• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Investigations on Electronic Structures and Absorption Spectra of Unsymmetrical Metal-coordinated Neo-confused Porphyrin in Various Solvents①

    2018-09-10 03:44:28CAOHongYuHAOJunYunSIDunHuiTANGQinZHENGXueFngHAOCe
    結(jié)構(gòu)化學(xué) 2018年8期

    CAO Hong-Yu HAO Jun-Yun SIDun-Hui TANG Qin ZHENG Xue-Fng HAO Ce

    ?

    Theoretical Investigations on Electronic Structures and Absorption Spectra of Unsymmetrical Metal-coordinated Neo-confused Porphyrin in Various Solvents①

    CAO Hong-Yua,bHAO Juan-YuanaSIDuan-HuiaTANG QianbZHENG Xue-Fangb②HAO Cea①

    a(116024)b(116622)

    Though the photo-physical properties of free base porphyrinare attractive, there are still problems for the materials with weak and narrow range absorption of visible light. The unsymmetrical neo-confused porphyrinderivatives were introduced as novel materials for the improvement of photo-chemical and photo-physical properties. The density function theory (DFT) and time dependent density function theory (TDDFT) were applied to calculate the absorption spectrum of unsymmetrical neo-confused porphyrin(N-CP) and metal-coordinated N-CP in various solutions. The Ni and Zn coordinated neo-confused porphyrin dipole moment values are smaller than the values of prototype porphyrin (ProP) and N-CP. According to the electrophilicity index, Ni coordinated N-CP (Ni-N-CP) is susceptible to the polarity of solvents, while the Zn coordinated derivative (Zn-N-CP) is more immune to the solvent environment. Unlike the Gouterman’sfour frontier orbital model of common porphyrin materials, the electron transitions of N-CPs and metal-coordinated N-CPs from H-2 or lower molecular orbitals also contribute toultraviolet and visible absorption. Most of oscillator strengthvalues of Zn-N-CP are significantly higher than the values of Ni-N-CP, which reflects the higher absorption intensity of Q band and Soret band. The maximum wavelength at 702. 2nm in vacuum drew our attention to the novel material. The broad absorption range, intense red-shifted Q band and higher stability in solvents suggest that N-CPs, especially Zn-N-CP, can be one class of new candidate dye-sensitized material.

    metal-coordinated neo-confused porphyrin, asymmetry, C-N swap strategy, photo-physical property, density function theory;

    1 INTRODUCTION

    Inspired by the chlorophyll from natural plants and hemefrom the proteins[1,2]with significant roles in areas such as photosynthesis, transport/storage of oxygen[3]and electron transfer[4], porphyrinmaterials have been introduced to diverse areas (e.g., photo-sensitizers, optical materials and nanotechnology) and attractedthe attention of the researchers because of its good photo and thermal stabilitiesand a wide range of light absorption[5]. In solutions at room temperature, the strong transition Soret band in the range of 380nm-450nm and the weak intensity Q bands in the range 500-700nm[6]will be observed in different porphyrin materials.

    Whether the photo-physical properties of free-based porphyrinareattractive, but regardless, there is still problem with weak and narrow range absorption of visible light. The reason of the main problem is that the high symmetry of the porphyrin ring will lead to degeneracy of energy level and transition prohibition. So Frutra et al. introduced the unsym-metrical N-confused porphyrin (NCP)derivativesma-terials for the improvement of photo-chemical and photo-physical properties[7]. Neo-confused por-phyrin(N-CP) were first reported in 2011 by Lash[8]. Neo-confused porphyrins are indeed very interesting compounds but there is not a huge amount of literature on these systems[9]. This fascinating new porphyrin isomer system was continually explored by many researchers for the anticipation of novel photo physical properties and more application in different fields[10].

    The further step was put forward to design the new metal-porphyrins and metal-coordinated neo-con- fused porphyrinwhich probably possess attractive structural motifs[11]and properties for the increase of visible light absorption range and intensity. Metal element doping, surface modification, or organic sensitization approaches can be used to broaden the range of spectrum and improve the utilization efficiency of electron-hole of TiO2. The full solar spectrum absorption of zinc porphyrins will benefit it as electron donors with axial ligand which can be coupled with TiO2semiconductor as electron acceptors[12]. Coordinated with transition metal, organic dye materials can expand absorption wavelength range and enhance light absorption intensity, which increases the potential value of such molecules. Ni-coordinated complex was proved to react with a variety of electrophiles[13]and this fascinating chemical functionalization is utilized to prepare unique paramagnetic Ni(II) complex[14]and dimeric complexes[15,16].Zinc-coordinated porphyrin-sassuredly provide fresh idea for the applications of these materials indye-Sensitized solar cells with their special spectral and electrochemical properties[17]. The eminent fluorescence quantum yield and electron transfer properties of Zn(II) complex[18,19]arouses the interest of materialresearchers in catalysis, medicine,optical, solar energy conversion fields[11].It is expected that the combination of metal (e.g. Zn) coordinated porphyrin and photochromic organic materials could lead to an interesting light-controllable molecular sensor and high efficiency of photodynamic antimicrobial chemotherapy[20].

    Designing porphyrin-based or neo-confused-por-phyrin-based materials for particular demands requires a rational modification of structural, electronic, or spectral parameters in various solvent conditions. These can be controlled, albeit to a limited degree, by appropriate substitution.So in this article, the density function theory (DFT)[21]and time dependent density function theory (TDDFT)[22]were applied to calculate the absorption spectrum of unsymmetrical neo-confused porphyrin(N-CP) and metal-coordinated N-CP in various solutions. The prototype porphyrin (ProP) with the same side chains of N-CP was designed for easily comparable statistics about C-N swap strategy.The energy level, chemical properties, and absorption spectra of Ni and Zn coordinated N-CP were predicted with the above approaches.

    2 METHODS

    The density function theory (DFT) and time dependent density function theory (TDDFT)[22,23]in the Gaussian 09 software package[24]were applied in all the theoretical calculations. The density functional (DFT) method with the Becke-Lee-Yang-Parr composite of exchange-correlation functional (B3LYP)[21]as implemented in the Gaussian 09 program was used in our research. The energy and vibrational frequency calculation of prototype por-phyrin (ProP) and three N-CP derivatives were performed at B3LYP/6-31+G(d,p) level in all cases. UV-Vis absorption spectra of these molecules were researched by TDDFT at B3LYP/6-31+G(d,p) level (N=120 states) in all cases. Vibrational frequency calculations were carried out to characterize the optimized structures. To investigate the influence of the different polar solvents, certain computations were carried out using IEF-polarizable continuum model(IEF-PCM). The molecular absorption spec-trum were generate with FWHM (the full width at half-maximum of the gaussian curves) value of 800 cm-1with Gausssum3.0[25].

    Based on the finite difference approximation and Koopman’s theorem[28]working formulae,andcorrespond to ionization potential and electron affinity. The values ofandare approximate to minus energies of HOMO and LUMO (Eand E)[29], respectively. So the global hardness, chemical potentialand electrophilicity indexare derived from the following formula[27][30]:

    3 RESULTS AND DISCUSSION

    3.1 Geometrical structures

    The selected molecular structural information of ProP, N–CP, Zn–N–CP and Ni–N–CP obtained in vacuum and chloroform solvent for ground states geometries are listed in Table 1. All theoretic results show that the main porphyrinoid cores of ProP, N–CP and Ni–N–CP keep planar and conjugate structures(Fig. S1). In vacuum, the maximum length deviation of 0.059?(Ni–N(2)) and the maximum bond distortion of 0.3o(N(2)–Ni–N(3)) demonstrate that the theoretical data are consistent with the experimental data[31]. Since the calculated bond lengths of N–CP in vacuum rarely shifted the x-ray bond data, the structures are optimized with the same theory method and basic group in chloroform to elucidate the solvent effect on the geometries. In the chloroform solvent, the bond lengths and plane angles of Ni–N–CP porphyrinoidmoietykeep the same parameters with its x-ray crystal structure parameters[31]. The bond length deviation of 0.061?(Ni–N(2)) and the bond angle distortion of 0.68o (C(1)–Ni–N(4))manifest that the calculation parameters of N–CP in chloroform solvent are still consistent with the experiment data.

    The invert pyrrole ring highly changes the structure parameters of the porphyrinoids. Due to repulsion of the two inner hydrogen atoms in theProP ring,the diagonal line N(1)–N(3)distance with the value of 4.234 ? is longer than the N(2)–N(4) distance with the value of 4.082 ? in chloroform solvent. In N–CP, the diagonal line C(1)–N(3) distance with the value of 4.153 ? is similar with the N(2)–N(4) distance with the value of 4.131 ?, indicating the C–N swap reduce the repulsion effects of two inner hydrogen atomin the porphyrin derivative. The shorter C(1)–N(3) distance and N(2)–N(4) distance reveal the readjustment of the molecule structure affected by the repulsive force. In the Ni–N–CP derivative,the calculationand experiment resultsshow that both diagonals are shorter than 4 ?,proving the more compact structure in the metal coordinated neo–confused porphrin. The analytical data reveal that the metal–coordinated N–CP structure shrinks, especially the Ni–coordinated N–CP. A few larger structure of Zn–coordinated N–CP is noticed from the calculated results. The ion radius of Ni2+(0.69 ?) and Zn2+(0.74 ?) are almost the same lengths [32], but the bond lengths of C(1)–N(3) and N(2)–N(4) are enlarged from 3.920 (Ni–N–CP) to 4.035(Zn–N–CP), and from 3.937 (Ni–N–CP) to 4.201 (Zn–N–CP) in chloroform, respectively. The length difference of diagonals C(1)–N(3) and N(2)–N(4) of Zn–N–CP is obvious larger than corres-ponding length difference of Ni–N–CP. In this sense, the symmetry of new confused porphyrinis influenced by metal ion Zn2+and C–N swap strategy.

    Table 1. Selected Bond Lengths and Angles of Ni-N-CP from Experiment Results and DFT B3LYP/6-31(d,p) CalculationData

    Table 1. Selected Bond Lengths and Angles of Ni-N-CP from Experiment Results and DFT B3LYP/6-31(d,p) CalculationData

    Ni-N-CPProPN-CPNi-N-CPZn-N-CP Cal/vacCal/CHCl3ExpCal/vacCal/CHCl3Cal/vacCal/CHCl3Cal/vacCal/CHCl3Cal/vacCal/CHCl3 Ni-C(1)1.9301.9191.915C(1)-H--1.0701.070---- Ni-N(2)1.9901.9921.931N(1)-H1.0161.016------ Ni-N(3)1.9902.0071.969N(3)-H1.0141.0151.0141.014---- Ni-N(4)1.9471.9481.968C(1)-N(3)--4.1534.1563.9203.9204.0254.035 C(1)-Ni-N(2)89.7289.9890.10N(1)-N(3)4.2344.238----- C(1)-Ni-N(4)89.9590.2189.53N(2)-N(4)4.0824.0804.1314.1283.9373.9374.1964.201 N(2)-Ni-N(3)90.1589.8590.21H-H2.2052.2082.0822.086---- N(2)-Ni-N(4)179.8179.2179.5 N(3)-Ni-N(4)90.1889.9790.16 C(1)-Ni-N(3)179.6179.0179.3

    3.2 Dipolemoment

    The porphyrin derivatives are susceptible to external environment from polar or neutral molecules of different solvents[33]. So the dipole moment is an important property of a molecule for investigating the intermolecular interactions.The dipole mo-ment(DM) values of neo-confused porphyrinoid structures in this research are much more than the DM values of porphyrin derivatives without the –COOCH3side chain (more than 1.5 Debye)[33].The dipole moment value of ProP is 5.7283Debye, 1.1 Debye more than the value of C–N swapped neo-confused porphyrin. The C–N swap strategy remarkably reduced the dipole moments of por-phyrinoid derivatives. The decrease of N–CP dipole moment value is the result of the reduction distance between N atom and carboxylmoiety. The Ni and Zncoordinated neo-confused porphyrin dipole moment values are smaller than the value of N–CP. The dipole moment value with 8.3999 Debye in the high polar solvent water, 2.7 Debye more than that in vacuum, indicates that ProP is particularly vulnerable in various polarity solvents. The difference of the DM value of N–CP in vacuum and water reduces to only 1.9 Debye. The Ni coordinated neo–confused porphyrin derivatives further decreases the dipole moment value with 4.3724 Debye due to the good electron delocalization of the new conjugated system with orbitals of Ni. The DM value of Zn coordinated N–CP derivative is little higher than the value of Ni–N–CP in the vacuum and different solvents. These results reveal that the metal coordinated N–CPs are stable materials in different polarity solvents, while the metal free porphyrin is more sensitive to the solvent polarities. According to the dipole moment data, the solvent polarity can vary the molecular configuration and bring about new photo physical and chemical properties of these materials in different solvents.

    Table 2. Dipole Moment in the Ground State (Field-independent Basis, Debye)

    3.3 Frontier orbitals and energy levels

    Though the carboxyl group changes the symmetry of ProP, the frontier molecular orbitals symmetrically locate on the core macrocyclic structure. Regardless the side chain, ProP has C2vsymmetry. The symmetry of frontier molecular orbitals of N–CP is reduced by the C–N swapped pyrrole. The metal has less effect on the symmetry of porphyrin derivatives, but it has more influence on orbital electron distribution and frontier molecular orbital energies. In Ni–N–CP the HOMO and H–1 mainly locate on the metal center, while the LUMO and L+1 mainly locate on the metal and the coordinate N or C atoms, indicating that Ni is an active and complicate center of the new molecule (Fig. 1). The unsymmetrical Ni divalent ion with 3d8electron distributions and one empty orbital may be the contribution to the above results. The HOMO and H–1 place centrally on the Znand four coordinated N or C atoms, while the LUMO and L+1distributions are similar to that of N–CP (Fig. 1). The symmetrical Zn divalent ion with 3d10electron distributions and its weak ligand field lead to the changes of Zn–N–CP. These results indicate that the Zn divalent ion not only exerts influences on the HOMO and H–1with its electrons, but also delocalizes electron configuration with its metal effect to improve the electron transition and absorption spectra.

    Fig. 1. Four Frontier molecular orbitals of ProP, N–CP, Ni–N–CP and Zn–N–CP

    Due to the high symmetry of ProP, the degenera-cies of energy levels are easily observed in the molecule, such as the degeneracy of HOMO and H-1. The less difference between LUMO and L+1 and the larger difference between L+1 and L+2 energy levels showed that the electron mainly transit from H-1and HOMO to LUMO and L+1. The Prop obviously conforms to Gouterman four orbitals theory[34]. These properties indicated that ProP has the relatively less absorption bands and is sensitive to solvents, resulting in the defects in application in optical material fields.

    The degeneracy of energy levels of C-N swapped N-CP are rarely found because the symmetry reduces obviously. In the new molecule with C1vsymmetry of the core structure, theenergy levels of H-2-H-4 increases and energy level of L+3 decreases (Fig. 2). These variations offered the conclusion that electrons transit not only between the Gouterman four orbitals, but also transit from H-2 or lower orbitals to occupied orbitals (Fig. S2). So the electron transition probability obviously increases in the molecule, resulting in the enlargement of visible light absorption range.

    Fig. 2. Energy level diagram from H-10 to L+10 ofporphyrin and neo-confusedprophyrins invacuum and solvents Vac: vacuum; Chl: chloroform; Wat: water

    Coordinatedwith Ni, the new derivative energy levels of HOMO and LUMO almost keep the same with N-CP, but the upper unoccupied orbitals L+2 and L+3 of Ni-N-CP vary and the sub-HOMO orbitals (from H-2 to H-5) energy levels increase obviously(Fig. 2). Thus the electrons of sub-HOMO orbitals makemore contributions to electron transition in the metal-derivatives. The sub-HOMO orbitals (from H-2 to H-6) energy levels of Zn-N-CP increases significantly, indicating that electrons are more easily excited to unoccupied orbitals and makemore contributions to transition.

    3.4 Chemical reactivity

    The highest occupied molecular orbital (HOMO) energy value(E) and the lowest unoccupied molecular orbital (LUMO) energy value(E)are obtained to calculate the chemical reactivity para-meters. Global hardnessand chemical potentialare calculated for the comprehending the characters of neo confused porphyrin derivatives. The electro-philicity indexdefines the electrophilic power of molecular systems in terms of a balance between opposite effects.

    Because the four porphyrin derivatives are approximate to neutral molecules, the values of chemical potentialof each molecules are almost identical before and after the replacement of C and N, while the global hardnessand the electrophilicityω value have variations (Table 3).The implication of higher electrophilicity indexvalue is the increase of reaction activity and the decrease of chemical stability[29]. The electrophilicity indexof ProP has the lower value of 2.92 in vacuum, while the N-CP has the highervalue of 3.07. The highvalue of N-CP might result from the active inner hydrogen of the macro ring. The exchange of carbon and nitrogen reformed the inner charge environment with one hydrogen connected to the inner carbon atom. The longer bond length of C-H (Table 1) decreased the stability of porphyrin molecule with the slight increment ofvalue in vacuum. According to the electrophilicity index, Ni coordinated neo-confused porphyrin is susceptible to the polarity of solvents, while the Zn coordinated derivative is more immune to the solvent environment.

    Table 3. Global Hardness η, Chemical Potential μ and Electrophilicityω of for PorphyrinDerivatives

    3.5 Electronic spectra

    According to the experiment data, two Soret band peaks (385nm and 428nm) and two Q band peaks (534nm and 657nm) are found from absorption spectrum of Ni–N–CP in chloroform solvent[31]. Based on our TDDFT calculation results,two Soret band peaks (352nm and 423nm) and two Q band peaks (520nm and 668nm)are obtained from absorption spectrum of Ni–N–CP in chloroform solvent. The absorption peak numbers and locations are kept highly consistent with experimental data[31], proving that the theory methods and parameters applied in our calculation are stable and suitable.

    From Fig.3, the narrowest absorption bands can be found among these four molecules. In the nonpolar condition, the main peaks of ProPlocateon the high intensity Soret band absorption around 400nm and two weak Q band absorptions below 600nm. Even in the polar solvent, the weak Q band peaks ofProP blueshiftwith a little increase of the intensity. The absorption spectrum of ProP conforms to Goutermantheory[34]with the main transition contributions from H–1 to L+1 in the Q band. Even in Soret band, the transition contributions only extend to H–3 orbital (Table S1). Thesmallamountof ProPpeaksin calculation spectrum might be the consequence of the high symmetry and high energy level degeneracy degree, resulting in the low applications in photo absorption materials.

    The absorption spectrum of the new derivative N–CP with one C–N swapped pyrrole ring varies obviously. The Soret band splits to more peaks and enlarged the absorption range, while Q band extends to over600nm with more peaks and higher intensities. In addition, N–CP is more sensitive in the polar solvents than ProP. The Q band peaks of 640.9nm redshift to 660.1nm, while the value of oscillator strength increases nearly 4 times, from 0.0687 to 0.2542 (Table S1). The absorption spectrum is no longer comply with the four orbitals theory[34]. Besides the four frontier orbitals, electron transitions from H–3and H–2 also contribute to the Q band absorption, while electron transitions from H–4 contributes to the Soret band absorption (Table S2). The high absorption intensity and oscillator strength verify that C–N swap strategy improves the photo physical properties of porphyrin[33].

    From the calculation spectrum of Ni–N–CP, we can get an intuitive conclusion that this new molecule improves significantly the ultra and visible light absorption property. More Q band and Soret band absorption peaks are found in the Ni coordinated derivative. Two main peaks and three other weak oscillator strength peaks locate in the region of 500nm–600nm. The Ni in the ring complicates the transition contributions of neo–confused porphyrin and reflects the advantage of metal–ligand compound. The transition contribution obviously increases the range from H–7 and H–8 to L+3 in Q band, which enriches the absorption spectrum. The Soret band of Ni–N–CP splits to several strong absorption peaks and the intensities increase with the polarity of solvents. Similarly, Ni–N–CP is also sensitive in different polar solvents.Both the Q bands and Soret bandsabsorption intensities rise obviously and the peak location redshifts along with increasing the polarity of the solvents. The 587nm absorption peak in vacuum red shifts to 669.8nm in polar water, while thevalue of oscillator strengthincreases from 0.0432(vacuum)to 0.1785(water) (Table S3). The above data indicate that the polarity of solvent can be used for the regulation of photo physics properties of asymmetry metal–coordinated porphyrin materials.

    Fig. 3. Theory electronic absorption spectrum of ProP, N–CP, Ni–N–CP and Zn–N–CP in five solvents

    The widest absorption rangeis found in the theory UV–Vis spectrum of Zn–N–CP.The maximum wavelengthat 702.2nm in vacuumdrawsour attention to the new material for further studies because only Zn–N–CP possess these characters among our researched materials. Compared with Ni, the influence of metal Zn to the neo–confused porphyrin is less complicated, but more significantly. Most of oscillator strengthvalues of Zn–N–CP are signi-ficantly higher than the values of Ni–N–CP, which reflect the higher absorption intensity of Q band and Soret band.With the polarity of solvents, the maximum wavelength of Q band red shifts from 702.0nm in vacuum to 710.8 in water(Table S4).The photo physical advantage of Zn–coordinated N–CP is obviously in our theory research.

    The electron distribution of Zn is 3d104s2, while the electron distribution of itsdivalent cation is 3d10. The five d orbitals are full of electrons before Zn2+coordinated to the three nitrogen atoms and one carbon atom of N–CP. So the Zn2+can stabilize the neo–confused porphyrin and provide electrons for the whole conjugated molecule. These functions and characterizations benefit the electron transition and significantly improve the visible light absorption range and intensity.The zinc–coordinated N–CP amplifies the asymmetry character from C–N swapped strategy and the wide absorption range merit of nickel–coordinated N–CP. Meanwhile, the ultra–visible absorption property of Zn–N–CP can be regulated by the variation of solvent polarity.

    4 CONCLUSION

    The relatively accurate ground state structures and absorption spectrum of N–CP and Ni–N–CP are reproduced with DFT and TDDFT approaches. Applied with the same methods and parameters, the structural and photophysical properties of ProP and Zn–N–CP are predicted in this research. The analytical data reveal that the C–N swap strategy remarkably changes the dipole moments, reactivity and electron transition of porphyrinoid deriva-tives.Using the C–N swap procedure, it is possible to vary the energy barriers and to perturb the symmetry of the porphyrin ring.Ni and Zn further influence the frontier molecular orbital and absorption spectrum. With the 3d10electron distribution, the divalent cation Zn2+can stabilize the neo–confused porphyrin, provide electrons for the whole conjugated molecule, and improve the visible light absorption property. All these properties make Zn–N–CP extremely attractive candidate for using in dye,photo sensitization, solar energy conversionand photo dynamic therapy fields.

    (1) Cao, H.Y.;Gao, L.X.; Tang, Q.; Su, J.H.;Zheng, X.F.Mechanism of oymyoglobinoxidation reaction induced by ultraviolet light.2016,32,872–878.

    (2) Cao, H.Y.; Liu, Y.W.; Tang, Q.; Zhao, J.M.;Guo, X.J.;Zheng, X.F.Spectroscopic insights into the photoreduction of cytochrome c with UVA–Vis light irradiation.2015, 22(9), 853–859.

    (3) Denisov, I.G.;Makris, T.M.;Sligar, S.G.;Schlichting, I. Structure and chemistry of cytochrome P450.2005, 105, 2253–2278

    (4) Cao, H.Y.; Shi, F.; Tang, Q.;Zheng, X. F. Effect and mechanism of laser–induced hemoglobin reaction kinetics with free tryptophan..2017, 33,1339–1348

    (5) Kadish, K. M.; Smith, K. M.;Guilard, R.Handbook of porphyrinscience –with applications to chemistry, physics, material science, engineering, biology and medicine; Eds.; World Scientific Publishing, Singapore,2010, Vols. 31?35,.

    (6) Poddutoori, P. K.; Dion, A.; Yang, S. J.; Pilkington, M.; Wallis, J. D.; van der Est, A. Light–induced hole transfer in a hypervalent phosphorus(v) octaethylporphyrin bearing an axially linked bis(ethylenedithio)tetrathiafulvalene.2010, 14, 178–187.

    (7) Furuta, H.; Asano, T.; Ogawa, T.N–confused porphyrin: anew isomer of tetraphenylporphyrin.1994, 116 ,767–768

    (8) Lash,T. D.;Lammer, A. D.;Ferrence, G. M.Neo–confused porphyrins, a new class of porphyrinisomers..2011, 50, 9718–9721

    (9) Li, R.;Ferrence, G. M.; Lash, T. D. Synthesis of a neo–confusedporphyrin and an unusual dihydroporphyrin derivative.2013, 49,7537–7539

    (10) Lash, T. D.Carbaporphyrinoidsystems.2016, 117, 2313–2446.

    (11) Chen, W. T.; Hu, R. H.;Luo, Z. G.; Chen, H. L.; Liu, J. A new 3?D lanthanide porphyrin: synthesis, structure and photophysicalproperties..2015, 34, 279–284

    (12) Yu, L. J.; Lin, L.; Liu, Y. W.; Li, R. J.Theoretical investigation of self-assembled donor-acceptor phthalocyanine complexes and their application in dye-sensitized solar cells.,2015, 59,100–106

    (13) Toganoh, M.;Furuta, H.Blooming of confused porphyrinoids–fusion, expansion, contraction, and more confusion.2012, 48,937–954

    (14) Chmielewski, P. J.;Latos–Graz˙yn′ ski, L.;G"owiak, T.Reactions of Nickel(II) 2-Aza-5,10,15,20-tetraphenyl-21-carbaporphyrin with methyl iodide: the first structural characterization of a paramagnetic organometallic nickel(II) complex.,1996, 118, 5690–5701.

    (15) Chmielewski, P. J.Synthesis,structure, and redox properties of N-confused bis(porphyrinatonickel(II)) linked by o-xylene.2007, 46,1617–1626.

    (16) Chmielewski, P. J.Synthesis and characterization of transition metal complexes of dimeric N–confused porphyrinlinked by an o–xylene fragment.2009, 48, 432–445.

    (17) Lee, C.W.; Lu, H.P.;Lan, C.M.; Huang, Y.L.; Liang, Y.R.; Yen, W.N.; Liu, Y.C.; Lin, Y.S.;Diau, E.W.;Yeh, C.Y.Novel zinc porphyrin sensitizers for dye–sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties.2009,15,1403–1412.

    (18) Tan, K. X.;Lintang, H. O.;Maniam, S.; Langford, S. J.;Bakar, M. B.Synthesis and photophysical studies of fluorenone–armed porphyrin arrays.,2016, 72,5402–5413.

    (19) Agnihotri, N. Computational studies of charge transfer in organic solar photovoltaic cells: A review.2014, 18,18–31

    (20) Zeng, R. J.; Wu, X. S.; Liu, M. L.; Chen, G. L.;Gao, Q. Synthesis, crystal structure and spectroscopic properties of novel 5-o-[1-(3-ethoxymethyl-4-phenyl-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2-one)butoxy]phenyl-10,15,20-triphenylzinc porphyrin.2017, 36, 438–446

    (21) Lee, C.; Yang, W. T.; Parr, R. G.Development of the colle–salvetti correlation–energy formula into a functional of the electron density..1988, 37,785–789

    (22) Burke, K.;Werschnik, J.; Gross, E. K. U. Time-dependent density functional theory: Past, present, and future.2004, 123, B864–284

    (23) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange.1993, 98,5648–5652

    (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.;Scalmani, G.;Barone, V.;Petersson, G. A.;Nakatsuji, H.; Li, X.;Caricato, M.;Marenich, A.;Bloino, J.;Janesko, B. G.;Gomperts, R.;Mennucci, B.;Hratchian, H. P.; Ortiz, J. V.;Izmaylov, A. F.;Sonnenberg, J. L.; Williams–Young, D.; Ding, F.;Lipparini, F.;Egidi, F.; Goings, J.;Peng, B.;Petrone, A.; Henderson, T.;Ranasinghe, D.;Zakrzewski, V. G.;Gao, J.;Rega, N.;Zheng, G.; Liang, W.;Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.;Nakai, H.;Vreven, T.;Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.;Ogliaro, F.;Bearpark, M.;Heyd, J. J.; Brothers, E.;Kudin, K. N.;Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.;Burant, J. C.;Iyengar, S. S.;Tomasi, J.;Cossi, M.;Millam, J. M.;Klene, M.;Adamo, C.;Cammi, R.;Ochterski, J. W.; Martin, R. L.;Morokuma, K.;Farkas, O.;Foresman, J. B.;Fox D. J..Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    (25) O'Boyle, N. M.;Tenderholt, A. L.;Langner, K. M.cclib: A library for package–independent computational chemistry algorithms.2008, 29,839–845

    (26) Yang, W.; Parr, R. G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis.1985, 82(20), 6723–6726.

    (27) Gázquez,L.J.Perspectives on the density functional theory of chemical reactivity..2008, 52, 3–10.

    (28) Koopmans, T. über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms.1934, 1,104–113.

    (29) Chattaraj, P. K.;Sarkar, U.; Roy, D. R. Electrophilicity index.2006, 106, 2065–2091.

    (30) Parr, R. G.;Szentpaly, L. V.; Liu, S. B.Electrophilicity index..1999, 121, 1922–1924.

    (31) Li, R.;Lammer, A. D.;Ferrence, G. M.; Lash, T. D. Synthesis, structural characterization, aromatic characteristics, and metalation of neo–confused porphyrins: a newly discovered class of porphyrin isomers.2014, 79,4078–4093.

    (32) Pan, D. K.; Zhao, C. D.;Zheng, Z. X. Structure of Matter, Higher Education Press,China, 2ndedition.1989, p624–626.

    (33) Cao, H. Y.; Si, D. H.; Tang, Q.;Zheng, X. F.;Hao, C.Electronic structures and solvent effects of unsymmetrical neo–confused porphyrin, DFT and TDDFT–IEFPCM investigations.2016, 1081, 18–24.

    (34) Gouterman, M.Spectra of porphyrins.. 1961, 6, 138–163.

    27 November 2017;

    2 April 2018

    ① This project was supported by the National Natural Science Foundation of China (Nos. 21601025, 21677029, 21571025) and Dalian Young Science and Technology Star Project (2017-61)

    Tel./fax: +86 411 84986335. E-mails: haoce@dlut.edu.cn and dlxfzheng@126.com

    10.14102/j.cnki.0254-5861.2011-1901

    在线十欧美十亚洲十日本专区| 91精品国产国语对白视频| 在线观看舔阴道视频| 一边摸一边抽搐一进一出视频| 999久久久精品免费观看国产| 国产成人系列免费观看| 男女做爰动态图高潮gif福利片 | 免费高清在线观看日韩| 欧美在线一区亚洲| 91大片在线观看| 午夜91福利影院| 动漫黄色视频在线观看| 欧美黄色片欧美黄色片| 久久人妻熟女aⅴ| 欧美人与性动交α欧美精品济南到| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 亚洲中文字幕日韩| 亚洲片人在线观看| 午夜福利免费观看在线| 久久香蕉激情| 男男h啪啪无遮挡| 一边摸一边做爽爽视频免费| 欧美日韩黄片免| 国产精品免费视频内射| 777久久人妻少妇嫩草av网站| av电影中文网址| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品综合一区在线观看 | 搡老岳熟女国产| 天天添夜夜摸| 女人被狂操c到高潮| 在线观看免费高清a一片| 一级a爱视频在线免费观看| 久久久国产欧美日韩av| av在线天堂中文字幕 | 亚洲专区国产一区二区| 一进一出好大好爽视频| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 女人爽到高潮嗷嗷叫在线视频| 日本免费一区二区三区高清不卡 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品电影一区二区三区| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 日韩大码丰满熟妇| 久久影院123| 久久国产精品影院| 在线免费观看的www视频| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 久久国产精品影院| 他把我摸到了高潮在线观看| 国产精品成人在线| 怎么达到女性高潮| 伊人久久大香线蕉亚洲五| 国产黄a三级三级三级人| 在线观看免费日韩欧美大片| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费 | 中亚洲国语对白在线视频| 91麻豆av在线| 色老头精品视频在线观看| 天天影视国产精品| 国产精品二区激情视频| 国产伦人伦偷精品视频| 又大又爽又粗| 久9热在线精品视频| 热99re8久久精品国产| 国产亚洲欧美98| 午夜成年电影在线免费观看| 久久久久久久久免费视频了| 两性午夜刺激爽爽歪歪视频在线观看 | 色哟哟哟哟哟哟| 亚洲久久久国产精品| 久久久久九九精品影院| 窝窝影院91人妻| 黄色 视频免费看| 99国产精品免费福利视频| 久久精品亚洲av国产电影网| 中文字幕av电影在线播放| 黄色 视频免费看| 国产一区二区三区综合在线观看| 大香蕉久久成人网| 国产在线精品亚洲第一网站| ponron亚洲| 国产一区二区在线av高清观看| 日韩有码中文字幕| 丝袜美足系列| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 久久久国产成人精品二区 | 日韩大码丰满熟妇| 国产成人免费无遮挡视频| 9热在线视频观看99| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 50天的宝宝边吃奶边哭怎么回事| a级毛片黄视频| 日韩 欧美 亚洲 中文字幕| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利影视在线免费观看| 国产又色又爽无遮挡免费看| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 欧美精品亚洲一区二区| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 韩国av一区二区三区四区| 免费看a级黄色片| av在线天堂中文字幕 | 嫩草影视91久久| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 亚洲av成人一区二区三| 亚洲自拍偷在线| 午夜亚洲福利在线播放| 正在播放国产对白刺激| 丰满饥渴人妻一区二区三| 亚洲熟妇中文字幕五十中出 | 天天影视国产精品| 成人手机av| 国产免费现黄频在线看| 老司机午夜福利在线观看视频| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| bbb黄色大片| 色播在线永久视频| 韩国精品一区二区三区| 国产伦人伦偷精品视频| 久久人妻av系列| 色哟哟哟哟哟哟| 色综合站精品国产| √禁漫天堂资源中文www| 亚洲欧美日韩另类电影网站| 欧美日韩中文字幕国产精品一区二区三区 | av网站免费在线观看视频| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 精品国内亚洲2022精品成人| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费激情av| 怎么达到女性高潮| 天天影视国产精品| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 国产野战对白在线观看| 麻豆av在线久日| 黄色怎么调成土黄色| 97碰自拍视频| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 男女高潮啪啪啪动态图| 一本综合久久免费| 午夜两性在线视频| 99re在线观看精品视频| 俄罗斯特黄特色一大片| 中文字幕人妻熟女乱码| √禁漫天堂资源中文www| 9191精品国产免费久久| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 好看av亚洲va欧美ⅴa在| 欧美在线黄色| a在线观看视频网站| xxxhd国产人妻xxx| 国产一区在线观看成人免费| 久久久国产成人免费| 在线观看舔阴道视频| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 日本精品一区二区三区蜜桃| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼 | 午夜两性在线视频| 男女之事视频高清在线观看| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| av天堂久久9| 好男人电影高清在线观看| 午夜亚洲福利在线播放| 精品国产乱子伦一区二区三区| 亚洲少妇的诱惑av| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 日本vs欧美在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 国产亚洲欧美精品永久| 成人av一区二区三区在线看| 日本免费a在线| 高清在线国产一区| 亚洲欧美日韩无卡精品| 久9热在线精品视频| 又黄又粗又硬又大视频| 免费高清视频大片| 欧美中文综合在线视频| 老司机靠b影院| 日韩欧美免费精品| 精品国产乱子伦一区二区三区| 亚洲美女黄片视频| 久久性视频一级片| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| www.自偷自拍.com| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产精品久久久不卡| 欧美成人免费av一区二区三区| 激情视频va一区二区三区| 精品国产美女av久久久久小说| 国产成人精品久久二区二区91| 亚洲人成电影免费在线| 精品国产乱子伦一区二区三区| 欧美日韩精品网址| 最好的美女福利视频网| 日韩视频一区二区在线观看| 最近最新免费中文字幕在线| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区| 夜夜看夜夜爽夜夜摸 | 久久中文字幕人妻熟女| 久久人妻熟女aⅴ| 女警被强在线播放| xxxhd国产人妻xxx| 999精品在线视频| 亚洲精品一二三| 亚洲精品美女久久av网站| 在线观看午夜福利视频| 超碰成人久久| 视频区欧美日本亚洲| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| cao死你这个sao货| 香蕉久久夜色| 琪琪午夜伦伦电影理论片6080| 免费久久久久久久精品成人欧美视频| 99国产极品粉嫩在线观看| 又大又爽又粗| 国产精品国产高清国产av| 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产毛片av蜜桃av| 无人区码免费观看不卡| 久久香蕉精品热| 亚洲九九香蕉| 男男h啪啪无遮挡| 精品国产美女av久久久久小说| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 99精国产麻豆久久婷婷| 99精品在免费线老司机午夜| 黄色女人牲交| 久久久久国产一级毛片高清牌| 99久久久亚洲精品蜜臀av| av网站免费在线观看视频| 精品一区二区三区av网在线观看| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线| 亚洲欧美日韩另类电影网站| 中国美女看黄片| 久久久久久久久中文| 国产欧美日韩一区二区三| 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 一个人观看的视频www高清免费观看 | 国产亚洲欧美精品永久| 精品电影一区二区在线| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻aⅴ院| 国产午夜精品久久久久久| www.熟女人妻精品国产| 久久久国产欧美日韩av| 在线观看免费午夜福利视频| 亚洲精品成人av观看孕妇| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 在线观看66精品国产| 中文字幕另类日韩欧美亚洲嫩草| 在线观看舔阴道视频| 啦啦啦 在线观看视频| 亚洲男人的天堂狠狠| 老熟妇仑乱视频hdxx| cao死你这个sao货| 欧美性长视频在线观看| 黄频高清免费视频| 欧美人与性动交α欧美软件| 黄色视频,在线免费观看| 久久热在线av| 午夜视频精品福利| 午夜亚洲福利在线播放| 99久久综合精品五月天人人| 国产乱人伦免费视频| 国产主播在线观看一区二区| 久久精品亚洲av国产电影网| 人人澡人人妻人| 亚洲av成人不卡在线观看播放网| 久久久国产精品麻豆| 国产区一区二久久| 色老头精品视频在线观看| 午夜福利一区二区在线看| 欧美色视频一区免费| 丁香六月欧美| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 久久久久久久午夜电影 | 伦理电影免费视频| 亚洲av五月六月丁香网| 999久久久国产精品视频| 18禁国产床啪视频网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品合色在线| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 淫妇啪啪啪对白视频| 久久国产精品影院| 久久久久久久午夜电影 | 国产成人欧美| 在线天堂中文资源库| 99在线视频只有这里精品首页| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三| 99久久综合精品五月天人人| 亚洲美女黄片视频| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 黄色片一级片一级黄色片| 三上悠亚av全集在线观看| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 日韩视频一区二区在线观看| 91在线观看av| 精品久久久久久久毛片微露脸| 中文字幕av电影在线播放| 在线免费观看的www视频| 午夜久久久在线观看| 91字幕亚洲| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 五月开心婷婷网| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 国产三级在线视频| 视频区图区小说| 国产精品综合久久久久久久免费 | 五月开心婷婷网| 91大片在线观看| 日韩精品青青久久久久久| 午夜老司机福利片| 亚洲精品成人av观看孕妇| 淫秽高清视频在线观看| 精品一区二区三区四区五区乱码| 亚洲五月色婷婷综合| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 97超级碰碰碰精品色视频在线观看| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 久热爱精品视频在线9| 视频在线观看一区二区三区| 国产精品乱码一区二三区的特点 | 久久久久久久久久久久大奶| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 亚洲精品av麻豆狂野| 一a级毛片在线观看| 精品久久久久久成人av| 国产真人三级小视频在线观看| 色婷婷av一区二区三区视频| 无遮挡黄片免费观看| 两性夫妻黄色片| 麻豆久久精品国产亚洲av | 亚洲欧美日韩另类电影网站| 香蕉国产在线看| 国产免费男女视频| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费 | 国产一区二区在线av高清观看| 制服人妻中文乱码| 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 高清欧美精品videossex| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 乱人伦中国视频| 国产免费现黄频在线看| 成人永久免费在线观看视频| 亚洲第一青青草原| 日日夜夜操网爽| 五月开心婷婷网| 欧美久久黑人一区二区| 成年人免费黄色播放视频| www.精华液| 免费av毛片视频| 很黄的视频免费| 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 国产欧美日韩一区二区精品| 成年版毛片免费区| 国产成人影院久久av| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 少妇 在线观看| 欧美日韩乱码在线| 国产精品免费视频内射| 丝袜美腿诱惑在线| 少妇的丰满在线观看| 亚洲伊人色综图| 少妇的丰满在线观看| 啦啦啦免费观看视频1| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| av在线播放免费不卡| 成人亚洲精品av一区二区 | 在线免费观看的www视频| 亚洲avbb在线观看| 80岁老熟妇乱子伦牲交| 精品久久久久久成人av| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费 | 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 国产成人av教育| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器 | 大香蕉久久成人网| 99国产综合亚洲精品| 成人影院久久| 80岁老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 在线观看免费午夜福利视频| 老司机靠b影院| 一级片免费观看大全| 国产成+人综合+亚洲专区| 色综合站精品国产| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 热re99久久国产66热| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区久久| 国产精品日韩av在线免费观看 | 免费日韩欧美在线观看| 亚洲精华国产精华精| av电影中文网址| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 狠狠狠狠99中文字幕| 久久香蕉精品热| 中亚洲国语对白在线视频| 老汉色∧v一级毛片| 99riav亚洲国产免费| 999久久久精品免费观看国产| 久9热在线精品视频| 亚洲精品在线美女| 精品无人区乱码1区二区| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 伊人久久大香线蕉亚洲五| 一级作爱视频免费观看| 久久人人精品亚洲av| 无人区码免费观看不卡| avwww免费| 午夜免费鲁丝| 88av欧美| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 精品国产乱子伦一区二区三区| 99国产综合亚洲精品| 人妻丰满熟妇av一区二区三区| 国产精品av久久久久免费| 精品国内亚洲2022精品成人| 91av网站免费观看| 水蜜桃什么品种好| a级毛片在线看网站| 身体一侧抽搐| 亚洲五月婷婷丁香| 国产亚洲精品第一综合不卡| 在线播放国产精品三级| 在线永久观看黄色视频| 亚洲中文日韩欧美视频| 日韩欧美一区视频在线观看| 国产人伦9x9x在线观看| 日韩视频一区二区在线观看| 亚洲av五月六月丁香网| 母亲3免费完整高清在线观看| 女人被躁到高潮嗷嗷叫费观| 色精品久久人妻99蜜桃| 日韩精品青青久久久久久| 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 国产99久久九九免费精品| 香蕉丝袜av| 国产成人免费无遮挡视频| 女生性感内裤真人,穿戴方法视频| 91大片在线观看| 日本免费一区二区三区高清不卡 | 麻豆国产av国片精品| 黑人巨大精品欧美一区二区mp4| 人人妻人人爽人人添夜夜欢视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区不卡视频| 午夜福利一区二区在线看| 亚洲一区高清亚洲精品| 久久久国产欧美日韩av| 麻豆国产av国片精品| 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| 久久午夜综合久久蜜桃| 精品久久久久久,| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 午夜精品国产一区二区电影| 久久久久国内视频| 国产乱人伦免费视频| 母亲3免费完整高清在线观看| 纯流量卡能插随身wifi吗| 国产av又大| 成人三级黄色视频| 久久人人爽av亚洲精品天堂| 91成人精品电影| 久久草成人影院| 免费少妇av软件| 99精品在免费线老司机午夜| 免费搜索国产男女视频| 99久久99久久久精品蜜桃| 国产精品久久视频播放| av中文乱码字幕在线| aaaaa片日本免费| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| av欧美777| 搡老乐熟女国产| 在线观看一区二区三区| 国产精品一区二区在线不卡| 国产精品免费一区二区三区在线| 一级片'在线观看视频| 精品一区二区三卡| 人人妻人人澡人人看| 成人国产一区最新在线观看| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频| 色婷婷久久久亚洲欧美| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 一区福利在线观看| 久久人妻av系列| 亚洲久久久国产精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情 高清一区二区三区| 亚洲色图综合在线观看| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| av网站免费在线观看视频| 国产亚洲精品久久久久久毛片| 欧美日韩一级在线毛片| 国产主播在线观看一区二区| 在线观看舔阴道视频| 午夜精品在线福利| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 亚洲狠狠婷婷综合久久图片| 亚洲熟女毛片儿| 亚洲欧美精品综合久久99| tocl精华| 国产又色又爽无遮挡免费看| 欧美成人免费av一区二区三区| 天堂动漫精品| 水蜜桃什么品种好| 高清毛片免费观看视频网站 | 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 国产单亲对白刺激| 国产亚洲欧美在线一区二区| 夜夜躁狠狠躁天天躁| 五月开心婷婷网| 成人特级黄色片久久久久久久| 欧美丝袜亚洲另类 | 午夜日韩欧美国产| 亚洲人成电影观看| 老汉色∧v一级毛片| 色尼玛亚洲综合影院| 国产av精品麻豆| 老司机亚洲免费影院| bbb黄色大片| 岛国视频午夜一区免费看| 国产精品野战在线观看 | 午夜精品国产一区二区电影|