open-frameworks, 2layers, 1chains and 0clusters have been reported in detail. Different rings channels have been obtained such as 4-membered rings (4R)[7, 8], 8R, 12R, 16R, 24R , 26R, 28R, 40R, 48R, 56R, 64R, and 72R[9-11]. Compared with 4-connected phosphate group, three- connected -HPO3groups can reduce the M–O–P connectivity and generate more “open” interrupted architectures with larger pore sizes and lower framework densities[12-14]. However, the number of zinc phosphite frameworks with nanometer-scale channels is limited[5]. To accurately synthesize a tunable framework with different templates is equally difficult. It is of great interest and also challenging to develop an efficient systematic synthesis for fine-tuning porosity. It is well known that 1,2,4-triazole and its derivatives are very interesting bridging ligands because of their poten- tial binding modes (-1,2,-2,4, and-1,2,4)[15-18]. More diversified constructions may be shown. In most cases, as far as we know, however, only one triazole zinc phosphite, [Zn(C2H3N3)(HPO3)]n, has been constructed by 1,2,4-triazole (trz)[19].

    Herein, we report the syntheses, characterizations, thermal behaviors and luminescence properties of Zn(atrz)(HPO3)]n(1) and [Zn(dmatrz) (HPO3)]n(2). Both compounds display the same 8-ring open-framework structures with 3.57 × 4.53 ?2(1) and 4.43 × 5.90 ?2(2).

    2 EXPERIMENTAL

    2. 1 Instruments and materials

    Both triazole ligands were synthesized according to the literature method[20].All other reagents were purchased commercially and used without further purification. The FT-IR infrared spectra were recor- ded from KBr pellets in the range of 4000~400 cm?1on a Bio-Rad FTS 135 spectrometer. Elemental analysis was carried out on a Perkin-Elmer Optima 3300 DV inductive coupled plasma spectrometer (ICP) and an Elementar Vario EL III analyzer. X-ray powder diffraction (PXRD) data were collected on a SCXminiFlex II X’pert PRO diffractometer using Cu-radiation (= 1.540598 ?) at 30 kV and 15 mA. Thermogravimetric analyses (TGA) were performed on a Mettler Toledo TGA/SDTA 851E analyzer in air at a heating rate of 10 °C·min?1. Luminescence spectrum was recorded on a CARY Eclipse (Varian, USA) fluorescence spectrophoto- meter at room temperature.

    2. 2 Syntheses of the compounds

    [Zn(atrz)(HPO3)]n(1) ZnCl2(0.27 g, 2.0 mmol) was added to a stirred solution of atrz (0.168 g, 2.0 mmol) in 20.0 mL of water; and then H3PO3(0.164 g, 2.0 mmol) in water (2.0 mL) was slowly added. The resulting solution was stirred for 6.0 hours, and then filtered. The filtrate was slowly evaporated at room temperature. After 4 weeks, colorless block crystals suitable for X-ray analysis were obtained (yield: 47.8%). Analysis calculated for C2H5ZnN4O3P (%): C, 10.52; H, 1.76; N, 24.53; P, 13.5; Zn, 28.5. Found (%): C, 10.73; H, 1.78; N, 23.62; P, 12.9; Zn, 28.8. IR (cm?1): 3320(s), 3114(s), 2392(m), 1631(s), 1466(m), 1387(w), 1124(s), 1101(s), 1014(s), 888(m), 633(s), 561(s), 554(m).

    [Zn(dmatrz)(HPO3)]n(2) Compound2 was prepared in a similar method to that of 1, but atrz was replaced by dmatrz (0.224 g, 2.0 mmol). Colorless block crystals were obtained (yield: 55.3%). Analysis calculated for C4H9ZnN4O3P(%): C, 18.66; H, 3.52; N, 21.76; P, 12.03; Zn, 25.39. Found: C, 18.35; H, 3.56; N, 21.23; P, 11.8; Zn, 25.6. IR (cm?1): 3280(s), 3177(m), 2354(s), 2335(m), 1650(s), 1537(m), 1269(w), 1169(s), 1095(s), 1014(s), 1033(m), 775(m), 611(s), 598(w).

    2. 3 X-ray crystallography

    Single-crystal X-ray diffraction data for 1were collected on a Bruker Smart Apex II with CCD area detector diffractometer Mo-(= 0.71073 ?) at room temperature and data processing was accom- plished with the SAINT processing program[21]. The data of 2 were collected at 100(2) K on Beijing Synchrotron Radiation Facility (BSRF) beamline 1W2B which was mounted with a MARCCD-165 detector with storage ring working at 2.2 GeV (= 0.72 ?), and the data were collected by the program MARCCD and processed using HKL2000[22]. The structures were solved by direct methods and refined by full-matrix least-squares technique using the SHELXS-2014[23].After all non-H atoms were refined anisotropically, hydrogen atoms attached to C and N atoms were added theoretically and treated as riding on the concerned atoms. The final cycle of full-matrix least-squares refinement was based on observed reflections and variable parameters. For compound 1, a total of 7011 reflections were obtained in the range of 2.3<<31.4° with 1086 unique ones (int= 0.054), of which 1211 were observed (> 2()). The final= 0.0181,= 0.0466 (= 1/[2(F2) + (0.0219)2], where= (F2+ 2F2)/3), (Δ)max= 0.30, (Δ)min= –0.25 e/?3, (D/)max= 0.001 and= 1.10. For compound 2, a total of 2845 reflections were obtained in the range of 2.97<<25.05° with 1463 unique ones (int= 0.0739), of which 1581 were observed (> 2()). The final= 0.018,= 0.051 (= 1/[2(F2) + (0.0323)2+ 0.108], where= (F2+ 2F2)/3), (Δ)max= 0.40, (Δ)min= –0.33 e/?3, (D/)max= 0.001 and= 1.00. The selected bond lengths, bond angles and hydrogen bonds for 1 and 2 are listed in Tables 1 and 2, respectively.

    Table 1. Selected Bond Lengths (?) and Angles (o) for Compounds 1 and 2

    Symmetry codes for 1: i ?1,+1/2, ?+3/2; ii ?+1, ?+1, ?+1; iii ?+1,?1/2, ?+3/2. 2: i –+1,?1/2, ?+1/2; ii, ?+5/2,?1/2

    Table 2. Hydrogen Bond Geometry (?, °) of Compounds1 and 2

    3 RESULTS AND DISCUSSION

    3. 1 IR spectroscopy

    The IR spectra of compounds 1 and 2 were similar and showed typical peaks, with the exception of the characteristic bands observed at 2391 and 2374 cm–1, which are attributed to the stretching vibration of P–H bonds in phosphite anions (Fig. 1)[4, 24].The intense bands at 1124, 1101, 1014 cm–1for 1 and 1169, 1095, 1014 cm–1for 2 are associated with the stretching vibrations of P–O bonds, whereas the bands at 424~630 cm–1for 1 and 427~623 cm–1for 2 are associated with the bending vibrations of P–O bonds. The stretching vibration bands of -NH2groups appeared at about 3314~3109 cm–1, and the bending bands of -NH2and -CH2are present at about 1649~1378 cm–1.

    Fig. 1. IR spectra of 1 and 2

    3. 2 Crystal structures of 1 and 2

    As compounds1 and 2 havesimilar structures, only the structure of 1 is selected to describe. X-ray single-crystal structural analysis reveals that the asymmetric unit of 1 contains 11 non-hydrogen atoms, one zinc atom, one phosphorus atom, three oxygen atoms and one 4-amino-1,2,4-triazole (atrz) molecule (Fig. 2), which contains ZnO3N tetrahe- dron and HPO3pseudo-pyramids as the polyhedral building units. The Zn–N bond corresponds to a direct link between zinc and the triazole template ((Zn–N) = 2.007(2) ? (1), 2.030(2) ? (2)) in a monodentate fashion. The Zn species makes three Zn–O–P links to the P atoms nearby (av(Zn–O) = 1.9381(1) ? (1), 1.9263(1) ? (2)).P(1) makes three bonds to the Zn neighbors (av(P–O) = 1.5235(1) ? (1), 1.5153 ? (2)), with the terminal P–H bond ((P–H) = 1.30(2) ? (1), 1.35(2) ? (2)) as its fourth vertex. P–O and P–H bond distances are in agreement with those observed in the known zinc phosphites[13, 19, 25]. The existence of P–H bonds is also confirmed by the characteristic band of phosphite anions ((H–P), 2391 cm?1(1), 2374 cm?1(2)) in the IR spectrum. The average Zn–O–P bond angles of the three bridging O atoms are 128.89° (1) and 133.27° (2).The geometrical parameters of the organic components of 1 and 2 are typical. Fourier difference maps clearly located two H atoms attached to the C atom, thus the triazole “template” is neutral, in accordance with the charge balancing requirement.

    Fig. 2. Coordination units of 1 (left) and 2 (right) with 40% thermal ellipsoids.

    Symmetry codes: for 1: i: ?1,+1/2, ?+3/2; ii: ?+1, ?+1, ?+1. 2: i: –+1,?1/2, ?+1/2; ii:, ?+5/2,?1/2

    As illustrated in Fig. 3 (left), the ZnO3N and HPO3groups are connected to form a 2layer. The adjacent layers are stacked in an -ABAB- sequence along thedirection. ZnO3N and HPO3are con- nected to form 4- and 8-rings.Each 4-ring has two up and two down Zn–N and P–H groups. Each 4-ring is surrounded by four 8-rings, and each 8-ring is surrounded by four 4-rings, which form a 24.8-net sheet parallel to theplane. The atrz molecules reside alternately above and below the layer. The opening of the 8-ring is about 3.57? × 4.53? (1) and 4.43? × 5.90? (2) (the shortest O···O diagonal distance, taking the van der Waals radii into account). If each four-ring is taken as a four-connected node, this 2sheet has a 4.82topology (Fig. 3 (right)).

    Fig. 3. Representation of the 4.8-net sheet parallel to theplane: connectivity of HPO3(purpe) and ZnO3N (blue) tetrahedron to 4-ring and 8-ring loops (left); schematic drawing of the 2D 4.82networks (right)

    It is noteworthy that, within each 2sheet of compound2, the 4-rings are not parallel to each other (Fig. 4 (left)) and a helical chain can be extracted from this layer structure as reported previously for 4.82rings. The left- and right-handed helical chains are interconnected through O(1) atoms to form the layer. The central axis of each helical chain is a twofold screw axis along theaxis. It can be clearly seen that the layer exhibits an undulated pattern (Fig. 4right). The cyclic hydrophobic rings of the atrz/dmatrz molecules exclusively protrude into the interlayer region.

    Fig. 4. Framework of 2 viewed along the [010] direction, showing two types of helical channels and chiral channels which are alternately arranged along theaxis (left). Left- and right-handed helical chains are isolated by omitting bridging O(1) in compound 2 (right). Color code: Zn: light blue; P: pink; O: red; C: grey; N: blue

    Fig. 5. Packing diagram of compound 1 with the hydrogen bonds indicated by dashed lines

    As show in Fig. 5, the layers of compound 1 are held together by N–H···O hydrogen bonds (3.139(3)~3.330(3) ?). Compared with 1, besides the hydrogen bond N–H···O (3.0303(2) ?), N–H···N (3.062(2) ?) and C–H···O (3.362(2)~3.385(3) ?) hydrogen bonds are also important to define the molecular packing and stabilize the structure of 2.

    Interestingly, both crystal structures have very similar structures to the [Zn(C2H3N3) (HPO3)]n[18](C2H3N3=1,2,4-triazole (trz)). These three phases contain equivalent 4.8-ring polyhedral networks, encapsulating the same organic species, which templates in essentially the same way in each case. It is delicately different that 1,2,4-triazole families take binding modes: [Zn(atrz)(HPO3)]nand [Zn(dmatrz)(HPO3)]nare coordinated with N1rather than N4 because -NH2occupies the 4-position of 1,2,4-triazole. As a part of systematic research, 4-amino-3,5-diethanyl-1,2,4-triazole (deatrz) and 4-amino-3,5-propyl-1,2,4-triazole (dpatrz) have been surveyed. However, the corresponding compounds can not be synthesized, which attribute to the bonding requirement of the ligand.

    3. 3 XRD and TGA

    Simulations based on compounds1 and 2 single crystal structures were in excellent agreement with X-ray powder data, indicating phase purity and high crystallinity (Fig. 6).

    Fig. 6. TGA curves and simulated and experimental powered X-ray diffraction patterns of 1 and 2

    The initial thermogravimetric analysis was per- formed under flowing N2at a heating rate of 10 °C·min-1in 23~800 °C. As shown in Fig. 6, relatively high thermal stability was found for two compounds in air up to 325 °C (1) and 380 °C (2) and similar thermal behaviors are consistent with their similar structure skeleton. The TGA curve of 1 revealed that a sharp weight loss of 18.6% occurs between 325 and 340 °C, which is in good agreement with half of atrz (calcd. weight loss 18.4%), followed by a gradual weight loss of 17.5% between 340 and 800 °C, with a total weight loss of 36.1% (calcd. 36.7%). The remaining residue of the sample is amorphous after the calcination and their phases are unidentified. For 2, a sharp weight loss of 10.3% occurs between 380 and 400 °C, followed by a gradual weight loss of 21.6% between 400 and 800 °C. The total weight loss of 31.6%, far to the calculated percentage of the organic component (43.4%) which attributes to partial dmatrz, was combusted[26].

    3. 4 Luminescence properties

    The solid state luminescence properties of ligands atrz, dmatrz, compounds 12were investigated at room temperature. As shown in Fig. 7,the free atrz/dmatrz ligand, 12display similar shoulder peaks at ca. 423 nm with 255 nm excitation, which can be attributed to anintraligand emission state[27]. Furthermore, considerable enhancement of the intensity for these peaks in the metal complex may be attributed to the increased rigidity of the ligand when it is bound to a metal center, compared with that of the free one, which effectively reduces the loss of energy[28].

    4 CONCLUSION

    Two new open-framework zinc phosphates of 1,2,4-triazole family, [Zn(atrz)(HPO3)]n(1) and [Zn(dmatrz)(HPO3)]n(2), have been synthesized by solution evaporation methods. The ZnO3N and HPO3groups are connected to form a 2layer, which can be topologically regarded as 4.82nets. High thermal stability was found for two compounds in air up to 325 °C (1) and 380 °C (2). Zinc ions of compounds can increase the relevant ligands photoluminescence properties.

    Fig. 7. Solid-state photoluminescence spectra of ligands and compounds 1~2

    ACKNOWLEDGEMENT

    The authors thank Dr Gao Zeng-Qiang at line 3W1Aof BSRF for his help with the single-crystal X-ray diffraction data collection and reduction. The authors thank Dr. Wei Cao at the Scientific Instrument Center of Shanxi University of China for her help with the single-crystal X-ray diffraction data collection.

    (1) Tiwari, R. K.; Kumar, J.; Behera, J. N. The first organically templated open-framework metal-sulfites with layered and three-dimensional diamondoid structures.2016, 52, 1282-1285.

    (2) Katinaite, J.; Harrison, W. T. A. The crystal structure of (C2H9N2)2Zn3(HPO3)4, a three-dimensional zincophosphite framework containing 16-membered rings templated by the unsymmetrical dimethyl hydrazinium cation.2017, 73, 759-762.

    (3) Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-pore apertures in a series of metal-organic frameworks.2012, 336, 1018-1023.

    (4) Wang, C. M.; Lee, L. W.; Chang, T. Y.; Fan, B. L.; Wang, C. L.; Lin, H. M.; Lu, K. L. New 3D tubular porous structure of an organic-zincophosphite framework with interesting gas adsorption and luminescence properties.2016, 22, 16099-16102.

    (5) Huang, H. L.; Lin, H. Y.; Chen, P. S.; Lee, J. J.; Kung, H. C.; Wang, S. L. A highly flexible inorganic framework with amphiphilic amine assemblies as templates.2017, 46, 364-368.

    (6) Huang, H. L.; Wang, S. L. Nanoribbon-structured organo zinc phosphite polymorphs with white-light photoluminescence.2015, 54, 965-968.

    (7) Chen, L.; Bu, X. Histidine-controlled two-dimensional assembly of zinc phosphite four-ring units.2006, 18, 1857-1860.

    (8) Fan, J.; Slebodnick, C.; Troya, D.; Angel, R.; Hanson, B. E. Five new zinc phosphite structures: tertiary building blocks in the construction of hybrid materials.2005, 44, 2719-2727.

    (9) Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. [(C4H12N)2][Zn3(HPO3)4]: an open-framework zinc phosphite containing extra-large 24-ring channels.2006, 45, 2546-2548.

    (10) Dong, Z. J.; Zhao, L.; Liang, Z. Q.; Chen, P.; Yan, Y.; Li, J. Y.; Yua, J. H.; Xu, R. R. [Zn(HPO3))(C11N2O2H12)] and [Zn3(H2O)(PO4)(HPO4)(C6H9N3O2)2(C6H8N3O2)]: homochiral zinc phosphite/phosphate networks with biofunctional amino acids.2010, 39, 5439-5445.

    (11) Lin, H. Y.; Chin, C. Y.; Huang, H. L.; Huang, W. Y.; Sie, M. J.; Huang, L. H.; Lee, Y. H.; Lin, C. H.; Lii, K. H.; Bu, X.; Wang, S. L. Crystalline inorganic frameworks with 56-ring, 64-ring, and 72-ring channels.2013, 339, 811-813.

    (12) Harrison, W. T. A.; Yeates, R. M.; Phillips, M. L. F.; Nenoff, T. M. New framework connectivity patterns in templated networks: the creatinine zinc phosphites [C4N3OH7·ZnHPO3], [C4N3OH7?Zn(H2O)HPO3], and [(C4N3OH7)2·ZnHPO3·H2O].2003, 42, 1493-1498.

    (13) Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. [(C4H12N)2][Zn3(HPO3)4]: an open-framework zinc phosphite containing extra-large 24-ring channels.2006, 45, 2546-2548.

    (14) Johnstone, J. A.; Harrison, W. T. A. Triethanolamine zinc phosphite, (C6H13NO3)Zn2(HPO3):? a templated network or a network of clusters?2004, 43, 4567-4569.

    (15) Yan, J. Z.; Lu, L. P.; Feng, S. S.; Zhu, M. L. Synthesis and structure of a ladder-like co-crystal CuICl with 3,5-dipropyl-4-amino-1,2,4-triazole.2015, 34, 401-407.

    (16) Ma, Q.; Zhu, M. L.; Lu, L. P.; Feng, S. S.; Yan, J. Z. Trinuclear-based coordination compounds of Mn(II) and Co(II) with 4-amino-3,5-dimethyl-

    1,2,4-triazole and azide and thiocyanate anions: synthesis, structure and magnetic properties.2011, 370, 102-107.

    (17) Yan, J. Z.; Zhu, M. L.; Gao, Z. Q.; Dong, Y. H. Construction and photoluminescence properties of Zn(II)/Cd(II) complexes with 4-amino-3,5-

    propyl-1,2,4-triazole Ligand.2014, 33, 1207-1214.

    (18) Yan, J. Z.; Lu, L. P. Synthesis, crystal structure and photoluminescence of two new Cu4I4coordination polymers based on 3,5-alkyl-4-amino-1,2,4-triazole.. 2017, 33, 1697-1704.

    (19) Liu, X. C.; Xing, Y.; Liu, L.; Song, S.; Li, G.; Xu, N. Synthesis and characterization of an inorganic-organic hybrid layered zinc phosphite [(C2H3N3)Zn(HPO3)].2009, 635, 361-364.

    (20) Herbst, R. M.; Garrison, J. A. Studies on the formation of 4-aminotriazole derivatives from acyl hydrazides.1953, 18, 872-877.

    (21) SMART and SAINT (Software Package).., Madison, WI, USA 1996.

    (22) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode.1997, 276, 307-326.

    (23) Sheldric, G. M. SHELXT – Integrated space-group and crystal structure determination.2015,71, 3–8.

    (24) Zhao, X. M.; Li, J. H.; Wang, G.. M.; Zhang X. Hydrothermal synthesis of new organically templated beryllium phosphite and phosphate with 3,4-connected networks.2015, 641, 688–693.

    (25) Lin, Z.; Fan, W.; Gao, F.; Chino, N.; Yokoi, T.; Okubo, T. A new organically templated zinc phosphite synthesized in phosphorous acid flux and its hydrothermal analogue.2006, 6, 2435-2437.

    (26) Lin, Z. E.; Zhang, J.; Zheng, S. T.; Yang, G. Y. A novel open-framework zinc phosphite, Zn3(HPO3)4·Ni(en)2(H2O)2, templated by a transition-metal complex.2004,5,953-955.

    (27) Chen, S.; Sun, S.; Gao, S. Solid chemistry of the ZnII/1,2,4-triazolate/anion system: separation of 2D isoreticular layers tuned by the terminal counteranions X (X = Cl?, Br?, I?, SCN?).2008, 181, 3308-3316.

    (28) Li, W.; Jia, H. P.; Ju, Z. F.; Zhang, J. A novel chiral Cd(II) coordination polymer based on achiral unsymmetrical 3-amino-1,2,4-triazole with an unprecedented4-bridging mode.2006, 6, 2136-2140.

    25 December 2017;

    22 March 2018 (CCDC 1811502 for 1 and 1811503 for 2)

    the National Natural Science Foundation of China (No. 21571118)

    . E-mail: luliping@sxu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1929

    亚洲av国产av综合av卡| 91av网站免费观看| 女人高潮潮喷娇喘18禁视频| 日韩欧美国产一区二区入口| 在线亚洲精品国产二区图片欧美| 又紧又爽又黄一区二区| 又黄又粗又硬又大视频| 一区二区三区四区激情视频| 久久久国产一区二区| 精品熟女少妇八av免费久了| 男人操女人黄网站| 超色免费av| 国产精品 国内视频| 欧美xxⅹ黑人| 亚洲一码二码三码区别大吗| 久久99一区二区三区| 男女免费视频国产| 亚洲欧美一区二区三区黑人| 天天添夜夜摸| 成在线人永久免费视频| 久久久国产精品麻豆| 国产成人精品在线电影| 亚洲人成77777在线视频| 亚洲av日韩在线播放| 大陆偷拍与自拍| 亚洲性夜色夜夜综合| 天天添夜夜摸| 欧美激情高清一区二区三区| 精品久久久久久久毛片微露脸 | 汤姆久久久久久久影院中文字幕| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全免费视频| 国产伦人伦偷精品视频| 亚洲av电影在线进入| 老司机影院毛片| 国产男女超爽视频在线观看| 90打野战视频偷拍视频| 亚洲中文av在线| 国产成人精品在线电影| 久久人妻福利社区极品人妻图片| 国内毛片毛片毛片毛片毛片| 精品国产乱码久久久久久男人| 肉色欧美久久久久久久蜜桃| 大陆偷拍与自拍| 国产免费福利视频在线观看| 亚洲激情五月婷婷啪啪| 如日韩欧美国产精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 久久性视频一级片| 免费观看a级毛片全部| 久久九九热精品免费| 制服人妻中文乱码| 亚洲国产中文字幕在线视频| 丰满人妻熟妇乱又伦精品不卡| 欧美国产精品一级二级三级| 高清av免费在线| 欧美国产精品一级二级三级| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕视频在线看片| 一级毛片电影观看| 国产精品一区二区在线不卡| 日日夜夜操网爽| 高清欧美精品videossex| 无限看片的www在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品麻豆人妻色哟哟久久| videos熟女内射| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀| 日韩欧美免费精品| 永久免费av网站大全| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx| 18禁裸乳无遮挡动漫免费视频| 国产亚洲午夜精品一区二区久久| 黄片播放在线免费| av国产精品久久久久影院| 九色亚洲精品在线播放| 久久久精品区二区三区| 老司机靠b影院| 老熟女久久久| 人妻 亚洲 视频| 亚洲男人天堂网一区| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人| 免费高清在线观看视频在线观看| 国产国语露脸激情在线看| av片东京热男人的天堂| 法律面前人人平等表现在哪些方面 | 777米奇影视久久| 亚洲欧洲日产国产| 50天的宝宝边吃奶边哭怎么回事| 黑人操中国人逼视频| 久久久久网色| 黄网站色视频无遮挡免费观看| 国产精品影院久久| 亚洲精品久久成人aⅴ小说| 十八禁网站网址无遮挡| 久久久国产精品麻豆| 国产精品久久久久久人妻精品电影 | 成年动漫av网址| 国产在线视频一区二区| 午夜福利免费观看在线| 免费观看av网站的网址| 国产精品偷伦视频观看了| 99香蕉大伊视频| 久久这里只有精品19| 少妇的丰满在线观看| 国产片内射在线| 中文字幕av电影在线播放| 一本综合久久免费| 动漫黄色视频在线观看| 国产精品麻豆人妻色哟哟久久| 欧美老熟妇乱子伦牲交| 黄色视频不卡| 亚洲激情五月婷婷啪啪| 欧美日韩一级在线毛片| 最新在线观看一区二区三区| 两个人看的免费小视频| 久久久久网色| 老司机靠b影院| kizo精华| 黄色视频,在线免费观看| 亚洲激情五月婷婷啪啪| 一区二区av电影网| 国产亚洲午夜精品一区二区久久| 国产成人精品久久二区二区免费| 国产亚洲av高清不卡| 97在线人人人人妻| 热99久久久久精品小说推荐| 精品国产一区二区三区久久久樱花| 日韩人妻精品一区2区三区| 国产极品粉嫩免费观看在线| 久久久久久久久免费视频了| 中文字幕精品免费在线观看视频| 9热在线视频观看99| 在线亚洲精品国产二区图片欧美| 国产精品影院久久| 欧美av亚洲av综合av国产av| 少妇被粗大的猛进出69影院| 精品视频人人做人人爽| 91精品三级在线观看| 成在线人永久免费视频| 国产福利在线免费观看视频| 亚洲精品久久久久久婷婷小说| 日本撒尿小便嘘嘘汇集6| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 热re99久久精品国产66热6| 日韩视频在线欧美| 国产免费现黄频在线看| 1024视频免费在线观看| 精品一区二区三区四区五区乱码| 精品久久蜜臀av无| 黑人欧美特级aaaaaa片| 国产成+人综合+亚洲专区| 性色av一级| 新久久久久国产一级毛片| 亚洲男人天堂网一区| 在线看a的网站| 别揉我奶头~嗯~啊~动态视频 | 97在线人人人人妻| 久热这里只有精品99| 女人久久www免费人成看片| 伊人亚洲综合成人网| 18禁裸乳无遮挡动漫免费视频| 日日夜夜操网爽| 99热全是精品| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人爽人人添夜夜欢视频| 国产男女超爽视频在线观看| 国产精品成人在线| 黑人猛操日本美女一级片| 亚洲精品av麻豆狂野| 国产精品国产三级国产专区5o| 国产在线观看jvid| 亚洲人成77777在线视频| 一区在线观看完整版| 国产精品欧美亚洲77777| 高清欧美精品videossex| 午夜免费成人在线视频| 日本a在线网址| 成人三级做爰电影| 国产在视频线精品| 久久久久久久大尺度免费视频| 一二三四社区在线视频社区8| 满18在线观看网站| 99久久精品国产亚洲精品| av天堂久久9| 成年人午夜在线观看视频| 91成人精品电影| 日韩三级视频一区二区三区| 国产精品成人在线| 丰满人妻熟妇乱又伦精品不卡| 色婷婷久久久亚洲欧美| 欧美+亚洲+日韩+国产| 欧美97在线视频| 精品久久久久久久毛片微露脸 | 精品欧美一区二区三区在线| 日日爽夜夜爽网站| 天堂俺去俺来也www色官网| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 黄片大片在线免费观看| 国产精品欧美亚洲77777| av不卡在线播放| 99久久人妻综合| 99国产精品免费福利视频| 中国美女看黄片| 一级片'在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区 | 国产人伦9x9x在线观看| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 国产精品 国内视频| 十分钟在线观看高清视频www| 99久久综合免费| 嫩草影视91久久| 日韩三级视频一区二区三区| 久久精品亚洲av国产电影网| 免费av中文字幕在线| 一本综合久久免费| 亚洲成人免费av在线播放| 色94色欧美一区二区| 日韩制服骚丝袜av| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 青春草视频在线免费观看| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| netflix在线观看网站| 男人舔女人的私密视频| 视频区欧美日本亚洲| 操出白浆在线播放| 丁香六月欧美| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 久久精品亚洲av国产电影网| 国产99久久九九免费精品| 婷婷成人精品国产| 深夜精品福利| 一区在线观看完整版| 亚洲国产精品一区三区| 秋霞在线观看毛片| 人妻 亚洲 视频| 最近最新免费中文字幕在线| 欧美国产精品一级二级三级| 天堂8中文在线网| 亚洲精品国产区一区二| 亚洲久久久国产精品| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 丝袜在线中文字幕| 19禁男女啪啪无遮挡网站| 99精品久久久久人妻精品| 日日夜夜操网爽| 中文字幕制服av| 在线天堂中文资源库| 99热国产这里只有精品6| 午夜免费鲁丝| 在线观看www视频免费| 91精品三级在线观看| 人人妻人人澡人人看| 精品国产国语对白av| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 各种免费的搞黄视频| 国产精品久久久久成人av| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| av又黄又爽大尺度在线免费看| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕在线视频| 欧美 日韩 精品 国产| 秋霞在线观看毛片| 亚洲色图综合在线观看| 中文字幕人妻熟女乱码| 日本黄色日本黄色录像| 九色亚洲精品在线播放| 嫩草影视91久久| 欧美在线一区亚洲| 精品国产乱码久久久久久小说| 色视频在线一区二区三区| 91字幕亚洲| 久久国产精品大桥未久av| 中文字幕色久视频| 国产精品一区二区精品视频观看| 久久精品国产亚洲av香蕉五月 | 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 91国产中文字幕| 脱女人内裤的视频| 狠狠精品人妻久久久久久综合| 欧美日韩中文字幕国产精品一区二区三区 | 色婷婷av一区二区三区视频| 看免费av毛片| 一边摸一边做爽爽视频免费| 亚洲成人国产一区在线观看| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 90打野战视频偷拍视频| 国产一区二区在线观看av| 久久精品亚洲熟妇少妇任你| av在线老鸭窝| 满18在线观看网站| 日本猛色少妇xxxxx猛交久久| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 午夜福利视频精品| 国产xxxxx性猛交| 亚洲九九香蕉| av网站在线播放免费| 下体分泌物呈黄色| 欧美黄色片欧美黄色片| 操出白浆在线播放| 精品高清国产在线一区| 午夜影院在线不卡| 中亚洲国语对白在线视频| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 国产成人精品无人区| 免费av中文字幕在线| 亚洲精品在线美女| videosex国产| 国产男人的电影天堂91| 亚洲精品第二区| 岛国毛片在线播放| 亚洲国产av影院在线观看| 欧美人与性动交α欧美软件| 欧美黄色片欧美黄色片| 一区二区av电影网| 欧美国产精品va在线观看不卡| 国产免费av片在线观看野外av| 亚洲人成电影观看| 一区二区三区四区激情视频| 999久久久国产精品视频| 久久人妻福利社区极品人妻图片| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站| www.av在线官网国产| 一本—道久久a久久精品蜜桃钙片| 悠悠久久av| 日韩视频一区二区在线观看| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 在线精品无人区一区二区三| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 日本黄色日本黄色录像| 少妇人妻久久综合中文| 无限看片的www在线观看| 他把我摸到了高潮在线观看 | 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 啦啦啦免费观看视频1| 久久九九热精品免费| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| av福利片在线| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 亚洲成人免费电影在线观看| 人人妻人人澡人人爽人人夜夜| 在线av久久热| 日韩一区二区三区影片| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面 | 久久久精品免费免费高清| 99香蕉大伊视频| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 亚洲专区国产一区二区| 大香蕉久久网| 亚洲综合色网址| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 啪啪无遮挡十八禁网站| 色视频在线一区二区三区| 国产精品久久久av美女十八| 国产一区二区三区av在线| 我要看黄色一级片免费的| 黄片小视频在线播放| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 久久女婷五月综合色啪小说| 国产精品欧美亚洲77777| 久久久久久人人人人人| 满18在线观看网站| 色视频在线一区二区三区| 在线观看人妻少妇| 亚洲精品日韩在线中文字幕| 99久久综合免费| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 国产免费现黄频在线看| 一级片'在线观看视频| 久久久久久久大尺度免费视频| 天天操日日干夜夜撸| 日日摸夜夜添夜夜添小说| av欧美777| 麻豆国产av国片精品| 久久久久网色| 久久精品人人爽人人爽视色| 欧美另类一区| 国产精品影院久久| 国产成人影院久久av| 天天躁日日躁夜夜躁夜夜| 久久av网站| 大片电影免费在线观看免费| 狠狠精品人妻久久久久久综合| 最新的欧美精品一区二区| 99九九在线精品视频| 中文字幕人妻丝袜一区二区| 午夜激情久久久久久久| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片| 老司机影院成人| 国产亚洲欧美在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久精品免费观看国产| 免费女性裸体啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 性色av一级| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| av视频免费观看在线观看| av片东京热男人的天堂| 精品国产国语对白av| 久久热在线av| 日本91视频免费播放| 午夜精品久久久久久毛片777| 美女国产高潮福利片在线看| 久热这里只有精品99| 国产一区二区在线观看av| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 99久久综合免费| 欧美黑人欧美精品刺激| 国产亚洲欧美精品永久| 自线自在国产av| 国产精品偷伦视频观看了| 成年人午夜在线观看视频| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 精品一区二区三卡| 性少妇av在线| 老汉色∧v一级毛片| 亚洲激情五月婷婷啪啪| 我要看黄色一级片免费的| 午夜福利免费观看在线| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 亚洲av欧美aⅴ国产| 一本久久精品| 色94色欧美一区二区| 久久青草综合色| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 中文字幕制服av| 一区二区三区精品91| 97人妻天天添夜夜摸| 亚洲欧美精品自产自拍| 中文字幕高清在线视频| 久久亚洲国产成人精品v| 国产精品免费大片| 在线观看一区二区三区激情| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 亚洲人成电影观看| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 久久久久网色| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 亚洲国产看品久久| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 91国产中文字幕| 一边摸一边做爽爽视频免费| 久久免费观看电影| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 9191精品国产免费久久| 成人亚洲精品一区在线观看| 看免费av毛片| 精品少妇黑人巨大在线播放| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| av天堂在线播放| av福利片在线| 亚洲国产欧美日韩在线播放| 国产色视频综合| 精品少妇一区二区三区视频日本电影| 69av精品久久久久久 | 一区二区三区乱码不卡18| 国产一区二区激情短视频 | www.999成人在线观看| 久久青草综合色| av有码第一页| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产日韩一区二区三区精品不卡| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| 男人添女人高潮全过程视频| 免费不卡黄色视频| 91字幕亚洲| 国产极品粉嫩免费观看在线| 午夜精品国产一区二区电影| 日韩有码中文字幕| 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 久久精品亚洲av国产电影网| 日韩中文字幕欧美一区二区| 久久性视频一级片| 热re99久久精品国产66热6| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 中文欧美无线码| 妹子高潮喷水视频| 香蕉国产在线看| 另类精品久久| 亚洲天堂av无毛| 午夜视频精品福利| 久久精品久久久久久噜噜老黄| 伊人久久大香线蕉亚洲五| 一区二区av电影网| 精品人妻1区二区| 首页视频小说图片口味搜索| 免费黄频网站在线观看国产| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 欧美国产精品一级二级三级| 蜜桃在线观看..| 欧美大码av| 亚洲久久久国产精品| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 国产黄频视频在线观看| 久久久久久免费高清国产稀缺| 一区在线观看完整版| 在线亚洲精品国产二区图片欧美| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 成人国产av品久久久| 天堂俺去俺来也www色官网| 大香蕉久久成人网| 12—13女人毛片做爰片一| 操出白浆在线播放| 十八禁高潮呻吟视频| 成人国语在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| 国产一卡二卡三卡精品| 午夜免费鲁丝| 女性生殖器流出的白浆| 大片免费播放器 马上看| 俄罗斯特黄特色一大片| 在线十欧美十亚洲十日本专区| 日韩人妻精品一区2区三区| 国产日韩欧美视频二区| 一区在线观看完整版| 成人国产一区最新在线观看| 成人国产av品久久久| 97在线人人人人妻| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 老司机影院毛片| 丝袜脚勾引网站| 欧美日韩视频精品一区| av在线app专区| 一级片'在线观看视频| 他把我摸到了高潮在线观看 | 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| 我要看黄色一级片免费的| 国产精品久久久久久人妻精品电影 | 菩萨蛮人人尽说江南好唐韦庄| 搡老岳熟女国产| 国产亚洲午夜精品一区二区久久| 亚洲国产精品999| 国产成人免费无遮挡视频| 香蕉丝袜av| 欧美日韩av久久| 香蕉国产在线看| 99久久人妻综合| 亚洲avbb在线观看| 国产欧美日韩一区二区三 | 亚洲三区欧美一区| 久久香蕉激情| 少妇精品久久久久久久| 久久久精品94久久精品|