• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal Pseudo-PT-Antisymmetry on One-Dimensional Atomic Optical Lattices?

    2018-09-10 06:39:42XinWang王欣andChangPuSun孫昌璞
    Communications in Theoretical Physics 2018年9期
    關(guān)鍵詞:王欣

    Xin Wang(王欣) and Chang-Pu Sun(孫昌璞)

    1Beijing Computational Science Research Center,Beijing 100193,China

    2Graduate School,China Academy of Engineering Physics,Beijing 100193,China

    AbstractWe present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices,the probe susceptibility response of the lattices,regardless of atomic configuration,uniformly demonstrates pseudo-PT-antisymmetry,which by our definition corresponds to n(z)= ?n?(?z),the complex refractive index antisymmetry along propagation axis,and when being cast back to quantum mechanical side,corresponds to V(x,t)= ?V?(x,?t),the conjugate time-reversal antisymmetry of complex potential.We define this as the pseudo-PT-antisymmetry,and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices.This work will help to deepen the understanding of origin of optical response features of atomic lattices,and will certainly open up the gate to a more rigorous,durable and flexible method of atomic optical lattice design.

    Key words:pseudo-PT-antisymmetry,conjugate time-reversal antisymmetry,zigzag-type atom configuration

    1 Introduction

    Since the concept of PT-symmetry was raised by Bender and co-workers,[1?2]in the past decade there has been growing interest in the study of this area due to the fact that non-Hermitian PT-symmetric Hamiltonian extends the framework of quantum mechanics into the complex domain.Although in recent years much work has been done on the theoretical side of this issue,[3?12]up till this day,there has not been genuine experimental realization of PT-symmetric quantum system yet,because the PT-symmetry requires V(x)=V?(?x)for one-dimensional Hamiltonian,which demands existence of complex potential for the system,something hard to realize despite the theoretical proposal.

    Fortunately,the study of PT-symmetry found its cast in the field of optics,thanks to the isomorphism between Schr?dinger equation and optical paraxial wave equation.For this reason,many endeavors have shown up in realizing PT-symmetric optical metamaterials in recent years. On one hand,artificial optical materials have already shown the advantages for achieving unusual electromagnetic properties compared to natural media,not to mention the fact that the PT-symmetry will certainly open up the gate to more intriguing properties,like double refraction and band merging,[13?14]power oscillations,[15?16]coherent perfect absorbers,[17?19]unidirectional invisibility,[14,20?21]and so on.However as a matter of fact,most of these works are carried out on solid-state optical systems,without much attempt to utilize atomic lattices.Considering that atomic optical lattices have their big advantages in real-time,all-optical tunable and reconfigurable features in control as compared to solid-state systems,it is of valuable importance to extend the study of PT-symmetry to this area.In recent years several works have come into sight[22?26]on this aspect.

    For study of PT-symmetry in optical field,when mapping the time-dependent Schr?dinger equation to the paraxial wave propagation equation,the role of time variable t in Schr?dinger equation is cast to the spatial variable of propagation direction(we use z in this work)in paraxial wave equation,and the PT-symmetry condition V(x)=V?(?x)is mapped to the complex refractive index symmetry n(x)=n?(?x)in transverse plane of propagation.Many works have been done under this scheme.[15?16,27?33]

    On the other hand,the question has been asked about what if we implant the symmetric modulation of complex refractive index n to the longitudinal direction instead of transverse plane of optical wave propagation.[34]Inspired by this,we propose the scheme of realizing complex refractive index symmetry along the propagation direction of one-dimensional atomic optical lattices.

    Surprisingly and most interestingly,in our study we find that under spatial sinusoidal detuning setting along propagation direction,1D atomic lattices of any configuration could uniformly demonstrate pseudo-PT-antisymmetry,by which we mean n(z)= ?n?(?z),where z denotes the propagation axis.When being cast back to quantum-mechanical side,this corresponds to V(x,t)=?V?(x,?t),the conjugate time-reversal antisymmetry of complex potential V(x,t)in Schr?dinger equation.

    The phenomenon of universal inducement of pseudo-PT-antisymmetry goes beyond our usual recognition that the optical features of atomic lattices are predominantly related to the energy level configuration of atoms,which together with particular setting of applied fields determine the optical response features of the lattice.Rather,it must originate from some fundamental physical features in the atomic optical lattice system,so that it could not see the difference between configuration details.And we find that the reason for this phenomenon is the quantummechanical nature described by master equation under weak probe field approximation.

    The article is organized as follows.In Sec.2 we deif ne the concept of pseudo-PT-antisymmetry.In Sec.3 we give the proof of universal inducement of pseudo-PT-antisymmetry under spatial sinusoidal detuning setting.In Sec.4 we present an example of pseudo-PT-antisymmetry inducement on the family of zigzag-type configurations.And finally in Sec.5 we conclude the article.

    2 Pseudo-PT-antisymmetry

    The effects of parity operatorand time-reversal operatoron quantum-mechanical coordinate operatorand momentum operatorare

    This suggests a complex potential setting,which is not normally applicable in physical experimental environment.However the complex potential V has found its cast in the complex refractive index n in optics.

    Optical lattice can be looked on as non-magnetic medium with no free charges or currents in it,then for electric field propagation we have the Helmholtz equation

    where z is the variable on propagation axis of 1D atomic lattices,stands for any vector in transverse plane,ω the angular frequency of the electromagnetic wave oscillation,and c the speed of light in vacuum.In homogeneous media,Eq.(3)reduces to a scalar equation.

    In our one-dimensional optical lattice model,n could be designed as the periodic function of z,i.e.n(z+a)=n(z),where a is the spatial period of 1D optical lattice.Including the real background refractive index n0,we have n(z)=n0+δn(z),with δn(z)=nR(z)+inI(z)being complex and|δn(z)|? |n0|.The propagating electric field is given by E(x,z)= ?(x,z)eik0z,where ?(x,z)is the envelope function.Then under paraxial approximation,the scalar Helmholtz equation reduces to

    because the genuine analog requires that time variable t in Eq.(5)be cast to longitudinal variable z in paraxial wave equation,and spatial variable x in Eq.(5)be cast to transverse variable x,which is to say,V in Eq.(4)should be a function of x,not a function of z.This means the normal PT-symmetry requires the complex refractive index to satisfy δn(x)= δn?(?x)in transverse plane,with no restriction set for z direction for 1D optical lattices.Compared to this,what we realized in this paper is δn(z)= ?δn?(?z)along the propagation direction of 1D atomic lattices.From the point of view of PT-symmetry,δn(z)= ?δn?(?z)corresponds to the condition

    which is the conjugate time-reversal antisymmetry of complex potential V(x,t),and we call it pseudo-PT-antisymmetry.We expect the study on the optical side could eventually shed light on the quantum-mechanical side,for interest of investigating V(x,t)= ?V?(x,?t).

    One may ask why in casting back the pseudo-PT-antisymmetry to Schr?dinger equation,both variables x and t are included in potential V,while in Eq.(2)only variable x is shown.This comes from the features of 1D atomic optical lattices,which cause the difference between paraxial wave equation and Schr?dinger equation in spite of the isomorphism.Since the atomic lattices are constructed by forming dipole traps to trap the atoms,there is density distribution in transverse plane,which affects the complex refractive index n,so n is not only function of z,but also x.However along the z axis of atomic optical lattices,settlement on any value of x does not affect the pseudo-PT-antisymmetry,so we can express n as n(z).

    3 Universal Pseudo-PT-antisymmetry on One-dimensional Atomic Lattices

    For any atomic configuration,the density matrix equations of o ff-diagonal terms can be expressed in the general form of master equation

    The Hamiltonian can be written as,whereis the Hamiltonian of free atom,andthe interaction between atom and applied fields.Then since(En? Em)ρnm,the master equation becomes

    On 1D atomic lattices,we are applying a weak field to probe the optical response.Compared to all the other strong coupling fields,this is a perturbation,therefore we can turn to the traditional perturbative calculation method in nonlinear optics to carry out our calculation.

    First suppose all external fields are treated as perturbation,then from Eq.(7),we have the first and second order perturbed ρnmexpressed as

    therefore

    and we can derive from here

    where N is the atomic distribution function.

    To get the second order perturbed density matrix term,normally we should directly bring the result ofinto Eq.(9)for a second round calculation.But things get different here when using weak probe field approximation.Because the probe field is so small compared to the strong coupling fields,in the first round calculation of,we usually ignore the existance of the probe field.Then when calculating,we begin to include the effect of probe field.This is to say,thein Eq.(8)and Eq.(9)are different by an addition of probe field.And the optical response of the probe field is the difference between the originalwithout throwing in probe field

    and that after throwing in the probe field

    where under the assumption that the probe field is coupled to energy leveland

    On the other hand,it is straightforward to get

    since this is analogous to the expression in Eq.(10),comparing with following the same path we have

    This is the expression of weak probe field susceptibility.Now we relate this to the spatial sinusoidal field detuning set.We get this idea from solving the zigzag-type configuration problems,which we will present as an example in the next section.We rewrite the above expression as

    The part i(ωkl?ωf(kl))in the denominator is by definition the term i?d,where?dis the frequency detuning of the probe field.So in a generalized way,we can say that the denominator can be expressed as the polynomial in the indeterminate i?din the form

    knowing γklcan be looked on as γkl(i?d)0.On the other hand,for the numerator,bothandare real numbers that can be expressed in form

    which is a special case of Σj=0Aj(i?d)j.Therefore we can say the expression of Eq.(14)is a special case of expression

    where N1is the highest order of indeterminate i?din the numerator’s polynomial,and N2the highest order of i?din the denominator’s polynomial.If we can prove that the expression in Eq.(15)can have the universal pseudo-PT-antisymmetry,then it will also work on its special case,Eq.(14).

    Equation(15)can be rewritten as

    where C2m,C2m+1(m = 0,1,2,...)and D2p(p=0,1,2,...)are real coefficients from rearranged polynomials of Aj(j=0,1,...,N1)and Bl(l=0,1,...,N2).Normally for 1D atomic lattices,N=N(z)is the periodic Gaussian distribution function of the atom density,which can be expressed as

    where z0iis the i-th lattice center,a the length of the lattice unit(also the spatial period of the 1D optical lattice),N0the density of atoms at lattice center,and σ the standard deviation of the Gaussian distribution.We can always choose an appropriate reference point z0(in this case,any z0i)to make N(z)an even function about z0.After that,it is straightforward to see that if we set the coupling field frequency detuning?dto be a sine function of z axis,i.e.,

    where A represents the real amplitude of the oscillation,then about the reference point z0along z direction,is an odd function andis an even function,which indicates the realization of pseudo-PT-antisymmetry n(z)= ?n?(?z).

    We have proved that under spatial sinusoidal detuning setting,a probe field susceptibility described by Eq.(15)will demonstrate pseudo-PT-antisymmtry.Since under the weak probe field approximation,the probe susceptibility of 1D atomic lattices of any configuration can always be expressed by Eq.(14),a special case of Eq.(15),we have arrived at the conclusion that the sinusoidal detuning setting can induce universal pseudo-PT-antisymmtry on 1D atomic optical lattices,regardless of energy level configuration.

    In the next section we will present an example of universal pseudo-PT-antisymmtry inducement on the zigzagtype configuration family of 1D atomic lattices,where we first found the idea of sinusoidal detuning setting in our early study,and where we got our first inspiration on the general case proof shown above.

    4 Universal Pseudo-PT-Antisymmetry on Zigzag-Type Configuration Family:An Example

    4.1 Case Study:N Configuration(i)The Model

    We first point out that the control of n is eq uivalent to modulating probe susceptibility χp.and from Sec.2 we know that n=n0+δn with n0being the background refractive index,also for atomic optical lattices n0=1,so we have δn= χp/2.

    Fig.1 (Color online)(a)Diagram of the four-level N configuration(4-zigzag),into which the atoms are driven by a weak probe field ?pand two moderate coupling field?cand ?d.(b)An ensemble of cold87Rb atoms forming 1D optical lattice by being trapped at the bottom of periodically distributed dipole traps along z direction.The spatial period of the dipole trap distribution(and therefore the spatial period of atom distribution)is a.Within each dipole trap,we assume the atoms to be in Gaussian distribution,with σ being the standard deviation,as described by Eq.(17).

    We design a system of one-dimensional optical lattice,composed of Gaussian-distributed bunches of cold87Rb atoms,with each bunch seated at the bottom of a dipole trap along z direction,and atoms coherently driven into N-type configuration by three coherent laser if elds applied to the system,at frequencies(amplitudes)ωp(Ep), ωc(Ec),and ωd(Ed),as shown in Figs.1(a)and 1(b).The N-configuration consists of two ground levelsandand two excited levelsandand the weak probe field ωpinteracts with the dipole-allowed transitionwhile the two strong pump fields ωcand ωdact upon transitionsandrespectively.The corresponding frequency detunings are defined asand the Rabi frequenciesandwith ωij= ωi? ωjbeing resonant transition frequencies and dijthe relevant dipole moments(i,j are labels of the energy levels).

    With rotating-wave and electric-dipole approximations,the interaction Hamiltonian can be written as

    We then get the density matrix equations:

    (ii)A Special Case of Pseudo-PT-Antisymmetry on N Configuration

    Fig.2 (Color online)The pseudo-PT-antisymmetry of χp(z)under condition of Eq.(18).(a)The real part of probe susceptibility Re[χp]for N configuration as function of z,with x axis in unit of z/a.(b)The imaginary part of probe susceptibility Im[χp]for N configuration as function of z,with x axis in unit of z/a.Here we set z0=0 and A=1 MHz in ?d=Asin[2π(z? z0)/a],?c= ?d=5 MHz,?p=0.06 MHz,and Γ31= Γ32=Γ41= Γ42=3 MHz.We take σ =0.2a in Gaussian distribution function of Eq.(17).

    Using weak probe field approximation,we obtain the first-order steady-state solutions of Eqs.(19),and since we are interested in the probe field,we directly go for the expression of.For simplicity,we set γ12=0 and look at the special case

    then obtain

    Here we have uniformly replaced all the?cby?d,while still writing down ?cand ?dseparately.The reason of doing this will be explained later.

    We can see that under the assumption that ?c= ?dare real numbers,both the numerator and the denominator of the formula can be expressed as polynomials in indeterminate i?d,i.e.,

    where N1is the highest order of term i?din numerator,and N2the highest order of i?din denominator.Aj(j=0,1,...,N1)and Bl(l=0,1,...,N2)are real coefficients determined by Eq.(21). The expression of Eq.(22)goes back to the form of Eq.(17),usingand setting N(z)to be the periodic Gaussian distribution function described by Eq.(17),we realize pseudo-PT-antisymmetry n(z)= ?n?(?z)for 1D optical lattice on N-configuration.

    In Figs.2(a)and 2(b)we plot the real and imaginary parts of probe susceptibility χpas function of z.The parameters used here are ?c= ?d=5 MHz,?p=0.06 MHz,Γ31= Γ32= Γ41= Γ42=3 MHz.For the frequency detuning function?d=Asin[2π(z?z0)/a],we choose z0=0 and set A=1 MHz.

    Fig.3 (Color online)(a)and(b)are the real and imaginary parts of χp(z)under different oscillation amplitudes of?cand?d.The red solid line corresponds to A1/A2=0.3,black dashed line corresponds to A1/A2=1,and orange dashed line corresponds to A1/A2=3 in Eqs.(23).(c)and(d)are the real and imaginary parts of χp(z)under different spatial periods of?cand?d.Red solid line corresponds to m=3,n=1,gray dashed line corresponds to m=5,n=7 in Eqs.(24).(e)and(f)are the real and imaginary parts of χp(z)under different values of ?cand ?d.Red solid line corresponds to?c=3 MHz,?d=6 MHz,orange dashed line corresponds to ?c=5 MHz,?d=5 MHz,black dashed line corresponds to ?c=7 MHz,?d=2 MHz.All the other parameters are the same as in Fig.2.

    (iii)Pseudo-PT-Antisymmetry on N Configuration under Modified Parameters

    Setting?c=?din Eq.(20)ensures the expression of ρ14in Eq.(21)to be a function of indeterminate i?d,however,loosening this condition to

    where A1≠A2are both real amplitudes,we still get the pseudo-PT-antisymmetry,as shown in Figs.3(a)and 3(b).

    We can also modify the periods instead of amplitudes of the sine functions by setting

    where m and n are different integers,and we get the modulated periodical spatial distribution of χp,which still satis fies the pseudo-PT-antisymmetry as shown in Figs.3(c)and 3(d).

    For the condition ?c= ?din Eq.(20),we change them to different values and still get the pseudo-PT-antisymmetry.The results are shown in Figs.3(e)and 3(f).

    4.2 Numerical Study on Di ff erent Zigzag Con figurations

    We now look at the different zigzag-type atom configurations as shown in Fig.4,on the same setting of optical lattice described by Fig.1(a).In Fig.4(a)we show the M-type zigzag configuration,which is the original N-type configuration spreading out one“l(fā)eg” on the left-hand side to an additional ground level state(labeled|1?here).Figure 4(b)is the N-type configuration spreading out one“l(fā)eg” on the right-hand side to an additional excited level(labeled|5?here),which we call W-type configuration.Combining these two,the N-type spreading out one “l(fā)eg”to each side gives the six-level zigzag type in Fig.4(c).And lastly,adding one more“l(fā)eg” on the right-hand side of six-level zigzag gives seven-level zigzag in Fig.4(d).

    For convenient comparison between different configuration types,we assume that in and between each type:

    (i)All the Rabi frequencies ?ciand ?di(i is integer)are of equal values.

    (ii)All the lower level states are treated as ground states,and for integer i,j representing different ground states,γij=0.

    (iii)Γij(i,j are different integers)only exists between adjacent excited and ground states that are coupled by external fields.

    Notice that if we also include the N-type into the current group for comparison,we should set Γ32=0,which is different from the N-type setting previously used in this section.

    Fig.4 (Color online)(a)M-type zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the left-hand side to the newly added ground state labeled|1?.(b)W-type zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the right-hand side to the newly added excited state labeled|5?.(c)Six-level zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the left-hand side to the newly added ground state labeled|1?,and one “l(fā)eg” on the right-hand side to the newly added excited state labeled|6?.(d)Seven-level zigzag configuration,which is six-level zigzag configuration spreading out one “l(fā)eg” on the right-hand side to the newly added ground state labeled|4?.

    Fig.5 (Color online)The pseudo-PT-antisymmetry of χp(z)on N-type(red solid line),M-type(green dashed line),W-type(blue dotted line),six-level zigzag(black dotted line)and seven-level zigzag(orange dashed line)atom configurations.(a)The real part of probe susceptibility Re[χp]for different atom configurations as function of z,with x axis in unit of z/a.(b)The imaginary part of probe susceptibility Im[χp]for different atom configurations as function of z,with x axis in unit of z/a.The parameters used here are ?ci= ?di=5 MHz,?p=0.06 MHz,Γij=3 MHz(when being nonzero term),?ci= ?di=Asin[2π(z? z0)/a]with z0=0 and A=1 MHz.The atom density distribution function is the periodic Gaussian function given by Eq.(17)and σ=0.2a.

    Following these setting,in drawing the plot of Fig.5,we set ?ci= ?di=5 MHz,?p=0.06 MHz,Γij=3 MHz whenever it is nonzero,and for the key role of coupling field detunings,we set and choose z0=0 and A=1 MHz.The periodic Gaussian distribution function of atom density on the optical lattice is still given by Eq.(17).The uniform inducement of pseudo-PT-antisymmetry on different zigzag-type atomic optical lattices are shown in Fig.5.

    From Fig.5 we see that the N-type configuration has the largest amplitude in both real and imaginary parts of probe susceptibility χp.The M-type and W-type are both N-type spreading out one “l(fā)eg”,one to an extra ground state,one to an excited state.Compared to N-type,the W-type has both the real and imaginary parts of χpsuppressed to a moderate level,while for the M-type,the real part of χpis also suppressed largely but less than the W-type,however the imaginary part is suppressed almost to zero.The six-level zigzag configuration is the W-type spreading out one“l(fā)eg” to an extra ground state,and the seven-level zigzag configuration is the six-level configuration spreading out one more“l(fā)eg” to a ground state on the other side.Compared to the W-type,the real part of χpof six-level configuration is strongly suppressed,but that of seven-level is strongly enlarged.On the contrary,the imaginary part of χpof six-level configuration is strongly enlarged,and that of seven-level is strongly suppressed.We leave the detailed and systematic study of the correlation between the atom configuration and probe susceptibility to the future work.

    5 Conclusions

    In this paper,we show the result that under the setting of sinusoidal spatial distribution of coupling field detunings,the pseudo-PT-antisymmetry,i.e.δn(z)=?δn?(?z),the complex refractive index antisymmetry along propagation direction of 1D atomic lattices,can be universally induced on the 1D atomic lattices of any configuration.

    We find that the reason for the uniform inducement of pseudo-PT-antisymmetry is rooted in the quantummechanical nature of atom- field interaction,which can be derived directly from the general form of master equation under weak probe field approximation.

    Forfutureinterestoftheuniversalpseudo-PT-antisymmetry,we also point out that when being cast back to quantum-mechanical side,δn(z)= ?δn?(?z)corresponds to V(x,t)= ?V?(x,?t),the conjugate timereversal antisymmetry of complex potential V(x,t)in 1D Schr?dinger equation.

    In conclusion,the universal inducement of pseudo-PT-antisymmetry is a novel observation.It expands our understanding of the origin of optical response of atomic lattices,provides more reliable and variable method in designing atomic optical lattices,and o ff ers more flexibility and stability to the optical features of atomic lattices.

    Acknowledgements

    X.Wang would like to thank Jilin University and Center for Quantum Sciences of Northeast Normal University,where this work was first started.

    猜你喜歡
    王欣
    Turing/Turing-like patterns: Products of random aggregation of spatial components
    Photonic-plasmonic hybrid microcavities: Physics and applications*
    黑洞
    太空探索(2021年2期)2021-02-27 07:59:34
    風(fēng)
    小保安晉身“都教授”有多難?
    小保安晉身“都教授”有多難?
    小保安晉身“都教授”有多難?
    Analysis of Means of Strength in "Letter From a Birmingham Jail"
    還我腎來,我才同意和你離婚
    女性天地(2009年8期)2009-11-23 06:19:50
    捐腎,索腎,這對“血脈相連”的夫妻怎么了
    最近手机中文字幕大全| 久久午夜福利片| 亚洲国产色片| 久久久a久久爽久久v久久| 久久久久国产网址| 久久免费观看电影| 男女高潮啪啪啪动态图| 亚洲精品日本国产第一区| 亚洲精品一区蜜桃| 99视频精品全部免费 在线| 丝袜人妻中文字幕| 一级片'在线观看视频| 丰满少妇做爰视频| 亚洲国产欧美日韩在线播放| 国产伦理片在线播放av一区| 日本av免费视频播放| 伦理电影免费视频| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 日韩av在线免费看完整版不卡| 久久久久视频综合| 久久国内精品自在自线图片| 少妇精品久久久久久久| 国产成人精品久久久久久| 少妇人妻久久综合中文| av电影中文网址| 九九爱精品视频在线观看| 99re6热这里在线精品视频| 日产精品乱码卡一卡2卡三| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 国产一区有黄有色的免费视频| 国产免费现黄频在线看| av片东京热男人的天堂| 热99国产精品久久久久久7| videos熟女内射| 免费av不卡在线播放| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 中文字幕免费在线视频6| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 久久久久久久精品精品| 久久久久久人人人人人| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 午夜老司机福利剧场| 久久久久久人妻| 大香蕉久久网| 日韩中字成人| 久久午夜福利片| 高清在线视频一区二区三区| 亚洲成人av在线免费| 搡女人真爽免费视频火全软件| 亚洲情色 制服丝袜| 99热全是精品| 看免费成人av毛片| 久久久久久伊人网av| 99九九在线精品视频| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | 亚洲精品aⅴ在线观看| 免费不卡的大黄色大毛片视频在线观看| 99九九在线精品视频| 亚洲少妇的诱惑av| 亚洲成人av在线免费| 亚洲av.av天堂| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 久久久久久久久久久久大奶| 中国国产av一级| 99热全是精品| 国产一区二区激情短视频 | 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 国产精品久久久久久精品电影小说| 欧美97在线视频| 亚洲av日韩在线播放| 啦啦啦在线观看免费高清www| 日本欧美国产在线视频| 精品亚洲成国产av| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 午夜福利,免费看| 黄片无遮挡物在线观看| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 熟女电影av网| 色哟哟·www| 国产精品99久久99久久久不卡 | 久久久a久久爽久久v久久| 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频| 男人爽女人下面视频在线观看| 日韩视频在线欧美| 国产精品成人在线| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 亚洲av电影在线进入| 成人国语在线视频| 少妇 在线观看| 熟女av电影| 超色免费av| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 亚洲精品久久午夜乱码| 老司机亚洲免费影院| 欧美日韩亚洲高清精品| 色94色欧美一区二区| 一级毛片 在线播放| 国产亚洲精品久久久com| 成人综合一区亚洲| 91aial.com中文字幕在线观看| 亚洲欧美日韩卡通动漫| 精品一区二区三卡| 国产精品偷伦视频观看了| 午夜免费鲁丝| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 国产熟女欧美一区二区| 97在线视频观看| 久久99热6这里只有精品| 国产探花极品一区二区| 我的女老师完整版在线观看| 韩国av在线不卡| 免费看光身美女| 日本wwww免费看| 最近手机中文字幕大全| 高清视频免费观看一区二区| 国产精品国产三级国产av玫瑰| 成年人午夜在线观看视频| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 久久久久久久国产电影| 22中文网久久字幕| 黄色怎么调成土黄色| 久久精品国产亚洲av天美| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 久久久久久久大尺度免费视频| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 亚洲精品久久成人aⅴ小说| 国产极品天堂在线| 精品国产国语对白av| 成人综合一区亚洲| 大香蕉久久成人网| 最近手机中文字幕大全| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 欧美成人午夜精品| 人妻 亚洲 视频| 黄色毛片三级朝国网站| 国产淫语在线视频| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 国产高清不卡午夜福利| 精品一区在线观看国产| 乱码一卡2卡4卡精品| 久久久久久久久久久久大奶| 好男人视频免费观看在线| 国产色婷婷99| 免费在线观看黄色视频的| 日本欧美国产在线视频| 国产在线免费精品| 国产亚洲最大av| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 91在线精品国自产拍蜜月| 少妇精品久久久久久久| 99香蕉大伊视频| 夜夜骑夜夜射夜夜干| 国产成人午夜福利电影在线观看| 亚洲av成人精品一二三区| 五月天丁香电影| 91精品三级在线观看| 日日撸夜夜添| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 午夜精品国产一区二区电影| 日韩一本色道免费dvd| 久久97久久精品| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 老司机影院成人| 亚洲成av片中文字幕在线观看 | 精品国产乱码久久久久久小说| 高清欧美精品videossex| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| videosex国产| 精品第一国产精品| 国产免费又黄又爽又色| 日本wwww免费看| 久久久久国产精品人妻一区二区| 熟女电影av网| 精品少妇内射三级| 少妇的逼水好多| 最新中文字幕久久久久| 一边摸一边做爽爽视频免费| 日本-黄色视频高清免费观看| 青青草视频在线视频观看| 一个人免费看片子| 街头女战士在线观看网站| 丰满少妇做爰视频| 久久这里有精品视频免费| 日韩中字成人| a级毛色黄片| 插逼视频在线观看| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 桃花免费在线播放| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 久热这里只有精品99| 观看av在线不卡| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 青春草亚洲视频在线观看| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 青春草国产在线视频| 国产熟女欧美一区二区| 美女福利国产在线| 捣出白浆h1v1| 成人漫画全彩无遮挡| 老女人水多毛片| 亚洲精品,欧美精品| 一本大道久久a久久精品| 不卡视频在线观看欧美| 久久ye,这里只有精品| 涩涩av久久男人的天堂| 26uuu在线亚洲综合色| 一二三四在线观看免费中文在 | 天美传媒精品一区二区| 精品视频人人做人人爽| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 美女大奶头黄色视频| 亚洲婷婷狠狠爱综合网| 精品酒店卫生间| 激情五月婷婷亚洲| 国产又爽黄色视频| 桃花免费在线播放| 亚洲av在线观看美女高潮| 国产黄色免费在线视频| 国产精品一区www在线观看| 亚洲成人av在线免费| 综合色丁香网| 18+在线观看网站| 黑人高潮一二区| 妹子高潮喷水视频| 1024视频免费在线观看| 欧美日韩av久久| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 亚洲国产看品久久| 中国三级夫妇交换| 日韩制服丝袜自拍偷拍| 26uuu在线亚洲综合色| 欧美成人午夜精品| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 永久网站在线| 亚洲成人手机| 国产在线免费精品| 在线观看国产h片| 亚洲欧美色中文字幕在线| 最新中文字幕久久久久| 中文字幕亚洲精品专区| 午夜av观看不卡| 一二三四在线观看免费中文在 | av卡一久久| 亚洲成av片中文字幕在线观看 | 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 日韩精品免费视频一区二区三区 | 18禁观看日本| av免费观看日本| 51国产日韩欧美| 久久人妻熟女aⅴ| 99久久综合免费| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 两个人免费观看高清视频| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 成人手机av| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 精品卡一卡二卡四卡免费| 少妇精品久久久久久久| av免费在线看不卡| 免费黄频网站在线观看国产| 99久久中文字幕三级久久日本| 久久人人97超碰香蕉20202| 成人手机av| 秋霞在线观看毛片| 国产极品天堂在线| a级毛色黄片| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 久久午夜福利片| av有码第一页| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 人人妻人人添人人爽欧美一区卜| 亚洲成av片中文字幕在线观看 | 咕卡用的链子| 成人亚洲欧美一区二区av| 免费观看无遮挡的男女| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 久久亚洲国产成人精品v| 一级a做视频免费观看| 国产高清三级在线| 成人国语在线视频| 国产又爽黄色视频| 亚洲内射少妇av| 国产又爽黄色视频| 免费久久久久久久精品成人欧美视频 | 亚洲丝袜综合中文字幕| 免费久久久久久久精品成人欧美视频 | 波野结衣二区三区在线| 精品国产国语对白av| 成人亚洲精品一区在线观看| 大片免费播放器 马上看| 五月开心婷婷网| 国产av国产精品国产| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 在线天堂中文资源库| 综合色丁香网| 国产一区二区三区综合在线观看 | 国产有黄有色有爽视频| 日韩欧美精品免费久久| 国产熟女欧美一区二区| 欧美国产精品va在线观看不卡| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 天天操日日干夜夜撸| a级毛片黄视频| 男女下面插进去视频免费观看 | 哪个播放器可以免费观看大片| 久久99热6这里只有精品| 欧美日韩成人在线一区二区| 蜜桃国产av成人99| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 亚洲欧美成人综合另类久久久| 18禁观看日本| 亚洲av男天堂| 久久久久久久亚洲中文字幕| 精品午夜福利在线看| tube8黄色片| 成人国产av品久久久| a 毛片基地| 成人无遮挡网站| 久久久久久久久久久免费av| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 午夜91福利影院| 亚洲人成77777在线视频| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 亚洲综合精品二区| 亚洲欧美一区二区三区黑人 | av黄色大香蕉| 18禁裸乳无遮挡动漫免费视频| 久久久a久久爽久久v久久| 国产一区亚洲一区在线观看| 日韩精品免费视频一区二区三区 | 免费黄频网站在线观看国产| 亚洲av福利一区| 日韩精品免费视频一区二区三区 | 午夜影院在线不卡| 九色成人免费人妻av| 在线观看免费视频网站a站| 国产精品欧美亚洲77777| 久热这里只有精品99| www.熟女人妻精品国产 | 午夜福利视频精品| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 少妇 在线观看| 国产黄频视频在线观看| 中文字幕亚洲精品专区| 七月丁香在线播放| 久久婷婷青草| 人人澡人人妻人| 日本黄色日本黄色录像| 久久午夜福利片| 久久人妻熟女aⅴ| 亚洲国产色片| av播播在线观看一区| 飞空精品影院首页| 精品一区二区免费观看| 亚洲三级黄色毛片| 国产片内射在线| 深夜精品福利| 美女福利国产在线| 你懂的网址亚洲精品在线观看| 中文乱码字字幕精品一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 男人操女人黄网站| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 亚洲国产精品999| 校园人妻丝袜中文字幕| 老司机影院毛片| 2021少妇久久久久久久久久久| 中文天堂在线官网| 蜜桃国产av成人99| 久久久久久伊人网av| 日韩视频在线欧美| 久久热在线av| videosex国产| www日本在线高清视频| 母亲3免费完整高清在线观看 | 91成人精品电影| 久久久国产一区二区| 18+在线观看网站| 91在线精品国自产拍蜜月| 久久国产精品大桥未久av| 在现免费观看毛片| 最新的欧美精品一区二区| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 色5月婷婷丁香| 秋霞在线观看毛片| 母亲3免费完整高清在线观看 | 亚洲伊人色综图| 国产一区二区在线观看av| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 日韩av在线免费看完整版不卡| 国产精品久久久久久久久免| 成人国产av品久久久| 三上悠亚av全集在线观看| 亚洲av.av天堂| 日韩一区二区视频免费看| 国产成人av激情在线播放| 性高湖久久久久久久久免费观看| 老司机影院成人| 日产精品乱码卡一卡2卡三| 午夜精品国产一区二区电影| 国产男人的电影天堂91| 欧美激情国产日韩精品一区| av电影中文网址| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 精品久久蜜臀av无| 国产成人一区二区在线| 咕卡用的链子| freevideosex欧美| 国产深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| 深夜精品福利| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看 | 成人二区视频| 18禁裸乳无遮挡动漫免费视频| 热99久久久久精品小说推荐| 午夜福利视频精品| 欧美精品一区二区大全| 女人被躁到高潮嗷嗷叫费观| 中文精品一卡2卡3卡4更新| av视频免费观看在线观看| 日本av手机在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 国产日韩欧美视频二区| 亚洲综合色惰| 国产又色又爽无遮挡免| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 黄色 视频免费看| 各种免费的搞黄视频| 国产精品国产av在线观看| 亚洲,一卡二卡三卡| 大话2 男鬼变身卡| 国产无遮挡羞羞视频在线观看| 亚洲国产精品专区欧美| 国产不卡av网站在线观看| 精品少妇内射三级| 91午夜精品亚洲一区二区三区| 熟妇人妻不卡中文字幕| 国国产精品蜜臀av免费| 国产精品.久久久| 在线 av 中文字幕| 哪个播放器可以免费观看大片| 亚洲欧美色中文字幕在线| 久久人人爽av亚洲精品天堂| 最近中文字幕2019免费版| 侵犯人妻中文字幕一二三四区| 99热国产这里只有精品6| 日韩精品免费视频一区二区三区 | kizo精华| 最后的刺客免费高清国语| 国产黄色免费在线视频| av在线app专区| 青春草亚洲视频在线观看| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 成人国产av品久久久| 天天躁夜夜躁狠狠躁躁| 多毛熟女@视频| 五月开心婷婷网| 97人妻天天添夜夜摸| 日韩中字成人| 久热这里只有精品99| 卡戴珊不雅视频在线播放| 天天躁夜夜躁狠狠久久av| 韩国精品一区二区三区 | 亚洲中文av在线| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久小说| 成年女人在线观看亚洲视频| 国产1区2区3区精品| 人成视频在线观看免费观看| 亚洲美女搞黄在线观看| 亚洲欧洲精品一区二区精品久久久 | 日韩免费高清中文字幕av| 久久99蜜桃精品久久| 又黄又爽又刺激的免费视频.| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 久久久久久久大尺度免费视频| 有码 亚洲区| 精品酒店卫生间| 久久精品夜色国产| 国产成人免费观看mmmm| 交换朋友夫妻互换小说| 18禁观看日本| 狂野欧美激情性xxxx在线观看| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 精品久久蜜臀av无| 欧美激情极品国产一区二区三区 | 久久精品久久久久久噜噜老黄| 精品人妻在线不人妻| 午夜91福利影院| 亚洲美女黄色视频免费看| 亚洲三级黄色毛片| 国产精品久久久久久av不卡| 亚洲精品视频女| 乱码一卡2卡4卡精品| 久久久久久久精品精品| 一级片免费观看大全| 亚洲少妇的诱惑av| 视频中文字幕在线观看| 最近最新中文字幕大全免费视频 | 夫妻午夜视频| 精品国产一区二区三区久久久樱花| 欧美3d第一页| 国产男女内射视频| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 亚洲中文av在线| 麻豆乱淫一区二区| 国产精品国产三级国产av玫瑰| 看免费成人av毛片| 国产片特级美女逼逼视频| 亚洲色图 男人天堂 中文字幕 | av免费在线看不卡| 日本黄色日本黄色录像| 一二三四在线观看免费中文在 | 狠狠精品人妻久久久久久综合| 夫妻午夜视频| 日本免费在线观看一区| 国产成人欧美| 欧美少妇被猛烈插入视频| 日本免费在线观看一区| 国产欧美日韩一区二区三区在线| 中文字幕最新亚洲高清| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 天堂8中文在线网| 国产永久视频网站| 丝袜喷水一区| 在线观看免费高清a一片| 欧美亚洲 丝袜 人妻 在线| 夜夜爽夜夜爽视频| 美女内射精品一级片tv| 街头女战士在线观看网站| 一区二区日韩欧美中文字幕 |