• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT Investigations (Geometry Optimization, UV/Vis, FT-IR, NMR, HOMO-LUMO, FMO, MEP, NBO, Excited States) and the Syntheses of New Pyrimidine Dyes①

    2018-09-10 03:41:24MASOOMEShikhiSIYAMAKShhLIUDMILAFilippovichEVGENIJDikusrMEHRNOOSHKhlghin
    結(jié)構(gòu)化學(xué) 2018年8期

    MASOOME Shikhi SIYAMAK Shh LIUDMILA Filippovich EVGENIJ Dikusr MEHRNOOSH Khlghin

    ?

    DFT Investigations (Geometry Optimization, UV/Vis, FT-IR, NMR, HOMO-LUMO, FMO, MEP, NBO, Excited States) and the Syntheses of New Pyrimidine Dyes①

    MASOOME Sheikhia②SIYAMAK Shahabb, c, dLIUDMILA Filippovichb, cEVGENIJ DikusarbMEHRNOOSH Khaleghiane

    a()b(13220072)c(220141)d()e()

    In the present work, the molecular structures of two new synthesized dyes:(4,6-dimethylpyrimidin-2-ylamino)(5-p-tolylisoxazol-3-yl)methanol (PS-1) and N-(4,6-dimethylpyrimi-din-2-yl)-5-phenylisoxazole-3-carboxamide (PS-2), have been investigated using density func-tional theory (DFT) in dimethylformamide (DMF) for the first time. The electronic spectra of new dyes in a DMF solvent were carried out by time dependent density functional theory (TD-DFT) method. After quantum-chemical calculations two new dyes for the optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. Nucleus-Independent Chemical Shifts (NICS) calculations have also been carried out for the title compounds. The computed absorption spectral data of the title compounds are in good agreement with the experimental data, thus allowing an assignment of the UV spectra. The HOMO and LUMO molecular orbitals, excitation energies and oscillator strengths for the dyes have also been calculated and presented.

    pyrimidinedye, NICS, DFT calculation, UV/Vis spectrum;

    1 INTRODUCTION

    Pyrimidine and its derivatives play an important role in chemistry. Many derivatives of pyrimidine were synthesized for use in the field of pharmacy[1-4]. They have biological activities such as antihyperten-sive, antibiotic, antioxidant, antiviral, antifungal,anti-convulsant, anti-HIV, inflammatory, antibacterial[5,6], antifilarial agents[7], anticancer[8]and DNA modi-ficators[9,10]. Pyrimidines are candidates for new therapeutic agents. Therefore, new methods for their synthesis have been developed. Pyrimidine-based compounds are valuable because of the the optical and physical characteristics. Pyrimidine is-electron deficient with an ionization potential value about 10.41 eV[11]. The organic-conjugated compounds have semiconducting properties and are used in optoelectronic devices[12-14], light emitting diodes (LED), field-effect transistors (FET)[15-17], sensors and solar cells[18]. The organic field-effect transistors (OFETs) were used in various electronic devices due to their cheapness,low weight, easy construction method, high flexibility and environmental friendly nature[19-22]. They have been used as the inhibitor of corrosion[23,24], electroluminescent materials and biomaterials in the past[25].

    In recent years, computational chemistry has become an important tool for chemists and a well-accepted partner for experimental chemistry. Theore- tical quantum chemistry method is an important area in determining the mechanisms of chemical reac-tions[26], especialcatalysis[27], structural determina-tion of organic compounds[28], prediction of spec-troscopic data such as1H NMR and13C NMR che-mical shifts[29], IR, UV/Vis, properties calculation of organic molecules[30]. TD-DFT is used for predicting the absorption spectra of the compounds[30-32]. Besides detailed experimental studies of pyrimidines, theoretical studies (DFT calculations) were used for interpreting their structures, spectroscopic assign-ments, tautomeric studies and reaction mecha-nisms[33-37]. In this research, we report the results of DFT calculations to investigate absorption spectrum, UV/Vis, FT-IR, HOMO LUMO, FMO, MEP and NBO of two new pyrimidine derivatives such as PS-1 and PS-2. In this work, FT-IR spectra data and UV/Vis computations of the new synthesized dyes in the ground state were calculated by using DFTmethod.

    2 COMPUTATIONAL METHODS

    In this work, the quantum chemical calculations have performed and optimized compounds PS-1 and PS-2using the DFT method with 6-31+G* basis setsby the Gaussian 09W program package[38]on a Pentium IV/4.28 GHz personal computer.The Polarized Continuum Model (PCM)[30]was used for calculations of solvent effect. We also used TD-DFT method to calculate the electronic transitions of the title compounds and theoretical absorption spectra of the structures in a solvent DMF. The nucleus-independent chemical shift (NICS)[39]was calculated for two structures PS-1 and PS-2. The theoretical FT-IR spectra of the optimized structures PS-1 and PS-2 were calculated by the B3LYP/6-31+G* level of theory. The electronic properties such as EHOMO, ELUMO, energy gap between HOMO and LUMO, dipole moment (μ), point group and natural charge[40]of the title structures were calculated. The optimized molecular structures, MEP maps, HOMO and LUMO surfaces were visualized by GaussView05 program[41]. Also the electronic struc-ture of the compound PS-1 was studied by Natural Bond Orbital (NBO) analysis[42]using the B3LYP/6-31+G* level of theory in order to understand hyper-conjugative interactions and charge delocalization.

    3 RESULTS AND DISCUSSION

    3.1 Optimized structuresof compounds PS-1 and PS-2

    We carried out DFT calculations for the new compounds PS-1 and PS-2 by B3LYP/6-31+G* level of theory in a solvent DMF, and the optimized molecular structuresare shown in Fig. 1. The quan-tum chemical calculations were performed using the Gaussian 09 software package and GaussView 05 visualization programs on a Pentium IV/4.02 GHz personal computer. The IEFPCM (Integral Equation Formalism PCM) coupled to UAKS radii is a method that was used to calculate the solvent (DMF) effect. The Integral Equation Formalism PCMby Cances, Mennucci and Tomasiis the most popular PCM version. It employs a molecule shaped cavity com-posed of spheres centered on the nuclei, while the reaction field is modeled by placing charges on the cavity surface. The selected experimental and calcu-lated geometrical parameters, such as bond lengths (?) and bond angles (°),ofstructures PS-1 and PS-2 have been obtained by the B3LYP/6-31+G* level of theory and listed in Tables 1 and 2, from which wecansee that the calculated parameters show good approximation and can be used as a foundation to calculate the other parameters for the title com-pounds.

    Table 1. Selected Optimized Geometrical Parameters (Bond Lengths (?) and Bond Angles (°)) ofCompound PS-1 Calculated by the B3LYP/6-31+G* Method

    Table 2. Selected Optimized Geometrical Parameters (Bond Lengths (?) and Bond Angles (°)) of Compound PS-2 Calculated by the B3LYP/6-31+G* Method

    Fig. 1. Optimized molecular structures ofcompounds PS-1 and PS-2

    3.2 Nucleus-independent chemical shifts of compounds PS-1 and PS-1

    An aromatic ring current is an effect found in aromaticmolecules. If a magnetic field is directed perpendicular to the plane of the aromatic system, a ring current is induced in the delocalizedelectrons of the aromatic ring[43]. This is a direct consequence of Ampère's law; since the electrons involved are free to circulate, rather than being localized in bonds as they would be in most non-aromatic molecules, they respond much more strongly to the magnetic field. Aromatic ring currents are relevant to NMR spectroscopy, as they dramatically influence the chemical shifts of 1Hnuclei in aromatic molecules[44]. The effect helps distinguish these nuclear environ- ments and is therefore of great use in molecular structure determination. The nucleus-independent chemical shift (NICS) is a computational method that calculates the absolute magnetic shielding at the center of a ring. The values are reported with a reversed sign to make them compatible with the chemical shift conventions of NMR spectroscopy[45].

    NICS calculations have been done forcompounds PS-1 and PS-2. NICS values are given in Table 3. In this method, the negative NICS values indicate aromaticity and positive values antiaromaticity. According to the results in Table 3, negative NICS values indicate aromaticity in the rings of com-pounds PS-1 and PS-2 (Rings a, b and c inFig. 1). Incompound PS-1, the phenyl (Ring a) and pyrimidine (Ring c) rings have the highest aromaticity at the 1? below the ring surface, whereas the isoxazole (Ring b) ring has the highest aromaticity along the five atoms of the ring. Incompound PS-2, the phenyl (Ring a) ring has the highest aromaticity at 1? above the ring surface, whereas the pyrimidine (Ring c) ring has the highest aromaticity at 1? below the ring surface and the isoxazole (Ring b) ring has the highest aromaticity along the five atoms of the ring.

    Table 3. Nucleus-independent Chemical Shifts ofCompounds PS-1 and PS-2

    3.3 Electronic structures and excited states ofcompounds PS-1 and PS-2

    We used the TD-DFT method for predicting the absorption spectra of the new compounds PS-1 and PS-2. The theoretical absorption spectra of the optimized compounds were calculated in a solvent DMF by TDB3LYP method with the 6-31+G* basis set. 20 excited states considered for the calculation equations that were performed using the IEFPCM (Integral Equation Formalism PCM) coupled to UAKS radii. The exact amount of the maximum absorption wavelength (max) to the title compounds is obtained using the TD-DFT method. 20 excited states and wavelengths of electronic absorption spectrum of the compound PS-1 are reported in Table 4. As can be seen from Table 4, the strong absorption atmax= 281 nm and the oscillator strength= 0.67 are due to charge transfer of electron into the excited state0→2with wave function including two configurations ((H-1→L), (H→L)). The transition from HOMO-1 to LUMO (H-1→L) is main responsible for the formation of maximum wavelength at 281 nm (Table 4). Fig. 2 shows shape molecular orbitals participant atmax= 281 nm. According to Fig. 2, the electron density of HOMO-1 is mainly focused on -C=N- groups, -C=C- groups in phenyl, isoxazole and pyrimidine rings and nitrogen atoms in N-H group, whereas the LUMO is mainly centralized on -C=N- in isoxazole ring and -C=C- in phenyl and isoxazole rings. Therefore, the electronic transition from HOMO-1 to LUMO is due to the contribution of pi () bonds. The other important excited state is0→1at 287 nm (= 0.20) with two configurations for electronic excitations ((H-1→L), (H→L)). The other excited states of compound PS-1 (max≤0.05 nm) have very small intensity that is nearly forbidden by orbital symmetry considerations (Table 4).

    The calculated electronic absorption spectrum (UV/Vis) of the compound PS-1 in a solvent (DMF) and experimental spectrum at concentration 0.2′10-4M/Land in the solvent DMF is observed in Figs. 3a and 3b. The calculated and experimental magnitudes of maximum wavelength (max) are 281 nm (= 0.67, Fig. 3a) and 282 nm (= 1.3)(Fig. 3b), respectively. As can be seen, the experimental value of wave-length is in excellent agreement with the theoretical one.

    According to theoretical results in Table 5, the strong absorption peak in electronic absorption spectrum of the compound PS-2 atmax= 261 nm is observed at oscillator strength= 0.34. The wavelength maximum is due to the charge transfer of electron into the excited state0→7that it is a wave function consisting of four configurations for electron excitations ((H-4→L), (H-3→L), (H-1→L), (H→L+1)). The most important transition for forma-tionmax= 261 nm is from HOMO to LUMO+1 (Table 5). The formedmolecular orbitals partici-pating at the excited state0→7are shown in Fig. 4. According to Fig. 4, the electron density ofHOMO is mainly focused on -C=C- of phenyl and isoxazole rings and-C=N- in isoxazole ring and nitrogen atom in N–H group, whereas the electron density ofLUMO+1 is mainly focused on -C=C- and -C=N-of the pyrimidine ring. Therefore, the electronic transitions from HOMO to LUMO+1 are due to the contribution of pi () bonds. The other important excited state is0→3at 273 nm (= 0.23) with five configurations for electronic excitations ((H-4→L), (H-2→L), (H-2→L+1), (H-1→L), (H→L)). The other excited states (max=271, 270, 264, 248, 247, 240, 224, 219, 218, 213, 212, 210, 209 nm) of the title compound have very small intensity that is nearly forbidden by orbital symmetry considerations (Table 5).

    Fig.2. Form of MO participating in forming theabsorption spectrum of compound PS-1 atmax= 281 nm calculated by the B3LYP/6-31+G* method

    Fig.3. UV/Vis spectrum ofcompound PS-1 in the solvent DMF: (a) calculated by the TDB3LYP/6-31+G* method;(b) experimental at the concentration of dye 0.2?10-4M/L

    Fig.4. Form of MO participating in the formation of the absorption spectrum of compound PS-2 atmax= 261 nm calculated by the B3LYP/6-31+G* method

    Table 4. Electronic Absorption Spectrum ofCompound PS-1 Calculated by the TDB3LYP/6-31+G* Method

    *H-HOMO, L-LUMO

    Table 5. Electronic Absorption Spectrum ofCompound PS-2 Calculated by the TDB3LYP/6-31+G* Method

    *H-HOMO, L-LUMO

    The calculated (UV/Vis) of the compound PS-2 in the solvent DMF and experimental spectra at con- centration 0.24′10-4M/Land in the solvent DMF are shown in Figs. 5a and 5b. The calculated and experimental values of maximum wavelength are 261 nm (= 0.34, Fig. 5a) and 287 nm (= 1.3, Fig. 5b), respectively. As can be seen, the calculated wave- length is in excellent agreement with the experimen-tal value.

    Fig.5. UV/Vis spectrum ofcompound PS-2 in the solvent DMF: a) calculated by the TDB3LYP/6-31+G* method and b) experimental at the concentration of dye 0.24?10-4M/L

    3.4 Frontier molecular orbital analysis ofstructures PS-1 and PS-2

    The frontier molecular orbitals (FMO) analysis plays a significant role in the electronic and optical properties, as well as in UV/Vis spectrum and che-mical reactions[30,42]. FMO analysis was done for compounds PS-1 and PS-2 by the B3LYP/6-31+G* level of theory. The FMO results of the title com-pounds are summarized in Table 6.

    Table 6. Electronic Properties ofCompounds PS-1 and PS-2

    HOMO and LUMO orbitals act as electron donor andacceptor, respectively. As can be seen from Table 6, the energy values of HOMO of compounds PS-1 and PS-2 are –6.5 and –6.8 eV and their energy values of LUMO are–1.76and –2.16 eV, respec-tively. Total electronic density of states (DOSs)[46]of the title compounds were computed (Fig. 6). The DOS analysis indicates that the energy gaps between LUMO and HOMO of compounds PS-1 and PS-2 are about 4.74and 4.64 eV, respectively. The compound PS-1 has a greater energy gap value (4.74 eV), so it is less reactive with the harder electronic transfers compared with the compound PS-2.

    Fig.6. Calculated DOS plots ofcompounds PS-1 and PS-2

    Details of quantum molecular descriptors of the title compounds such as ionization potential (–HOMO), electron affinity (= –LUMO), global hardness (=_/2), electronegativity (=+/2), electronic chemical potential (= –()/2), electrophilicity (=2/2)[40]and chemical softness (= 1/)[42], are calculated andreported in Table 6. The energy of HOMO is directly related to the ionization potential (), while that of LUMO is related to the electron affinity (). The global hardness () corresponds to the energy gap between LUMO and HOMO. A molecule with a small energy gap has high chemical reactivity, low kinetic stability and is a soft molecule, while a hard molecule has a large energy gap[42]. The global hardness () values ofcompounds PS-1 and PS-2 are about 2.37and 2.32 eV, respectively. Therefore, compound PS-1 hashigher global hardness and it is a hard molecule compared with the PS-2. Electronegativity () is a measure of the power of an atom or a group of atoms to attract electrons[40], and the chemical softness () describes the capacity of an atom or a group of atoms to receive electrons[42].

    The dipole moment parameter is used for the investigation of intermolecular interactions and study of asymmetric nature of compounds[46]. The high amounts of dipole moment lead to stronger intermo-lecular interaction[46]. As can be seen from Table 6, dipole moment values ofcompounds PS-1 and PS-2 are about 4.5880 and 9.6852 Debye. The value of the dipole moment is related to the composition and dimensionality of the 3D compounds. The point group of the title compounds is C1, which refers to their high asymmetry. When the atoms in compound are irregularly arranged, the dipole moment is increased.

    3. 5 Molecular electrostatic potentials (MEP) of compounds PS-1 and PS-2

    Molecular electrostatic potential (MEP) maps show the electronic density in the molecules. The MEP maps are also used to identify sites of negative and positive electrostatic potentials for electrophilic attack and nucleophilic reactions[47,48]. The dif-ference of electrostatic potential at the surfaces is represented by different colors. The negative regions of MEP with red, orange and yellow colors havehigh electron density, while it is low for the positive regions with blue color. Also, the green colorshows the neutral region. The MEPs ofcompounds PS-1 and PS-2 were obtained by theoretical calculations (Fig. 7).

    Fig. 7. Molecular electrostatic potential (MEP) maps ofcompounds PS-1 and PS-2

    As shown in Fig. 7, the negative regions (red color) of the compound PS-1 are mainly focused on the O(13) atom and phenyl ring, whereas the negative region of compound PS-2is mainly focused on the O(13) atom. Therefore, these regions are suitable for electrophilic attack. The parts of the title compounds with pale red or yellow color are sites with weak interaction that includes N(16) atom incompound PS-1. According to MEP map of the title compounds, the hydrogen atoms are the positive potential sites (blue color). The regions with green color of the two compounds indicate areas with zero potential (neutral sites).

    3.6 Natural charge analysis of compounds PS-1 and PS-2

    We calculated the charge distributions for equili-brium geometry ofcompounds PS-1 and PS-2 by the NBO (natural charge) charges[40]using the B3LYP/6-31+G* level of theory. The calculated natural charges are listed in Table 7 (Atoms labeling is according to Fig. 1).

    Table 7. Natural Charges Distribution (NBO Charges, e) of Compounds PS-1 and PS-2

    The total charge of the investigated compounds is equal to zero. Also Fig. 8 shows results of the natural charges in graphical form. The results of natural charge (NBO) analysis of compounds PS-1 and PS-2 show that carbon atoms have both positive and negative chargevalues. According to the results, positive carbons are observed for the carbonatoms attached to the electron-withdrawing nitrogen and oxygen atoms. The C(7), C(10), C(12), C(15), C(17) and C(19) atoms in PS-1 and PS-2 havepositive charges. The other carbon atoms have negative charges. The oxygen and nitrogen atoms have negative charges. The highest positive charge of the compound PS-1 is observed for the C(15) atom (0.608e) due to the attachment to the electron-withdrawing nitrogen atoms (N(14), N(16), N(12)), whereas the highest positive charge ofcompound PS-2 is observed for the C(12) atom (0.688e) due to the attachment to electron-withdrawing nitrogen atom (N(14)) and2hybridization of the C(12) atom. Also, the highest negative charge is observed for the carbon atoms of methyl groups due to hyperconju-gation effect including the C(21) (–0.717e), C(22) (–0.718 e) and C(23) (–0.705e) atoms in PS–1 and C(21) (–0.718e), C(22) (–0.719e) atoms in PS-2. According to Natural charge’s plot (Fig. 8), all hydrogen atoms have positive charges. Incompound PS-1, the H(30) atom ofO–H group has the highest positive charge (0.521e) compared with other hydrogen atoms due to the electron-withdrawing nature ofO(13), and in the compound PS-2the H(29) atom ofN-H group has the highest positive charge (0.459e) compared with other hydrogen atoms due to the electron-withdrawing nature of the N(14), so they are acidic hydrogen atoms. Also, all oxygen and nitrogen atoms of the title compounds havenegative charges.

    Fig. 8. Natural chargedistribution ofcompounds PS-1 and PS-2

    3.7 NBO analysis ofcompound PS-1

    Natural bond orbital (NBO) analysis is an impor-tant method for studying intra- and intermolecular bonding interaction between bonds in the molecular systems[46]. Electron donor orbitals, acceptor orbitals and the interacting stabilization energy ((2)) resul-ting from the second-order micro disturbance theory for the compound PS-1 are reported in Table 8.

    Table 8. Significant Donor-acceptor Interactions and the Second Order Perturbation Energies ofCompound PS-1Calculated Using the B3LYP/6-31+G* Level of Theory

    a(2)Energy of hyperconjucative interactions.bEnergy difference between donor and acceptor i and j NBO orbitals,cF(,) is the Fock matrix element between i and j NBO orbitals.

    The electron delocalization from filled NBOs (donor orbitals) to the empty NBOs (acceptor orbitals) describes a conjugative electron transfer process between them. For each donor () and accep-tor (), the stabilization energy(2)associated with the delocalization→is estimated[49]:

    where qiis the donor orbital occupancy, εjand εiare diagonal elements and F(i,j) is the off diagonal NBO Fock matrix element. The resonance energy ((2)) detected the quantity of participation of electrons in the resonance between atoms of molecule[46]. The larger(2)value, the more intensive the interaction is between the electron donorand acceptor, i.e. the more donation tendency from electron donors to electron acceptors and the greater extent of conjuga-tion of the whole system[26]. Delocalization of electron density between occupied Lewis-type (bond or lone pair) NBO orbitals and formally unoccupied (antibond or Rydberg) non Lewis NBO orbitals correspond to a stabilization donor-acceptor interac-tion. NBO analysis has been performed for the com-pound PS-1 byB3LYP/6-31+G* method in order to elucidate the intramolecular, rehybridization and delocalization of electron density within the title compound (PS-1). We reported the highest strong intramolecular hyperconjugative interactions of the title compound, such as→*,→*,→*,→* and→* transitions in Table 8. The(C(1)–C(6)) orbital in phenyl ring participates as donor and the anti-bonding*(C(4)–C(5)) and*(C(7)–C(11)) orbitals as acceptor with resonance energies ((2)) 16.51 and 20.68 kcal/mol, respectively. These values indicate(C(1)–C(6))→*(C(7)–C(11)) transition has the highest resonance energy (20.68 kcal/mol) compared with the(C(1)–C(6))→*(C(4)–C(5)) transition. The(C(4)–C(5))→*(C(1)–C(6)) transi-tion has the highest resonance energy (68.14 kcal/mol) rather than other→* transitions of the compound PS-1. The other important intramolecular hyperconjugative interactions of→* in the pyrimidine ring that lead to a strong delocalization are such as C(15)–N(20)→C(18)–C(19), N(16)–C(17)→C(15)–N(20) andC(18)–C(19)→N(16)–C(17)with the resonance energies ((2)) 32.18, 37.32 and 37.45 kcal/mol, respectively. As can be seen from Table 9, the intramolecular hyperconjugative interactions of→* transitions havehigher resonance energy ((2)) rather than the→* transi-tions. The(C(23)–H(39))→*(C(2)–C(3)) transi-tion has the highest resonance energy (4006.94 kcal/mol) rather than other→* transitions of the compound PS-1.The(C(21)-H(35)) orbital in pyrimidine ring participates as donor and the anti-bonding*(C(1)–C(2)),*(C(2)–H(24)),*(C(3)–H(25)),*(C(23)–H(40)) orbitals as acceptor with resonance energies ((2)) of 189.02, 112.09, 120.38 and 723.22 kcal/mol, respectively. These values indicate(C(21)–H(35))→*(C(23)–C(40)) transi-tion has the highest resonance energy (723.22 kcal/mol) compared with(C(21)–H(35))→*(C(1)–C(2)),(C(21)–H(35))→*(C(2)–H(24)) and(C(21)–H(35))→*(C(3)–H(25)) transitions. The highest resonance energy of compound PS-1 is observed for(C(23)–H(41))→*(C(23)–H(40)) transition in methyl group with resonance energy ((2)) 9823.96 kcal/mol that leads to most stability of the title compound. The most important transitions→* are observed for2(O(8))→*(C(7)–C(11)) and1(N(14))→*(C(15)–N(20)) with resonance energies ((2)) 32.32and 53.81 kcal/mol, respectively. Also, the1(N(20))→*(C(23)–H(40)) transition has the highest resonance energy (308.09 kcal/mol) rather than other→* transitions of the compound PS-1.

    The results of NBO analysis such as the occupa-tion numbers with their energies for the interacting NBOs (interaction between natural bond orbital A and natural bond orbital B (A–B)) and the polariza-tion coefficient amounts of atoms in the compound PS-1 are presented using the B3LYP/6-31G* method, as summarized in Table 9 (Atoms labeling is according to Fig. 1).

    The size of polarization coefficients shows the importance of the two hybrids in the formation of the bond in molecules. The differences in electronega-tivity of the atoms involved in the bond formation are reflected in the larger differences in the pola-rization coefficients of the atoms (C–O, C–N, C–H bonds)[26]. As can be seen from Table 9, the calcula-ted bonding orbital for the(C(7)–O(8)) bond is the=0.5620(3.51)+0.8271(1.91) with high occupancy 1.99198a.u. and low energy –0.94443a.u. The polarization coefficients of C(7)=0.5620 and O(8)=0.8271 shows the importance of O(8) in forming the(C(7)–O(8)) bond compared with the C(7) atom. As seen from Table 10, the calculated bonding orbital for the(N(14)–C(15)) bond is=0.7807(1.79)+0.6249(2.29)formed from1.79and2.29hybrids on the N(14) and C(15) atoms, which is the mixture of(35.77%)(64.19%) for N14 and(30.33%)(69.56%) for C(15). The natural hybrid orbital2(O(8)) with high occupancy 1.71851a.u. and high energy –0.35437a.u. has-character (99.89%). Therefore, pure-type lone pair orbital2(O(8)) participates as electron donation to*(C(7)–C(11)) in the2(O(8))→*(C(7)–C(11)) interaction with high resonance energy ((2)) 32.32 kcal/mol in the title compound (see Table 8). According to NBO analysis, the natural hybrid orbital1(N(14)) occupies a high energy orbital (–0.26865a.u), high occupation number (1.73229a.u) and high-character (98.28%). Therefore, n1(N(14)) participates as electron donation to*(C(12)–O(13)),*(C(12)–H(29)) and*(C(15)–N(20)) in the1(N(14))→*(C(12)–O(13)),1(N(14))→*(C(12)–H(29)) and1(N(14))→*(C(15)–N(20)) interac-tions with resonance energies ((2)) 14.20,3.09and 53.81 kcal/mol in the title compound (see Table 8).

    Table 9. Calculated Natural Bond Orbitals (NBO) and the Polarization Coefficient for Each Hybrid in Selected Bonds of the Compound PS-1Using the B3LYP/6-31+G* Level of Theory

    aA–B is the bond between atoms A and B (A: natural bond orbital and the polarization coefficient of atom; A-B: natural bond orbital and the polarization coefficient of atom B)

    3.8 Vibrational frequencies of compounds PS-1 and PS-2

    In order to confirm the accuracy of our findings, IR spectroscopy was used. The theoretical IR spectra of the optimized compounds PS-1 and PS-2 were calculated using B3LYP/6-31+G* level of theory. The vibrational frequency assignments were made using the GaussView 05 program. The important calculated and experimental vibrational frequencies of the title compounds are summarized in Tables 10 and 11, respectively. The experimental and calcu-lated spectra of the title compounds are found to be in good agreement with each other. The important vibrational frequencies ofcompounds PS-1 and PS-2 are reported as follows.

    Table 10. Experimental and Calculated Vibrational Frequencies and Their Assignment ofCompound PS-1 by Using the B3LYP/6-31+G* Method

    Abbreviations:, stretching;, in plane bending;, out of plane bending;, torsion; asym, asymmetric deformation; arom, aromatic;

    Table 11. Experimental and Calculated Vibrational Frequencies and Their Assignment ofCompound PS-2 by Using the B3LYP/6-31+G* Method

    Abbreviations:, stretching;, in plane bending;, out of plane bending;, torsion; asym, asymmetric deformation; arom, aromatic

    3. 8. 1 O–H vibrations

    The O–H stretching vibrationappears near about 3600~3400 cm-1[50]. In the present work, the O–H stretchingband in the IRspectrum ofPS-1 is assigned at 3352 cm-1and its corresponding theore-tical value is calculated at 3625 cm-1. The O–H out-of-plane bending vibration ofcompound PS-1 is assigned at 498cm-1in IR spectrum with its calcula-ted valuepredicted at 532 cm-1.

    3. 8. 2 C=O and C–O vibrations

    The carbonyl stretching vibrations in amides are expected at 1715~1680 cm-1as medium or strong bands[51]. In this work, the very strong stretching band at 1728 cm-1in IR spectrum of compound PS-2 is related to the C=O carbonyl and the calculated value is predicted at 1746 cm-1. According to the results, the C=O stretching vibrationof compound PS-2 appears at a higher frequency than the range 1715~1680 cm-1due to the conjugated resonance of N–H group with the pyrimidine ring and decrease resonance N–H with C=O group. The C–O stretching vibration of the hydroxyl group is expected in the range 1260~1180 cm-1[52,53]. The C–O stretching vibration ofcompound PS-1 is assigned at 1211 cm-1and the corresponding calculated valueis predicted at 1281 cm-1.

    3. 8. 3 N–H vibrations

    The N–H stretching modes usually appearin the range 3500~3300 cm-1[54-56]. The weak band observed in the IR spectrum of compound PS-1 at 3125 cm-1is expected to theN–H amine stretching vibration and the corresponding theoretical value is predicted at 3614 cm-1(Table 10). The medium band observedin the IR spectrum ofcompound PS-2 at 3401 cm-1is assigned to the N–H amide stretching mode and the theoretical value is predicted at 3588 cm-1(Table 12). The N–H bending vibrations related to secondary amine are observed at about 1500 cm-1[57].The bands occurring in the IR spectrum of compound PS-1 at 1521 and 1513 cm-1are assigned to the N–H bending vibrations and the calculated values are predicted at 1564, 1544 and 1515 cm-1. The N–H bending vibrations related to secondary amideappearin the range 1640~1550 cm-1[57]. In the IR spectrum ofcompound PS-2, the bands located at 1570and 1524 cm-1are assigned to the N–H bending modes and the calculated values are present in the range 1638~1536 cm-1.

    3. 8. 4 C–Nand C=N vibrations

    According to opinion Silverstein, the C–N stre-tching modes are assigned in the range 1382~1266 cm-1[58]. The C–N stretching vibrations of aminesappearin the range 1350~1000cm-1[57]. In the current study, the band observed in the IR spectrum ofcompound PS-1 at 1076 cm-1is assigned to the C–N stretching vibration and the calculated valuesare predicted at 1143and 1088 cm-1. The C–N stretching vibration in the IR spectrum ofcompound PS-2 is observed at 1231 cm-1and the corresponding theoretical value is located at 1236 cm-1.

    Pyrimidines havestrong bands in the range 1600~1500 cm-1as to the C=N and C=C stretching vibrations[57]. For compound PS-1, the C=N stre-tching vibrations are observed at 1594, 1566, 1521, 1513 and 1438 cm-1in the IR spectrum and the DFT calculations predicted the C=N stretching modes at 1636~1500 cm-1. In the IR spectrum ofcompound PS-2,the C=N stretching modes are assigned at 1570, 1524, and 1451cm-1and the calculated values are predicted at 1638~1459cm-1.

    3. 8. 5 C=C vibrations

    The C=C aromatic ring stretching vibrations are expected in the range 1650~1200 cm-1[59]. In this investigation, the bands located at 1594, 1566, 11521, 1513, 1438, 1370, 1336, 1299 and 1211 cm-1in the IR spectrum of compound PS-1 are assigned to C=C stretching vibrations and the corresponding theore-tical values are observed in the region 1659~11276 cm-1. The C=C stretching vibrations in the IR spectrum of PS-2 are assigned at 1570, 1524, 1451, 1345, 1231 cm-1and its corresponding theoretical values are calculated at 1638~1286 cm-1.

    3. 8. 6 C–H vibrations

    The C–H stretching vibrations of aromatic com-pounds are expected in the range 3100~3000 cm-1[57]. The C–H stretching vibrations of the aryl ringsofcompound PS-1 are assigned at 3032, 3005 cm-1and the corresponding theoretical values are 3297, 3223, 3208, 3187, 3186 cm-1. In the IR spectrum of com-pound PS-2, the C–H stretching vibrations of the aryl rings are observed at 3130, 3062 cm-1and the calculated values are predicted at 3223, 3217, 3209, 3201, 3193 cm-1. The aromatic C–H in-plane ben- ding vibrations are expected in the range 1500~1100 cm-1[60]. The calculated values of vibrations in-plane ofcompound PS-1 in the region 1354~1051 cm-1are in good agreement with the experimental frequencies in the range of 1299~1011 cm-1. Also in the IR spectrum ofcompound PS-2, the aromatic C–H in-plane bending frequencies are assigned at about 1231, 1193, 1140 cm-1and the calculated values are predicted in the range of 1278~1077cm-1.

    All the experimental vibrations ofcompounds PS-1 and PS-2 are ingood agreement with the calcula-ted frequencies by DFT method (Tables 10 and 11).

    3.9 Experimental

    The characterization data of the title compounds are given below:

    3. 9. 1 (4,6-Dimethylpyrimidin-2-ylamino)(5-p-tolylisoxazol-3-yl)methanol (PS-1)

    IR (KBr)max/cm-1: 3352, 3124, 3005, 2942, 1594, 1566, 1521, 1438, 1142, 1076, 814.1H NMR (DMSO-d6,250.13 MHz;):H(ppm) 2.89 (s, 6H, 2CH3), 2.36 (s, 3H, CH3), 3.46 (s, 3H, CH3), 6.23 (d,= 7 MHz, 1H, CH), 6.25 (s, 1H, CH), 6.40 (s, 1H, CH), 6.52 (d,= 7 MHz, 1H, NH), 7.22 (d,= 7.5 MHz, 2H, Arom.), 7.61 (d,= 7.5 MHz, 2H, Arom.).13C NMR (DMSO-6, 62.90 MHz):C(ppm) 54.71, 77.82, 97.20, 111.75, 124.68, 125.85, 129.74, 140.65, 161.23, 163.48, 167.84, 170.79.

    3. 9. 2 N-(4,6-Dimethylpyrimidin-2-yl)-5-phenylisoxazole-3-carboxamide (PS-2)

    IR (KBr)max/cm-1: 3401, 3146, 3130, 2920, 1728, 1604, 1524, 1451, 1231, 1193, 773.1H NMR (DMSO-d6,250.13 MHz;):H(ppm)2.38 (s, 6H, 2CH3), 7.04 (s, 1H, Arom.), 7.48 (s,1H,Arom.), 7.55 (m, 3H, Arom.), 7.94 (m, 2H, Arom.).13C NMR (DMSO-6, 62.90 MHz):C(ppm) 23.89, 100.61, 117.17, 126.35, 126.85, 129.93, 131.47, 157.07, 157.91, 160.28, 168.47, 170.97.

    4 CONCLUSION

    We have modeled by Density functional theory (DFT) and synthesized two newpyrimidine dyes ((4,6-dimethylpyrimidin-2-ylamino)(5-p-tolylisoxa-zol-3-yl)methanol (PS-1), N-(4,6-dimethylpyrimidin-2-yl)-5-phenylisoxazole-3-carboxamide (PS-2)) absorbed in the UV region of spectrum. A high degree of approximation between the calculated and experimental data was established. These synthesized dyes will be used to develop polarizing UV-films at the Laboratory of Polarizing films of the Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.

    (1) Lewis, D. F. V.; Jacobs, M. N.; Dickins, M. Compound lipophilicity for substrate binding to human P450s in drug metabolism.2004, 9, 530–537.

    (2) Cui, J.; Liu, L.; Zhao, D.; Gan, C.; Huang, X.; Xiao, Q.; Qi, B.; Yang, L.; Huang, Y. Synthesis, characterization and antitumor activities of some steroidal derivatives with side chain of 17-hydrazone aromatic heterocycle.2015, 95, 32–38.

    (3) Nasir, Z.; Ali, A.; Shakir, M.; Wahab, R.; Uzzaman, S.; Fullah, L. Silica supported NiO nanocomposite prepared via sol-gel technique and its excellent catalytic performance for one-pot multicomponent synthesis of benzodiazepine derivatives under microwave irradiation.2017, 41, 5893–5903

    (4) Lone, I. H.; Khan, K. Z.; Fozdar, B. I.; Hussain, F. Synthesis antimicrobial and antioxidant studies of new oximes of steroidal chalcones.2013, 78, 945–950.

    (5) Deng, Y.; Wang, Y.; Cherian, C.; Hou, Z.; Buck, S. A.; Matherly, L. H.; Gangjee, A. Synthesis and discovery of high affinity folate receptoor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.2008, 51, 5052–5063.

    (6) Renau, T. E.; Kennedy, C.; Ptak, R. G.; Breitenbach, J. M.; Drach, J. C.; Townsend, L. B. Synthesis of non-nucleoside analogs of toyocamycin, sangivamycin, and thiosangivamycin: the effect of certain 4- and 4,6-substituents on the antiviral activity of pyrrolo[2,3-d]pyrimidines.1996, 39, 3470–3476.

    (7) Sharma, R. D.; Bag, S.; Tawari, N. R.; Degani, M. S.; Goswami, K.; Reddy, M. V. R. Exploration of 2,4-diaminopyrimidine and 2,4-diamino-striazine derivatives as potential antifilarial agents.2013, 140, 959–965.

    (8) Zhou, Y.; Guo, T.; Li, X.; Dong, Y.; Galatsis, P.; Johnson, D. S.; Pan, Z. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I.2014, 5, 352–357.

    (9) Nachtigallova, D.; Barbatti, M.; Szymczak, J. J.; Hobza, P.; Lischka, H. The photodynamics of 2,4-diaminopyrimidine in comparison with 4-aminopyrimidine: the effect of amino-substitution.2010, 497, 129–134.

    (10) Weinberger, M.; Berndt, F.; Mahrwald, R.; Ernsting, N. P.; Wagenknech, H. A. Synthesis of 4-aminophthalimide and 2,4-diaminopyrimidine C-nucleosides as isosteric fluorescent DNA base substitutes.2013, 78, 2589–2599.

    (11) Kannan, R.; He, G. S.; Lin, T. C.; Prasad, P. N.; Vaia, R. A.; Tan, L. S. Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules.2004, 16, 185–194.

    (12) Muhammad, S.; Al-Sehemi, A. G.; Su, Z.; Xu, H.; Irfan, A.; Chaudhry, A. R. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones.2017, 72, 58–69.

    (13) Irfan, A.; Al-Sehemi, A. G.; Rasool Chaudhry, A.; Muhammad, S.The structural, electro-optical, charge transport and nonlinear optical properties of oxazole (4Z)-4-benzylidene-2-(4-methylphenyl)-1,3-oxazol-5(4H)-one derivative.2016, 1010, 1004.

    (14) Irfan, A.; Al-Sehemi, A. G.; Chaudhry, A. R.; Muhammad, S.; Asiri, A. M. The structural, electro-optical, charge transport and nonlinear optical properties of 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione.2016, 127, 10148–10157.

    (15) Jungsuttiwong, S.; Tarsang, R.; Surakhot, Y.; Khunchalee, J.; Sudyoadsuk, T.; Promarak, V.; Namuangruk, S. Light-emitting diodes by band-structure engineering in van der Waals heterostructures.2012, 13, 1836–1843.

    (16) Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly efficient organic devices based on electrically doped transport layers.2007, 107, 1233–1271.

    (17) Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I.; Novoselov, K. S. Light-emitting diodes by bandstructure engineering in van der Waals heterostructures.2015, 14, 301–306.

    (18) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells.2007, 107, 1324–1338.

    (19) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General observation of n-type field-effect behaviour in organic semiconductors.2005, 434, 194–199.

    (20) Geng, Y.; Li, H. B.; Wu, S. X.; Su, Z. M. The interplay of intermolecular interactions, packing motifs and electron transport properties in perylene diimide related materials: a theoretical perspective.2012, 22, 20840–20851.

    (21) Tobj?rk, D.; ?sterbacka, R. Paper electronics.2011, 23, 1935–1961.

    (22) Irfan, A. modeling of efficient charge transfer materials of 4,6-di(thiophen-2-yl)pyrimidine derivatives: quantum chemical investigations.2014, 81, 488–492.

    (23) Bereket, G.; ?gretir, C.; Yaman, M.; Hür, E. Tautomeric studies on 2-mercapto pyrimidines and their significance in corrosion process.2003, 625, 31–38.

    (24) Masoud, M. S.; Awad, M. K.; Shaker, M. A.; El-tahawy, M. M. T. The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel.2010, 52, 2387–2396.

    (25) (a) Wei, P.; Bi, X. D.; Wu, Z.; Xu, Z. Synthesis of triphenylamine-cored dendritic two-photon absorbing chromophores.2005, 7, 3199–3202. (b) Huang, Z. L.; Lei, H.; Li, N.; Qiu, Z. R.; Wang, H. Z.; Guo, J. D.; Luo, Y.; Zhong, Z. P.; Liu, X. F.; Zhou, Z. H. Novel heterocyclebased organic molecules with two-photon induced blue fluorescent emission.2003, 13, 708–711.

    (26) Parr, P. G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity.1984, 106, 4049–4050.

    (27) Shahab, S.; Filippovich, L.; Kumar, R.; Darroudi, M.; Yousefzadeh Borzehandani, M.; Gomar, M. Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix.2015, 1101, 109–115.

    (28) Shahab, S.; Alhosseini Almodarresiyeh, H.; Kumar, R.; Darroudi, M. A study of molecular structure, UV, IR, and1H NMR spectra of a new dichroic dye on the basis of quinoline derivative.2015, 1088,105–110.

    (29) Shahab, S.; Filippovich, L.; Sheikhi, M.; Yahyaei, H.; Aharodnikova, M.; Kumar, R.; Khaleghian, M. Spectroscopic (polarization, excited state, FT-IR, UV/Vis and 1H NMR) and thermophysical investigations of new synthesized azo dye and its application in polarizing film.2017, 5, 17–23.

    (30) Shahab, S.; Filippovich, L.; Almodarresiyeh, H. A.; Sheikhi, M.; Kumar, R. Thermostable broad band polarizing PVA-Film: theoretical and experimental investigations.2018, 2, 186–197.

    (31) Shahab, S.; Almodarresiyeh, H. A.; Filippovich, L.; Kumar, R. Geometry optimization and excited state properties of the new symmetric (E)-stilbene derivative for application in thermostable polarizing PVA-films: a combined experimental and DFT approach.2016, 1119, 423–430.

    (32) Shahab, S.; Almodarresiyeh, H.; Filipovich, L.; Kumar, R.; Darroudi, M.; Haji Hajikolaee, F. Synthesis of biphenyl derivative and its application as dichroic materials in poly (vinyl alcohol) polarizing films.2016, 1107, 19–24.

    (33) Bereket, G.; ?gretir, C.; Yaman, M.; Hür, E. Tautomeric studies on 2-mercapto pyrimidines and their significance in corrosion process.2003, 625, 31–38.

    (34) Khashi, M.; Beyramabadi, S. A.; Davoodnia, A.; Ettehadi, Z. Synthesis, experimental and theoretical characterizations of some new pyrrolo[2,3-d]pyrimidine derivatives bearing an aromatic sulfonamide moiety.2017, 1134, 789–796.

    (35) Matulkov, I.; Mathauserov. J.; Císarov, I.; Neme, I.; Fabry, J. The study of crystal structures and vibrational spectra of inorganic salts of 2,4-diaminopyrimidine.2016, 103, 82–93.

    (36) Boese, A. D.; Martin, J. M. L. Vibrational spectra of the azabenzenes revisited: anharmonic force fields.2004, 108, 3085–3096.

    (37) Hu, Q.; He,Y.; Li, L. DFT studies of synthesis of (4R,5S,8as)-4,5,8a-triphenylhexahydro pyrimido[4,5-d]pyrimidine-2,7(1H,3H)-dione.2016, 28, 1244–1252.

    (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Wallingford CT2009.

    (39) Azarakhshi, F.; Khaleghian, M.; Farhadyar, N. DFT study and NBO analysis of conformational properties of 2-substituted 2-oxo-1,3,2-dioxaphosphorinanes and their dithia and diselena analogs.2015, 12, 516–22.

    (40) Sheikhi, M.; Sheikh, D.; Ramazani, A. Three-component synthesis of electron-poor alkenes using isatin derivatives, acetylenic esters, triphenylphosphine and theoretical study.2014, 67, 151–159.

    (41) Frisch, A.; Nielsen, A. B.; Holder, A. J., Gaussian Inc.2008.

    (42) Zhu,X. M.; Feng,Y. L.; Kuang,D. Z.; Zhang,F. X.; Wang,J. Q.; Yu,J. X.; Jiang, W. J. Synthesis, Crystal Structure and Quantum Chemistry of Tris[(2-methyl-2-phenyl)propyl)](2,4-dinitro-phenolato)tin.2012, 31, 1241–1246.

    (43) Merino, G.; Heine, T.; Seifert, G. The induced magnetic field in cyclic molecules.2004, 10, 4367–4382.

    (44) Gomes, J. A. N. F.; Mallion, R. B. Aromaticity and ring currents.2001, 101, 1349–1384.

    (45) Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R.Nucleus-independent chemical shifts:? a simple and efficient aromaticity probe.1996, 118, 6317–6318.

    (46) Zhan, P. Y.; Wang, S. J.; Li, X. M.; Pan, Y. R. Synthesis, crystal structure and theoretical calculations of a three-dimensional supramolecular cadmium(II) coordination polymer.2017, 36, 2108–2114.

    (47) Sheikhi, M.; Sheikh, D. Quantum chemical investigations on phenyl-7,8-dihydro-[1,3]-dioxolo[4,5-g]quinolin-6(5h)-one.2014, 59, 761–767.

    (48) Shahab, S.; Sheikhi, M.; Filippovich, L.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Khaleghian, M. Synthesis, geometry optimization, spectroscopic investigations (UV/ Vis, excited states, FT-IR) and application of new azomethine dyes.2017, 1148, 134–149.

    (49) Weinhold, F.; Landis, C. R. Natural bond orbitals and extensions of localizedbonding concepts.2001, 2, 91–104.

    (50) Silverstein, M.; Basseler, G. C.; Morill, C.. Wiley, New York1981.

    (51) Krishnakumar, V.; Murugeswari, K.; Surumbarkuzhali, N. Molecular structure, intramolecular hydrogen bonding and vibrational spectral investigation of 2-fluoro benzamide-a DFT approach.2013, 114, 410–420.

    (52) Socrates, G.. Wiley, New York1980.

    (53) Atac, A.; Karabacak, M.; Kose, E.; Karaca, C. Spectroscopic (NMR, UV, FT-IR and FT-Raman) analysis and theoretical investigation of nicotinamide N-oxide with density functional theory.2011, 83, 250–258.

    (54) Raju, R.; Yohannan Panicker, C.; Nayak, P. S.; Narayana, B.; Sarojini, B. K.; Van Alsenoy, C.; Al-Saadi, A. A. FT-IR, molecular structure, first order hyperpolarizability, MEP, HOMO and LUMO analysis and NBO analysis of 4-[(3-acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid.2015, 134, 63–72.

    (55) Atis, M.; Karipcin, F.; Sariboga, B.; Tas, M.; Celik, H. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea.2012, 98, 290–301.

    (56) Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G.. Academic Press1991.

    (57) Roeges, N. P. G.. Wiley, New York1994.

    (58) Prabhavathi, N.; Krishnakumar, V.; Nilufer, A. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(-(trifluoromethyl)phenyl)piperazine.2014, 121, 483–493.

    (59) Bellamy L. J., 3rd ed. Wiley, New York 1975.

    (60) Krishna Kumar, V.; Muthunatesan, S.; Kereztury, C.; Sundius, T. Scaled quantum chemical calculations and FTIR, FT-Raman spectral analysis of 3,4-diamino benzophenone.2005, 62, 1081–1088.

    10 November 2017;

    7 March 2018

    ①This project was supported by the National Academy of Sciences of Belarus

    .E-mail:m.sheikhi2@gmail.com (M. Sheikhi)

    10.14102/j.cnki.0254-5861.2011-1887

    精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 国产高清不卡午夜福利| 超碰97精品在线观看| 97在线视频观看| 亚洲av欧美aⅴ国产| 亚洲国产高清在线一区二区三| 老熟女久久久| 亚洲图色成人| 国产精品伦人一区二区| 国产亚洲最大av| 精品人妻视频免费看| 午夜日本视频在线| 青春草视频在线免费观看| 狠狠精品人妻久久久久久综合| 嘟嘟电影网在线观看| 热re99久久精品国产66热6| 狂野欧美激情性bbbbbb| 精品久久久精品久久久| 国模一区二区三区四区视频| 大片免费播放器 马上看| 99久久精品热视频| 日韩不卡一区二区三区视频在线| 国内揄拍国产精品人妻在线| 又大又黄又爽视频免费| 草草在线视频免费看| 国产午夜精品久久久久久一区二区三区| 国产精品福利在线免费观看| 亚洲欧美日韩无卡精品| av国产免费在线观看| 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 日韩制服骚丝袜av| 九九久久精品国产亚洲av麻豆| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日韩av片在线观看| 精品国产乱码久久久久久小说| 一区二区av电影网| 99热网站在线观看| 国产精品免费大片| 少妇的逼好多水| 狂野欧美激情性xxxx在线观看| 黑人猛操日本美女一级片| 久久影院123| 激情 狠狠 欧美| 久久久久人妻精品一区果冻| 国产精品女同一区二区软件| 六月丁香七月| 国产高清有码在线观看视频| 国产精品女同一区二区软件| 久久97久久精品| 最后的刺客免费高清国语| 婷婷色综合www| av不卡在线播放| 人人妻人人添人人爽欧美一区卜 | 日韩精品有码人妻一区| 视频区图区小说| 亚洲伊人久久精品综合| 亚州av有码| 一级片'在线观看视频| 日韩强制内射视频| 免费观看性生交大片5| 亚洲成人手机| 大香蕉97超碰在线| 简卡轻食公司| 久久精品国产亚洲网站| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三区在线 | 伦理电影免费视频| 深爱激情五月婷婷| 久久韩国三级中文字幕| 日韩免费高清中文字幕av| 国产在视频线精品| 蜜臀久久99精品久久宅男| 免费大片黄手机在线观看| 91精品一卡2卡3卡4卡| 日日摸夜夜添夜夜添av毛片| 色5月婷婷丁香| 欧美极品一区二区三区四区| 简卡轻食公司| 国产亚洲精品久久久com| 亚洲国产色片| 欧美xxxx性猛交bbbb| 91精品国产九色| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 午夜免费观看性视频| av视频免费观看在线观看| 欧美一级a爱片免费观看看| 亚洲精华国产精华液的使用体验| 国产在线男女| 亚洲久久久国产精品| 精品少妇黑人巨大在线播放| 黄色配什么色好看| 九九在线视频观看精品| 亚洲av欧美aⅴ国产| 亚洲国产高清在线一区二区三| 三级国产精品欧美在线观看| 一区二区三区精品91| 日韩不卡一区二区三区视频在线| 少妇人妻久久综合中文| 亚洲伊人久久精品综合| 亚洲自偷自拍三级| 国产精品欧美亚洲77777| 欧美日韩视频高清一区二区三区二| 久久99热这里只频精品6学生| 少妇猛男粗大的猛烈进出视频| 在线 av 中文字幕| 少妇 在线观看| 蜜桃久久精品国产亚洲av| 联通29元200g的流量卡| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区免费观看| 成人亚洲欧美一区二区av| 亚洲av国产av综合av卡| 亚洲国产av新网站| 久久影院123| 最后的刺客免费高清国语| 狂野欧美激情性bbbbbb| 纯流量卡能插随身wifi吗| 尤物成人国产欧美一区二区三区| 国产一区有黄有色的免费视频| 欧美人与善性xxx| 三级经典国产精品| 午夜福利高清视频| 国产 一区精品| 99久久中文字幕三级久久日本| 亚洲欧洲日产国产| 少妇猛男粗大的猛烈进出视频| 国产精品一区www在线观看| 青春草国产在线视频| 老女人水多毛片| 91精品一卡2卡3卡4卡| 高清午夜精品一区二区三区| 国产高潮美女av| av免费观看日本| 18禁裸乳无遮挡动漫免费视频| 成人影院久久| 国产成人免费无遮挡视频| 51国产日韩欧美| 欧美高清性xxxxhd video| 少妇的逼水好多| 伊人久久精品亚洲午夜| 欧美xxⅹ黑人| 亚洲成人中文字幕在线播放| 黑人高潮一二区| 在线观看国产h片| 亚洲va在线va天堂va国产| 97精品久久久久久久久久精品| 99热这里只有精品一区| 国产伦精品一区二区三区四那| 久久av网站| 人体艺术视频欧美日本| 亚洲精品乱码久久久久久按摩| 亚洲国产精品专区欧美| 中文精品一卡2卡3卡4更新| 观看美女的网站| 国内精品宾馆在线| 中文字幕亚洲精品专区| 国产在线男女| 一个人看的www免费观看视频| 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区| 99热网站在线观看| 久久人人爽av亚洲精品天堂 | 国产成人精品福利久久| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 欧美性感艳星| 我要看黄色一级片免费的| 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区四那| 久久久久久久久久人人人人人人| 街头女战士在线观看网站| 久久久久视频综合| 丰满迷人的少妇在线观看| 久久久久网色| 老师上课跳d突然被开到最大视频| 国产一区二区三区综合在线观看 | 日韩不卡一区二区三区视频在线| 日本av免费视频播放| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 国内精品宾馆在线| 欧美日韩亚洲高清精品| 亚洲人成网站在线观看播放| 精品熟女少妇av免费看| 国产一区二区在线观看日韩| 国产视频首页在线观看| 国产精品熟女久久久久浪| 久久久久久久久久久丰满| 高清视频免费观看一区二区| 久久热精品热| 爱豆传媒免费全集在线观看| 免费观看性生交大片5| 欧美成人精品欧美一级黄| 国产精品人妻久久久久久| 久久人妻熟女aⅴ| 搡女人真爽免费视频火全软件| 成人影院久久| 女性被躁到高潮视频| 亚洲图色成人| 日韩,欧美,国产一区二区三区| 日日啪夜夜撸| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 中文字幕免费在线视频6| 91狼人影院| 人妻夜夜爽99麻豆av| 精品午夜福利在线看| 亚洲欧美清纯卡通| av在线app专区| 三级经典国产精品| 美女主播在线视频| 免费观看性生交大片5| 少妇人妻精品综合一区二区| 国产高清三级在线| 亚洲经典国产精华液单| 在线观看免费日韩欧美大片 | 久久精品国产鲁丝片午夜精品| 国产精品99久久久久久久久| 亚洲精品视频女| 啦啦啦在线观看免费高清www| 欧美成人一区二区免费高清观看| 欧美成人午夜免费资源| 看免费成人av毛片| 亚洲成人中文字幕在线播放| 舔av片在线| 99热这里只有是精品在线观看| 日韩成人伦理影院| 国产乱人视频| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 国产日韩欧美亚洲二区| 亚洲成人av在线免费| 精品久久久久久电影网| 丰满少妇做爰视频| 乱码一卡2卡4卡精品| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| videossex国产| 国产久久久一区二区三区| 网址你懂的国产日韩在线| 婷婷色综合大香蕉| 久久精品久久精品一区二区三区| 一级av片app| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 一级二级三级毛片免费看| 免费在线观看成人毛片| 午夜视频国产福利| 日韩人妻高清精品专区| 黑人高潮一二区| 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 美女国产视频在线观看| 国模一区二区三区四区视频| 久久精品国产鲁丝片午夜精品| 成人亚洲欧美一区二区av| 日韩伦理黄色片| 免费观看无遮挡的男女| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 国产精品无大码| 少妇裸体淫交视频免费看高清| 婷婷色av中文字幕| 人人妻人人爽人人添夜夜欢视频 | 久久毛片免费看一区二区三区| 夜夜看夜夜爽夜夜摸| 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 简卡轻食公司| 午夜免费男女啪啪视频观看| 国产黄色免费在线视频| 亚洲国产精品一区三区| 如何舔出高潮| 黄色一级大片看看| 五月伊人婷婷丁香| 啦啦啦中文免费视频观看日本| 免费看日本二区| 国产成人精品福利久久| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 成年av动漫网址| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| av.在线天堂| 国国产精品蜜臀av免费| 色视频www国产| 人妻制服诱惑在线中文字幕| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 大又大粗又爽又黄少妇毛片口| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂 | 国产精品无大码| 国产成人免费无遮挡视频| 高清毛片免费看| 国产精品久久久久久久电影| 国产亚洲欧美精品永久| 亚洲欧美日韩另类电影网站 | 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 日韩视频在线欧美| 国产高潮美女av| 国产综合精华液| 久久久久网色| 免费黄频网站在线观看国产| 国产免费一级a男人的天堂| 久久ye,这里只有精品| 91精品国产九色| 精品国产一区二区三区久久久樱花 | 女人久久www免费人成看片| 亚洲国产精品专区欧美| av不卡在线播放| 欧美变态另类bdsm刘玥| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 全区人妻精品视频| 久久久精品94久久精品| 国产精品久久久久久精品古装| h日本视频在线播放| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 尾随美女入室| 亚洲欧洲国产日韩| 最后的刺客免费高清国语| 免费少妇av软件| 国产永久视频网站| 成人漫画全彩无遮挡| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 久久久国产一区二区| 韩国高清视频一区二区三区| 免费大片黄手机在线观看| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 成人一区二区视频在线观看| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 亚洲美女黄色视频免费看| av卡一久久| 日韩一区二区视频免费看| av国产免费在线观看| 国产精品久久久久成人av| 人人妻人人看人人澡| 日本午夜av视频| 午夜福利影视在线免费观看| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频 | 夫妻性生交免费视频一级片| 成人国产av品久久久| 十分钟在线观看高清视频www | 超碰av人人做人人爽久久| 直男gayav资源| 久久热精品热| 久久99热这里只频精品6学生| 国产精品久久久久久久久免| 色网站视频免费| 国产亚洲欧美精品永久| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 国产 精品1| 国产成人freesex在线| 99久久中文字幕三级久久日本| 51国产日韩欧美| 国产成人精品福利久久| 久久久久视频综合| 三级国产精品片| 欧美区成人在线视频| 免费av中文字幕在线| 老熟女久久久| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| av国产免费在线观看| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 亚洲欧美成人综合另类久久久| 国产片特级美女逼逼视频| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 久久久久久久久久人人人人人人| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av | 成人国产麻豆网| 男女国产视频网站| 国产男女内射视频| 国产成人freesex在线| 校园人妻丝袜中文字幕| 男女边摸边吃奶| 天天躁日日操中文字幕| 我要看黄色一级片免费的| 久久久久久久国产电影| 我的老师免费观看完整版| 天美传媒精品一区二区| 国产成人精品一,二区| 日本av免费视频播放| av女优亚洲男人天堂| 国产一区二区三区综合在线观看 | 青青草视频在线视频观看| av线在线观看网站| 国产成人精品久久久久久| 久久99热这里只频精品6学生| 国产淫语在线视频| 免费观看a级毛片全部| 下体分泌物呈黄色| 免费大片黄手机在线观看| 亚洲国产欧美在线一区| 秋霞在线观看毛片| av天堂中文字幕网| 在线观看国产h片| 新久久久久国产一级毛片| 国产精品福利在线免费观看| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 日本色播在线视频| 欧美日韩国产mv在线观看视频 | 狂野欧美激情性xxxx在线观看| 国产久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 大香蕉97超碰在线| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频 | 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 黄色怎么调成土黄色| 欧美97在线视频| 精品久久久久久久久亚洲| 51国产日韩欧美| 国产高清不卡午夜福利| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 91久久精品电影网| 日韩成人伦理影院| 高清av免费在线| 乱码一卡2卡4卡精品| 最黄视频免费看| 亚洲av综合色区一区| 91久久精品电影网| 欧美成人一区二区免费高清观看| 亚洲久久久国产精品| 多毛熟女@视频| 成人综合一区亚洲| 亚洲怡红院男人天堂| 久久99热6这里只有精品| av在线蜜桃| 青春草亚洲视频在线观看| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人一二三区av| 男人舔奶头视频| 99久国产av精品国产电影| 亚洲中文av在线| 国产精品女同一区二区软件| 联通29元200g的流量卡| 一本色道久久久久久精品综合| 99热这里只有精品一区| 国产极品天堂在线| av不卡在线播放| av天堂中文字幕网| 久久97久久精品| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 国产深夜福利视频在线观看| 精品人妻视频免费看| 水蜜桃什么品种好| 永久网站在线| 一级毛片我不卡| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| 黑人猛操日本美女一级片| 国产免费又黄又爽又色| 亚洲av男天堂| 亚洲精品国产av蜜桃| 国产真实伦视频高清在线观看| 99热全是精品| 22中文网久久字幕| 一本一本综合久久| 身体一侧抽搐| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 美女福利国产在线 | av国产免费在线观看| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 色综合色国产| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三 | 人妻一区二区av| 久久影院123| 免费看不卡的av| 精品久久国产蜜桃| 晚上一个人看的免费电影| 亚洲av日韩在线播放| 中文字幕精品免费在线观看视频 | 大又大粗又爽又黄少妇毛片口| 18禁裸乳无遮挡动漫免费视频| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 色视频www国产| 日日啪夜夜撸| 国产乱来视频区| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 久久久久网色| 亚洲av日韩在线播放| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看| av国产久精品久网站免费入址| 久久国产精品大桥未久av | 中文乱码字字幕精品一区二区三区| 久久久久久九九精品二区国产| 高清欧美精品videossex| 一级毛片黄色毛片免费观看视频| 亚洲成人手机| 久久国产精品大桥未久av | 丰满少妇做爰视频| 国产av精品麻豆| 最近手机中文字幕大全| 国产精品一区二区三区四区免费观看| 久久 成人 亚洲| 成人亚洲精品一区在线观看 | 国产91av在线免费观看| 哪个播放器可以免费观看大片| 久热久热在线精品观看| 国产真实伦视频高清在线观看| 亚洲精品456在线播放app| 观看av在线不卡| 国产91av在线免费观看| 视频区图区小说| 高清在线视频一区二区三区| 99热网站在线观看| av线在线观看网站| 久久久久久久久大av| 一级爰片在线观看| 精品午夜福利在线看| 黄色欧美视频在线观看| 精品午夜福利在线看| 久久婷婷青草| 有码 亚洲区| 午夜视频国产福利| 国产高清国产精品国产三级 | 黑人猛操日本美女一级片| 尾随美女入室| 最近中文字幕高清免费大全6| 亚洲中文av在线| 男男h啪啪无遮挡| 久久精品夜色国产| 一区二区三区精品91| 亚洲成人一二三区av| 又大又黄又爽视频免费| 亚洲不卡免费看| 色吧在线观看| 成人综合一区亚洲| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 日本黄色日本黄色录像| 精品久久久久久久末码| 肉色欧美久久久久久久蜜桃| 男人爽女人下面视频在线观看| 中文字幕av成人在线电影| 天堂俺去俺来也www色官网| av国产免费在线观看| 亚洲图色成人| 各种免费的搞黄视频| 秋霞伦理黄片| 在线观看国产h片| 国产欧美亚洲国产| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 熟女人妻精品中文字幕| 国产精品国产三级专区第一集| 色视频www国产| 日韩精品有码人妻一区| 中文在线观看免费www的网站| 一边亲一边摸免费视频| av视频免费观看在线观看| 国产精品国产三级国产av玫瑰| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 国产乱人偷精品视频| 中国三级夫妇交换| 日韩欧美一区视频在线观看 | 久久99精品国语久久久| 干丝袜人妻中文字幕| 五月伊人婷婷丁香| 建设人人有责人人尽责人人享有的 | 免费看光身美女| 卡戴珊不雅视频在线播放| 一级毛片黄色毛片免费观看视频| 简卡轻食公司| 久久99蜜桃精品久久| 内地一区二区视频在线|