• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Transfer and Green Emitting Properties of Solid SolutionPbGd1-xTbxB7O13(x=0~1)①

    2018-09-10 03:44:24XUELiZHAODnSHIChngLingLIUBoZhongZHAOJiLIFeiFei
    結構化學 2018年8期

    XUE Y-Li ZHAO Dn SHI Chng-Ling LIU Bo-Zhong ZHAO Ji LI Fei-Fei

    ?

    Energy Transfer and Green Emitting Properties of Solid SolutionPbGd1-xTbB7O13(=0~1)①

    XUE Ya-Lia, bZHAO Dana, b②SHI Chang-Lianga②LIU Bao-ZhongaZHAO Jia, bLI Fei-Feia

    a(454000)b(350002)

    A series of Tb-doped solid solutions PbGd1-xTbB7O13(= 0~1) were synthesized by high-temperature solid state reaction method. The luminescence properties were investigated under UV (274 nm) and near-UV (372 nm) excitation. The emission spectrum by 274 nm exciting reveals a charge-transfer between Gd3+and Tb3+ions. Under near-UV light (372 nm) excitation, PbGd1-xTbB7O13:Tb3+exhibits intense green emission centered at 543 nm due to the54→75transition of Tb3+activator. The optimum doping concentrations were found to be= 0.8 with the quantum efficiency of 35%. One may expect that PbGd1-xTbB7O13has the potential to be used as a green phosphor activated by near near-UV light.

    phosphor, photoluminescence, rare-earth, borate;

    1 INTRODUCTION

    Nowadays, much attention has been attracted by the exploration of rare-earth doped functional materials since they can be used as highly efficient phosphors, laser materials, sensors and catalysts by virtue of their unique chemical, optical and electronic properties[1-3]. The selection of a suitable host matrix is one of the most import factors to design an efficient phosphor. Among various host materials, rare earth borates have been paid intense attention for a wide range of applications due to their significant advantages, such as low sintering temperature, low cost, broad band gap, high lumi- nous efficiency, and high chemical stability[4, 5]. The boron atoms can coordinate to three and four oxygen atoms forming a BO3triangle and a BO4tetrahedron, respectively, and these units can further polymerize to complicated BOarchitectures.

    On the other hand, Tb3+ions can serve as efficient activators due to the intense54→75green emission under near-ultraviolet (UV) light excitation. The past 10 years have seen a large number of new efficient Tb3+activated borate phosphors, which have potential applications in solid state lighting, such as NaSrB5O9:Tb3+[6], CdB4O7:Tb3+[7], YA13(BO3)4:Tb3+[8], Sr3B2O6:Tb3+[9],. Our previous study on PbO?Ln2O3?B2O3(Ln = rare- earth metals) system has succefully provied two new isotypic polyborate compound PbGdB7O13[10]and PbTbB7O13[11]. In this work, wereport the synthesis and luminescent properties of their solid solutions PbGd1-xTbB7O13(= 0~1).

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    The raw analyticalreagents, Pb3O4(≥99.0%), Gd2O3(≥99.9%), Tb4O7(≥99.9%) and B2O3(≥99.5%), were purchased from Ji'nan Heng Chemical Co., Ltd. X-ray powder diffraction (XRD) analysis was performed by Rigaku DMax2500 diffractometer with graphite-monochromated Cucharacteristic radiation and the 2range of 5~70° (0.02 °/step). The morphology of the samples was examined by scanning electron microscopy (SEM) images taken using a ZEISS Merlin Compact scanning electron microscope. Photoluminescence (PL) spectra were carried out by a FLS920 Edinburgh Analytical Instrument apparatus. The steady-state measure- ments were performed using a standard 450 W continuous-wave xenon lamp as the excitation source. The step width 1 nm and integration time 0.2were used for the PL excitation and emission spectra measurement. The lifetime measurement was fulfilled by using a standard microsecond flash lampF920H with the time-correlated single-photon counting technique. The flash lamp was operated at 50 Hz pulse frequency with a pulse width of 2s. The external quantum efficiency was determined on the same instrument equipped with a barium sulfate coated integration sphere as the reflectance standard.

    2. 2 Syntheses

    The solid solution samples of PbGd1-xTbB7O13(= 0, 0.01, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1) were prepared by conventional solid-state reactions. The stoichiometric starting reagents of Pb3O4, Gd2O3, Tb4O7and B2O3werepreheated at 550 ℃ for 3 h. The temperature was raised to 780 ℃ and held for 24 h with several intermittent grindings. The purity of powder samples can be confirmed by XRD analysis.

    3 RESULTS AND DISCUSSION

    3. 1 Structure analysis and morphology

    As our previous reports revealed that PbLnB7O13(Ln = Gd, Tb)[10, 11]are isostructures and crystallize in the monoclinic21space group. As shown in Fig. 1, the structure features a 2layer structure consisting of a [B7O13]∞layer, [Ln]∞layer, and Pb2O8dimers that are encapsulated in a [B7O13]∞layer. The solid solutions PbGd1-xTbB7O13(= 0~1) were prepared by solid state reaction method at 780 ℃. The XRD patterns of PbGd1-xTbB7O13and pure PbLnB7O13(Ln = Gd, Tb) are presented in Fig. 2. It can be clearly observed that all peaks can be indexed to the pure PbLnB7O13(Ln = Gd, Tb) phase and no impurity phase was observed in samples PbGd1-xTbB7O13forvalue of 0~1. This proved the formation of the solid solution. It should be pointed out that above 830 ℃, the samples will partially melt, leading to the formation of some unknown impurity phases.

    Fig. 1. View of the structure of PbGdB7O13

    Fig. 2. XRD patterns of samples PbGd1-xTbB7O13(0≤≤1) compared to the simulated data from single-crystal data

    The morphology of as-prepared solid solution PbGd0.2Tb0.8B7O13was observed by SEM. Fig. 3a shows the morphology of the sample in large scale which reveals that the sample is composed of a large quantity of agglomerated particles. A detailed study at high magnification (Fig. 3b) presents that mor- phology of the grains is flake-shaped with diameter of about 3m. No other morphologies can be detected, indicating the formation of highly uniform 3flakes. It is worth noting that some fragments and irregular broken lines are observed due to the grinding after calcinations in the agate mortar. Other samples also exhibit similar morphology and size.

    Fig. 3. SEM micrographs of PbGd0.2Tb0.8B7O13in large (a) and small (b) scales

    3. 2 PL and PLE spectra

    The luminescent properties of pure PbGdB7O13are recorded in Fig. 4. Under 274 nm light excitation, there exists an emission at 312 nm due to the67/2→87/2transition of Gd3+ions[12]. By monitoring the emission wavelength of 312 nm, the excitation spectrum includes a sharp peak around 274 nm, corresponding to the87/2→6I(= 15/2, 13/2, 11/2, 9/2, 7/2) transition of the Gd3+ion.

    Fig. 4. Excitation at= 312 nm (left) and emission at= 274 nm (right) spectra of pure PbGdB7O13

    Fig. 5a exhibits the excitation spectra of samples PbGd1-xTbB7O13(= 0.01, 0.05) by monitoring the emission at 543 nm (54→75transition of Tb3+ions) in the range of 200~400 nm. The spectra for= 0 .01 and= 0.05 are very similar except relative intensity, and mainly contain four sharp peaks at 300~400 nm, which can be assigned to the intra- configurational 4→ 4characteristic transition of Gd3+or Tb3+:87/2→6Iof Gd3+at around 274 nm,87/2→67/2of Gd3+at around 312 nm,76→59of Tb3+at around 348 nm and76→56of Tb3+at 372 nm[13, 14]. This result suggests that the energy transfer Gd3+→ Tb3+occurs when they coexist in one host matrix.

    For a 274 nm excitation wavelength, the emission spectra of Tb3+activated PbGdB7O13at different molar concentrations (0.01 and 0.5) are shown in Fig. 5b. The emission spectrum consists of several peaks. One at 312 nm is due to the67/2→87/2transition of the Gd3+ions present in the host material and the other seven peaks in the region from 380 to 650 nm are the characteristic emissions of the Tb3+ions:53→76(381 nm),53→75(414 nm),53→74(436 nm),54→76(483 nm),54→75(543 nm),54→74(592 nm),54→73(624 nm)[15]. Another issue is that the positions of the emission peaks have no obvious changes for different molar concentrations of the Tb3+ions; however, the emission intensity of 5 mol% Tb3+is much stronger than that of 1 mol% Tb3+. The 4→ 4characteristic transition of Tb3+can be excited by 274 nm, and the87/2→6Itransition of Gd3+ion indicates that an efficient Gd3+→Tb3+energy transfer occurs. Simultaneously, the decrease in the emission intensity of the Gd3+ion at 312 nm after the concentration rising to 5% is also caused by the efficient energy transfer of Gd3+→ Tb3+.

    Fig. 5. Excitation (a) and emission (b) spectra of Tb3+doped PbGdB7O13(1 mol% and 5 mol%)

    The schematic energy levels of Gd3+and Tb3+are shown in Fig. 6, which helps us understand the energy transfer process. Upon 274 nm excitation, the6Ilevel of Gd3+ion was first populated[16]. After non-radioactive relaxation, the electrons should reach the67/2state of Gd3+and then the Gd3+ions may go back to the ground state through two ways. Firstly, the Gd3+ions at the67/2state may transfer energy to the Tb3+(57) states through the resonance energy transfer process as they are almost of the same energy. Then the Tb3+ions relax non- radioactively to54or53and give emissions to the ground state (7H= 3, 4, 5, 6), which produces several 4→ 4characteristic transitions of Tb3+. Secondly, the Gd3+ions at the67/2state may also produce emis- sion at 312 nm through the67/2→87/2transitions.

    Fig. 6. Schematic energy level diagrams to present the energy transfer process of Gd3+→Tb3+

    3. 3 Concentration quenching

    We notice from Fig. 7 that the 372 nm light (76→56of Tb3+) is more suitable to activate Tb3+-doped PbGdB7O13phosphor. It can be seen that the emission spectrum is composed of five distinct groups of peaks in the 480 ~ 695 nm range, cor- responding to the characteristic 4→ 4transition of Tb3+activator, the same as Fig. 5b. The green emission (54→75) is the strongest one for all Tb3+concentrations, and the variation of emission inten- sity as the function of Tb3+concentration is shown in the insert of Fig. 7. The highest integrated emission intensity at the Tb3+concentration of 80% can be thought as the critical concentration. The concentra- tion quenching is mainly caused by non-radioactive energy transfer among the Tb3+ions, which gene- rally occurred due to the exchange interaction, radia- tion re-absorption or a multiple-multiple interac- tion[17]. The type of interaction mechanism can be identified by calculating the critical distance (R) between the nearest Tb3+ions. TheRof energy transfer for Tb3+ion in PbGd1-xTbB7O13phosphor can be calculated by using the Blasse[18]equation given below:

    whereis the volume of one unit cell,is the number of Tb3+ions in the unit cell andXis the critical concentration of the activator ion. For PbGd1-xTbB7O13,cis 0.8,is 4, andis 0.91607 nm3, then thecwas calculated to be 0.818 nm, which is larger than the typical distance for exchange interaction (< 0.5 nm). Hence, we tentatively put forward that the electric multipolar interaction plays an important role in energy transfer between Tb3+ions in host lattice rather than exchange interaction.

    Fig. 7. Emission spectra of PbGd1-xTbB7O13(= 0.01, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1) phosphor under 372 nm light

    3. 4 Luminescent decay curve

    In addition, the decay curve for the green emis- sion at 543 nm (54→75) excited by 372 nm of PbGd0.2Tb0.8B7O13phosphor is measured, as shown in Fig. 8. The curve can be well fitted with a mono-exponential function:

    (t)=I+1exp(–/)

    where0is the baseline correction (-offset),1is a pre-exponential factor obtained from the curve fitting andrepresents the lifetime of the excited state. The value ofis calculated to be 2.15 ms, which is comparable with other Tb3+activated phosphors[19, 20].

    Fig. 8. Decay curves of Tb3+in PbGd0.2Tb0.8B7O13at excitation 372 and 543 nm emission wavelength excitation

    3. 5 CIE and quantum efficiency

    It is well known that three main colors recognized by the human vision system are red, green and blue. These three colors are usually referred as the 1931 color coordinates, which are the current standard for lighting specifications on the market. In general, the color of any light source in this color space can be represented as an (,) coordinate. Under the excitation at 372 nm, the calculated CIE chroma- ticity coordinates for PbGd0.2Tb0.8B7O13are calculated to be (= 0.297,= 0.583), correspon- ding to the green light, as shown in Fig. 9.

    The quantum efficiency (QE) of a phosphor is an important parameter to be considered for practical applications. The QE can be measured and calcula- ted according to the following equation:

    whereLrepresents the emission spectrum,Ethe excitation spectrum, andEthe background. Upon excitation at 372 nm, the corresponding QE of phosphor PbGd0.2Tb0.8B7O13was 35%. Because the significant factor, morphology of the sample, for QE was not optimized, one may expect that compound PbGd1-xB7O13:Tb3+can be used as a good green phosphor for illumination or display.

    Fig. 9. Chromaticity coordinates of PbGd0.2Tb0.8B7O13phosphor with excitation at 602 nm in the CIE 1931 chromaticity diagram

    4 CONCLUSION

    A series of phosphors PbGd1-xTbB7O13(= 0, 0.01, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1) were synthesized by the high temperature solid-state reaction method. The XRD results indicate pure solid solution phase was formed. An energy transfer between Gd3+and Tb3+ions happened by 274 nm light excitation. The PL spectra of PbGd1-xTbB7O13samples exhibit green light emission under 372 nm light excitation in which the band around 543 nm due to the54→75transition of Tb3+is more dominant than the other bands. The optimum doping concentration was found to be 80% for Gd3+ion. The mono-exponential behavior of the decay curves of phosphor PbGd0.2Tb0.8B7O13reveals that the Gd3+/Tb3+activators can reside in two unique crystallographic distinct sits. The calculated CIE coordinates of phosphor PbGd0.2Tb0.8B7O13are (0.297, 0.583), corresponding to the green color. The QE of the phosphor PbGd0.2Tb0.8B7O13is 35%, which shows that the as-prepared material PbGdB7O13has promising potentials in using as host matrix for Tb3+fluorescence.

    (1) Park, K.; Hakeem, D. A. Improved photoluminescence properties of BaAl2Si2O8:Eu3+,Tb3+phosphors by doping Tb3+.2017, 43, 4725-4729.

    (2) Si, J. Y.; Liu, N.; Song, S. Y.; Cai, G. M.; Yang, N.; Li, Z. Investigation on Eu/Tb activated photoluminescent properties of Li3Sc(BO3)2based phosphors.2017, 719, 171-181.

    (3) Zitzer, S.; Schleifenbaum, F.; Schleid, T. Synthesis, crystal structure and spectroscopic properties of Y3O2Cl(SeO3)2:Eu3+.2011, 226, 651-656.

    (4) Liu, Q.; Wang, L.; Huang, W.; Li, X.; Yu, M.; Zhang, Q. Red-emitting double perovskite phosphors Sr1-xCaLaMgSbO6:Eu3+: luminescence improvement based on composition modulation.2017, 43, 16292-16299.

    (5) Zhao, D.; Ma, F. X.; Wu, Z. Q.; Zhang, L.; Wei, W.; Yang, J.; Zhang, R. H.; Chen, P. F.; Wu, S. X. Synthesis, crystal structure and characterizations of a new red phosphor K3EuB6O12.2016, 182, 231-236.

    (6) Ramesh, B.; Dillip, G. R.; Raju, B. D. P.; Somasundaram, K.; Peddi, S. P.; dos Anjos, V. D. C.; Joo, S. W. Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+phosphor for solid-state lighting.2017, 4, 046201.

    (7) Khamaganova, T. N.; Khumaeva, T. G.; Subanakov, A. K.; Perevalov, A. V. Synthesis and thermoluminescence properties of CdB4O7:Tb3+and CdB4O7:Mn2+.2017, 53, 81-85.

    (8) Ben Amar, N.; Hassairi, M. A.; Dammak, M. Optical spectroscopy and crystal field calculation of Tb3+doped in YA13(BO3)4single crystal.2016, 173, 223-230.

    (9) Neharika; Kumar, V.; Sharma, J.; Singh, V. K.; Ntwaeaborwa, O. M.; Swart, H. C. Surface and spectral studies of green emitting Sr3B2O6:Tb3+phosphor.2016, 206, 52-57.

    (10) Zhao, D.; Ma, F. X.; Liu, B. Z.; Ma, M. J.; Duan, P. G.; Zhang, L. N.; Zhang, W. L. Syntheses, crystal structure and luminescent properties of polyborates PbLnB7O13(Ln = Gd, Sm) with a 2[B7O13]∞framework.2018, 195, 134-140.

    (11) Zhao, D.; Ma, F. X.; Fan, Y. C.; Zhang, L.; Zhang, R. J.; Duan, P. G. PbLnB7O13(Ln = Tb or Eu): a new type of layered polyborate with multi-colour light emission properties.2017, 46, 8673-8679.

    (12) Gupta, P.; Bedyal, A. K.; Kumar, V.; Khajuria, Y.; Sharma, V.; Ntwaeaborwa, O. M.; Swart, H. C. Energy transfer mechanism from Gd3+to Sm3+in K3Gd(PO4)2:Sm3+phosphor.2015, 2, 076202.

    (13) Gupta, P.; Bedyal, A. K.; Kumar, V.; Khajuria, Y.; Lochab, S. P.; Pitale, S. S.; Ntwaeaborwa, O. M.; Swart, H. C. Photoluminescence and thermoluminescence properties of Tb3+doped K3Gd(PO4)2nanophosphor.2014, 60, 401-411.

    (14) Meng, F.; Zhang, X.; Xu, Y.; Yang, J.; Cheng, Z. Photoluminescence of Eu2+, Ce3+and Tb3+in a new potassium barium phosphate K2Ba3(P2O7)2host lattice.2017, 729, 724-729.

    (15) Zhao, D.; Ma, F. X.; Zhang, R. J.; Huang, M.; Chen, P. F.; Zhang, R. H.; Wei, W. Substitution disorder and photoluminescent property of a new rare-earth borate: K3TbB6O12.2016, 231, 525-530.

    (16) Kesavulu, C. R.; Kim, H. J.; Lee, S. W.; Kaewkhao, J.; Kaewnuam, E.; Wantana, N. Luminescence properties and energy transfer from Gd3+to Tb3+ions in gadolinium calcium silicoborate glasses for green laser application.2017, 704, 557-564.

    (17) Annadurai, G.; Jayachandiran, M.; Masilla Moses Kennedy, S.; Sivakumar, V. Synthesis and photoluminescence properties of Ba2CaZn2Si6O17:Tb3+green phosphor.2016, 208, 47-52.

    (18) Blasse, G. Energy transfer in oxidic phosphors.1968, 28, 444-445.

    (19) Nair, G. B.; Dhoble, S. J. White light emission through efficient energy transfer from Ce3+to Dy3+ions in Ca3Mg3(PO4)4matrix aided by Li+charge compensator.2017, 192, 1157-1166.

    (20) Li, X.; Liang, C.; Guo, S.; Xiao, Y.; Chang, C. Photoluminescence and afterglow behavior of Tb3+activated Li2SrSiO4phosphor.2017, 188, 199-203.

    29 December 2017;

    3 May 2018

    ① This work was supported by the Open Foundation (No. 20160004) ofState Key Laboratory of Structural Chemistry, and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF170301)

    Zhao Dan, born in 1982, Ph.D, associate professor, Tel: +86-13839155305, E-mail: iamzd1996@163.com; Shi Chang-Liang, born in 1984, Ph.D, instructor, Tel: +86-13721456053, E-mail: scl303@126.com

    10.14102/j.cnki.0254-5861.2011-1938

    精品一区二区免费观看| 亚洲成人精品中文字幕电影| av在线老鸭窝| 日本在线视频免费播放| 老司机午夜十八禁免费视频| 高清毛片免费观看视频网站| 91在线精品国自产拍蜜月| 一个人免费在线观看的高清视频| 88av欧美| 波多野结衣高清作品| 国产精品av视频在线免费观看| 国产精品影院久久| 国产精品综合久久久久久久免费| av天堂在线播放| 国产精品乱码一区二三区的特点| 内射极品少妇av片p| 亚洲欧美日韩高清在线视频| 国产精品伦人一区二区| 亚洲av一区综合| 天堂动漫精品| 久久国产乱子免费精品| 婷婷色综合大香蕉| 久久亚洲精品不卡| 免费av毛片视频| 99久久精品热视频| 又爽又黄a免费视频| aaaaa片日本免费| 18禁黄网站禁片午夜丰满| 国产精品美女特级片免费视频播放器| 最近在线观看免费完整版| 国产精品嫩草影院av在线观看 | 国产精品亚洲美女久久久| 看黄色毛片网站| 少妇的逼水好多| 赤兔流量卡办理| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕av在线有码专区| 国产色爽女视频免费观看| 别揉我奶头 嗯啊视频| 99热这里只有精品一区| 蜜桃久久精品国产亚洲av| 欧美国产日韩亚洲一区| 天堂影院成人在线观看| 国产精品永久免费网站| 欧美另类亚洲清纯唯美| 国产精品亚洲av一区麻豆| 欧美黄色淫秽网站| 夜夜夜夜夜久久久久| 色视频www国产| 国产欧美日韩精品亚洲av| 国产精品综合久久久久久久免费| 日韩人妻高清精品专区| 2021天堂中文幕一二区在线观| 18禁黄网站禁片免费观看直播| 国产精品免费一区二区三区在线| 美女高潮喷水抽搐中文字幕| 九九热线精品视视频播放| 嫩草影院入口| 成人特级黄色片久久久久久久| 亚洲电影在线观看av| 深夜a级毛片| 色吧在线观看| 国产精品爽爽va在线观看网站| 制服丝袜大香蕉在线| 久久午夜福利片| 成年人黄色毛片网站| 99久久精品国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品乱码久久久v下载方式| 日本一本二区三区精品| 亚洲av中文字字幕乱码综合| 又黄又爽又免费观看的视频| 久久精品91蜜桃| 男人舔奶头视频| 国产主播在线观看一区二区| 亚洲av.av天堂| 成人特级av手机在线观看| 我要搜黄色片| 日韩高清综合在线| 国产成人av教育| 久久草成人影院| 国产成人啪精品午夜网站| av在线老鸭窝| 人人妻人人看人人澡| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| av在线蜜桃| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 亚洲,欧美精品.| 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人综合色| 俺也久久电影网| 少妇人妻精品综合一区二区 | 一级作爱视频免费观看| 99热这里只有是精品在线观看 | 欧美又色又爽又黄视频| 欧美精品啪啪一区二区三区| 日本成人三级电影网站| 免费在线观看影片大全网站| 深夜a级毛片| 搡女人真爽免费视频火全软件 | 一级av片app| 天堂影院成人在线观看| 国产在线男女| 欧美绝顶高潮抽搐喷水| 在线观看免费视频日本深夜| 欧美+亚洲+日韩+国产| 少妇人妻一区二区三区视频| 国产成年人精品一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲av熟女| 简卡轻食公司| 日本在线视频免费播放| 99久久精品一区二区三区| 白带黄色成豆腐渣| 日韩欧美 国产精品| 丁香欧美五月| 在线免费观看的www视频| 俄罗斯特黄特色一大片| 亚洲最大成人手机在线| 91麻豆av在线| 国产色婷婷99| 伦理电影大哥的女人| 久久热精品热| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 国产v大片淫在线免费观看| 欧美最黄视频在线播放免费| 国产黄片美女视频| 大型黄色视频在线免费观看| 亚洲精品成人久久久久久| 久久精品影院6| 亚洲欧美日韩卡通动漫| 亚洲人成电影免费在线| 亚洲美女搞黄在线观看 | 女人十人毛片免费观看3o分钟| 亚洲最大成人手机在线| 国产成人欧美在线观看| 精品国内亚洲2022精品成人| 亚洲国产精品合色在线| 欧美乱色亚洲激情| 一区二区三区激情视频| 亚洲 国产 在线| 九九久久精品国产亚洲av麻豆| 90打野战视频偷拍视频| 久久久久国内视频| 久久精品国产99精品国产亚洲性色| 日韩大尺度精品在线看网址| 国产乱人伦免费视频| 亚洲美女黄片视频| 丰满人妻一区二区三区视频av| 啪啪无遮挡十八禁网站| 午夜激情福利司机影院| 成人美女网站在线观看视频| 国产精品乱码一区二三区的特点| 日韩人妻高清精品专区| 99久久精品热视频| 女生性感内裤真人,穿戴方法视频| 嫩草影院新地址| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 又紧又爽又黄一区二区| 日本免费一区二区三区高清不卡| 免费电影在线观看免费观看| 亚洲黑人精品在线| 麻豆国产av国片精品| 日本黄色片子视频| 啦啦啦韩国在线观看视频| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线观看免费| 男人舔女人下体高潮全视频| 舔av片在线| 久9热在线精品视频| 国产成人啪精品午夜网站| 麻豆一二三区av精品| 午夜两性在线视频| 搡老岳熟女国产| 国产精品女同一区二区软件 | 欧美日韩福利视频一区二区| 久久久久精品国产欧美久久久| 免费看光身美女| 人人妻,人人澡人人爽秒播| 哪里可以看免费的av片| 欧美成人a在线观看| 欧美黄色淫秽网站| 国产探花在线观看一区二区| 在线a可以看的网站| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 午夜免费激情av| 亚洲一区高清亚洲精品| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 精品日产1卡2卡| 久久久精品大字幕| 在线观看66精品国产| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 嫩草影院入口| 欧美极品一区二区三区四区| 亚洲最大成人中文| 精华霜和精华液先用哪个| 少妇裸体淫交视频免费看高清| 久久久久性生活片| 少妇的逼水好多| 国产乱人视频| 国产亚洲欧美在线一区二区| 午夜精品在线福利| 一本精品99久久精品77| 小说图片视频综合网站| 搡女人真爽免费视频火全软件 | 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 国产精品一及| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 变态另类丝袜制服| 亚洲五月婷婷丁香| 亚洲第一电影网av| 看十八女毛片水多多多| 亚洲国产精品999在线| 听说在线观看完整版免费高清| 无人区码免费观看不卡| 日韩大尺度精品在线看网址| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 毛片女人毛片| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 成年免费大片在线观看| 色5月婷婷丁香| av在线蜜桃| 亚洲综合色惰| 日日干狠狠操夜夜爽| 国内精品久久久久久久电影| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 久久久久久久久久成人| 亚洲中文字幕日韩| 丰满的人妻完整版| 一夜夜www| 日本撒尿小便嘘嘘汇集6| av国产免费在线观看| 看免费av毛片| 搡老熟女国产l中国老女人| 91字幕亚洲| 一二三四社区在线视频社区8| 亚洲精华国产精华精| 欧美成人免费av一区二区三区| netflix在线观看网站| 成人特级黄色片久久久久久久| 国产精品,欧美在线| 免费大片18禁| 久久久久性生活片| 特级一级黄色大片| 亚洲国产精品sss在线观看| 制服丝袜大香蕉在线| 成年免费大片在线观看| 欧美激情久久久久久爽电影| 午夜福利欧美成人| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 欧美最新免费一区二区三区 | 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 黄色配什么色好看| 亚洲成人中文字幕在线播放| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 亚洲专区国产一区二区| 亚洲精品色激情综合| www.www免费av| 中文字幕久久专区| 97碰自拍视频| 欧美性猛交黑人性爽| 特大巨黑吊av在线直播| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 日韩亚洲欧美综合| 99久久精品一区二区三区| av在线观看视频网站免费| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 一本综合久久免费| 97人妻精品一区二区三区麻豆| 久久6这里有精品| 亚洲国产精品久久男人天堂| 波野结衣二区三区在线| 香蕉av资源在线| 夜夜爽天天搞| 久久久久久久亚洲中文字幕 | 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区| 变态另类成人亚洲欧美熟女| 国产国拍精品亚洲av在线观看| 少妇人妻精品综合一区二区 | 午夜福利在线观看吧| 精品99又大又爽又粗少妇毛片 | 国产午夜福利久久久久久| www.色视频.com| 能在线免费观看的黄片| 色5月婷婷丁香| 国产精品久久久久久精品电影| 日韩亚洲欧美综合| 少妇的逼水好多| 国产真实伦视频高清在线观看 | 精品久久久久久久末码| 国内精品久久久久精免费| 成人毛片a级毛片在线播放| 极品教师在线免费播放| 日本三级黄在线观看| 国产视频一区二区在线看| 九九热线精品视视频播放| 内地一区二区视频在线| 老熟妇仑乱视频hdxx| 一区二区三区四区激情视频 | 久久香蕉精品热| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 99视频精品全部免费 在线| 日本一本二区三区精品| 女同久久另类99精品国产91| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在 | 丁香六月欧美| av在线观看视频网站免费| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 一级a爱片免费观看的视频| 国产亚洲av嫩草精品影院| 91九色精品人成在线观看| 国产欧美日韩一区二区三| 狂野欧美白嫩少妇大欣赏| 激情在线观看视频在线高清| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| 搡女人真爽免费视频火全软件 | 欧美日韩瑟瑟在线播放| 宅男免费午夜| 99热这里只有是精品在线观看 | 中亚洲国语对白在线视频| 脱女人内裤的视频| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| av专区在线播放| 婷婷色综合大香蕉| 99riav亚洲国产免费| 韩国av一区二区三区四区| 搡女人真爽免费视频火全软件 | 欧美精品啪啪一区二区三区| 久久中文看片网| 精品人妻熟女av久视频| 国产精品国产高清国产av| 9191精品国产免费久久| 日韩欧美国产一区二区入口| 亚洲精品影视一区二区三区av| 亚洲av中文字字幕乱码综合| www.色视频.com| 国产69精品久久久久777片| 人妻夜夜爽99麻豆av| 欧美日本亚洲视频在线播放| 啪啪无遮挡十八禁网站| 看黄色毛片网站| 久久这里只有精品中国| 一本一本综合久久| 一个人看视频在线观看www免费| 变态另类丝袜制服| 久久精品国产99精品国产亚洲性色| 午夜两性在线视频| 欧美性猛交╳xxx乱大交人| 高清在线国产一区| 婷婷精品国产亚洲av在线| 久久久久九九精品影院| 9191精品国产免费久久| 久久久久久久久大av| 欧美中文日本在线观看视频| 在线十欧美十亚洲十日本专区| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影| 天堂av国产一区二区熟女人妻| 国产蜜桃级精品一区二区三区| 国产成人欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 色播亚洲综合网| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| 成年免费大片在线观看| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 看片在线看免费视频| 日韩欧美一区二区三区在线观看| 久久久色成人| 看十八女毛片水多多多| 国内毛片毛片毛片毛片毛片| 99久久成人亚洲精品观看| 国产精品久久久久久亚洲av鲁大| 18美女黄网站色大片免费观看| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 久久草成人影院| 老熟妇仑乱视频hdxx| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 国产精品98久久久久久宅男小说| 色综合站精品国产| 观看免费一级毛片| 欧美在线黄色| 美女 人体艺术 gogo| 国产精品国产高清国产av| 美女xxoo啪啪120秒动态图 | 亚洲片人在线观看| bbb黄色大片| 亚洲经典国产精华液单 | 亚洲中文日韩欧美视频| 亚洲激情在线av| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品久久视频播放| 少妇熟女aⅴ在线视频| 亚洲精品粉嫩美女一区| 高清在线国产一区| 成人三级黄色视频| 简卡轻食公司| 国产精品不卡视频一区二区 | 三级毛片av免费| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 国产成+人综合+亚洲专区| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| 国产精品综合久久久久久久免费| 国产成人影院久久av| 白带黄色成豆腐渣| 乱人视频在线观看| 欧美一级a爱片免费观看看| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 日本在线视频免费播放| 91午夜精品亚洲一区二区三区 | 欧美日韩乱码在线| 韩国av一区二区三区四区| 长腿黑丝高跟| 国产综合懂色| 3wmmmm亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 日本一二三区视频观看| 国产精品国产高清国产av| 一夜夜www| 国产主播在线观看一区二区| 欧美黑人巨大hd| 精品99又大又爽又粗少妇毛片 | 丰满人妻熟妇乱又伦精品不卡| 天堂网av新在线| 黄色配什么色好看| 婷婷亚洲欧美| 久久国产精品影院| 久久精品国产自在天天线| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 夜夜夜夜夜久久久久| 日韩人妻高清精品专区| 欧美色视频一区免费| 午夜两性在线视频| 日本 欧美在线| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 日本熟妇午夜| 嫩草影院精品99| 国产精品人妻久久久久久| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 深夜精品福利| 亚洲av成人精品一区久久| 黄片小视频在线播放| 99久久成人亚洲精品观看| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| eeuss影院久久| 特大巨黑吊av在线直播| 国产不卡一卡二| aaaaa片日本免费| 一进一出抽搐gif免费好疼| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 国产亚洲av嫩草精品影院| 久久久久久久久久成人| 亚洲性夜色夜夜综合| 91九色精品人成在线观看| 九色成人免费人妻av| 欧美最黄视频在线播放免费| 国产国拍精品亚洲av在线观看| 看免费av毛片| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 国产国拍精品亚洲av在线观看| 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 国产伦精品一区二区三区四那| 精品久久久久久久久av| 国产精品电影一区二区三区| 国产成人福利小说| 日韩欧美在线乱码| 一级毛片久久久久久久久女| 国产熟女xx| 男女之事视频高清在线观看| 成人高潮视频无遮挡免费网站| 男女视频在线观看网站免费| 网址你懂的国产日韩在线| 亚洲五月天丁香| 在线观看免费视频日本深夜| 桃红色精品国产亚洲av| 亚洲一区二区三区色噜噜| 能在线免费观看的黄片| 亚洲精品亚洲一区二区| 在线免费观看不下载黄p国产 | 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 亚洲片人在线观看| 国产精品不卡视频一区二区 | 天堂网av新在线| 88av欧美| 国产精品电影一区二区三区| 亚洲狠狠婷婷综合久久图片| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 欧美绝顶高潮抽搐喷水| 女人十人毛片免费观看3o分钟| 男人狂女人下面高潮的视频| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 1000部很黄的大片| 国产成人av教育| 成人三级黄色视频| 色av中文字幕| 国产伦精品一区二区三区视频9| 老女人水多毛片| 亚洲自偷自拍三级| 午夜视频国产福利| 超碰av人人做人人爽久久| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 国产精品1区2区在线观看.| 一边摸一边抽搐一进一小说| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 欧美+亚洲+日韩+国产| 欧美3d第一页| avwww免费| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| 日日摸夜夜添夜夜添小说| 露出奶头的视频| 免费看光身美女| 午夜福利在线观看吧| 精品一区二区三区人妻视频| 国产美女午夜福利| 亚洲国产精品sss在线观看| 校园春色视频在线观看| 久久精品国产清高在天天线| 午夜精品一区二区三区免费看| 国产亚洲欧美在线一区二区| 91狼人影院| 亚洲黑人精品在线| 99视频精品全部免费 在线| 亚洲最大成人手机在线| 97碰自拍视频| 亚洲精品456在线播放app | 少妇被粗大猛烈的视频| 欧美国产日韩亚洲一区| 国产欧美日韩精品亚洲av| 亚洲午夜理论影院| 69人妻影院| 网址你懂的国产日韩在线| 久久九九热精品免费| 亚洲av成人不卡在线观看播放网| 美女高潮的动态| 亚洲综合色惰| 国产伦精品一区二区三区四那| 欧美一区二区亚洲| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 嫩草影视91久久| 亚洲av不卡在线观看| 久久中文看片网| 午夜日韩欧美国产| 亚洲av熟女| 精品国产亚洲在线| 免费在线观看亚洲国产| 欧美bdsm另类| 精品久久久久久久久久免费视频| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 国产精华一区二区三区| 亚洲精品亚洲一区二区| 精品日产1卡2卡|