• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal Pseudo-PT-Antisymmetry on One-Dimensional Atomic Optical Lattices?

    2018-09-10 06:39:42XinWang王欣andChangPuSun孫昌璞
    Communications in Theoretical Physics 2018年9期
    關(guān)鍵詞:王欣

    Xin Wang(王欣) and Chang-Pu Sun(孫昌璞)

    1Beijing Computational Science Research Center,Beijing 100193,China

    2Graduate School,China Academy of Engineering Physics,Beijing 100193,China

    AbstractWe present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices,the probe susceptibility response of the lattices,regardless of atomic configuration,uniformly demonstrates pseudo-PT-antisymmetry,which by our definition corresponds to n(z)= ?n?(?z),the complex refractive index antisymmetry along propagation axis,and when being cast back to quantum mechanical side,corresponds to V(x,t)= ?V?(x,?t),the conjugate time-reversal antisymmetry of complex potential.We define this as the pseudo-PT-antisymmetry,and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices.This work will help to deepen the understanding of origin of optical response features of atomic lattices,and will certainly open up the gate to a more rigorous,durable and flexible method of atomic optical lattice design.

    Key words:pseudo-PT-antisymmetry,conjugate time-reversal antisymmetry,zigzag-type atom configuration

    1 Introduction

    Since the concept of PT-symmetry was raised by Bender and co-workers,[1?2]in the past decade there has been growing interest in the study of this area due to the fact that non-Hermitian PT-symmetric Hamiltonian extends the framework of quantum mechanics into the complex domain.Although in recent years much work has been done on the theoretical side of this issue,[3?12]up till this day,there has not been genuine experimental realization of PT-symmetric quantum system yet,because the PT-symmetry requires V(x)=V?(?x)for one-dimensional Hamiltonian,which demands existence of complex potential for the system,something hard to realize despite the theoretical proposal.

    Fortunately,the study of PT-symmetry found its cast in the field of optics,thanks to the isomorphism between Schr?dinger equation and optical paraxial wave equation.For this reason,many endeavors have shown up in realizing PT-symmetric optical metamaterials in recent years. On one hand,artificial optical materials have already shown the advantages for achieving unusual electromagnetic properties compared to natural media,not to mention the fact that the PT-symmetry will certainly open up the gate to more intriguing properties,like double refraction and band merging,[13?14]power oscillations,[15?16]coherent perfect absorbers,[17?19]unidirectional invisibility,[14,20?21]and so on.However as a matter of fact,most of these works are carried out on solid-state optical systems,without much attempt to utilize atomic lattices.Considering that atomic optical lattices have their big advantages in real-time,all-optical tunable and reconfigurable features in control as compared to solid-state systems,it is of valuable importance to extend the study of PT-symmetry to this area.In recent years several works have come into sight[22?26]on this aspect.

    For study of PT-symmetry in optical field,when mapping the time-dependent Schr?dinger equation to the paraxial wave propagation equation,the role of time variable t in Schr?dinger equation is cast to the spatial variable of propagation direction(we use z in this work)in paraxial wave equation,and the PT-symmetry condition V(x)=V?(?x)is mapped to the complex refractive index symmetry n(x)=n?(?x)in transverse plane of propagation.Many works have been done under this scheme.[15?16,27?33]

    On the other hand,the question has been asked about what if we implant the symmetric modulation of complex refractive index n to the longitudinal direction instead of transverse plane of optical wave propagation.[34]Inspired by this,we propose the scheme of realizing complex refractive index symmetry along the propagation direction of one-dimensional atomic optical lattices.

    Surprisingly and most interestingly,in our study we find that under spatial sinusoidal detuning setting along propagation direction,1D atomic lattices of any configuration could uniformly demonstrate pseudo-PT-antisymmetry,by which we mean n(z)= ?n?(?z),where z denotes the propagation axis.When being cast back to quantum-mechanical side,this corresponds to V(x,t)=?V?(x,?t),the conjugate time-reversal antisymmetry of complex potential V(x,t)in Schr?dinger equation.

    The phenomenon of universal inducement of pseudo-PT-antisymmetry goes beyond our usual recognition that the optical features of atomic lattices are predominantly related to the energy level configuration of atoms,which together with particular setting of applied fields determine the optical response features of the lattice.Rather,it must originate from some fundamental physical features in the atomic optical lattice system,so that it could not see the difference between configuration details.And we find that the reason for this phenomenon is the quantummechanical nature described by master equation under weak probe field approximation.

    The article is organized as follows.In Sec.2 we deif ne the concept of pseudo-PT-antisymmetry.In Sec.3 we give the proof of universal inducement of pseudo-PT-antisymmetry under spatial sinusoidal detuning setting.In Sec.4 we present an example of pseudo-PT-antisymmetry inducement on the family of zigzag-type configurations.And finally in Sec.5 we conclude the article.

    2 Pseudo-PT-antisymmetry

    The effects of parity operatorand time-reversal operatoron quantum-mechanical coordinate operatorand momentum operatorare

    This suggests a complex potential setting,which is not normally applicable in physical experimental environment.However the complex potential V has found its cast in the complex refractive index n in optics.

    Optical lattice can be looked on as non-magnetic medium with no free charges or currents in it,then for electric field propagation we have the Helmholtz equation

    where z is the variable on propagation axis of 1D atomic lattices,stands for any vector in transverse plane,ω the angular frequency of the electromagnetic wave oscillation,and c the speed of light in vacuum.In homogeneous media,Eq.(3)reduces to a scalar equation.

    In our one-dimensional optical lattice model,n could be designed as the periodic function of z,i.e.n(z+a)=n(z),where a is the spatial period of 1D optical lattice.Including the real background refractive index n0,we have n(z)=n0+δn(z),with δn(z)=nR(z)+inI(z)being complex and|δn(z)|? |n0|.The propagating electric field is given by E(x,z)= ?(x,z)eik0z,where ?(x,z)is the envelope function.Then under paraxial approximation,the scalar Helmholtz equation reduces to

    because the genuine analog requires that time variable t in Eq.(5)be cast to longitudinal variable z in paraxial wave equation,and spatial variable x in Eq.(5)be cast to transverse variable x,which is to say,V in Eq.(4)should be a function of x,not a function of z.This means the normal PT-symmetry requires the complex refractive index to satisfy δn(x)= δn?(?x)in transverse plane,with no restriction set for z direction for 1D optical lattices.Compared to this,what we realized in this paper is δn(z)= ?δn?(?z)along the propagation direction of 1D atomic lattices.From the point of view of PT-symmetry,δn(z)= ?δn?(?z)corresponds to the condition

    which is the conjugate time-reversal antisymmetry of complex potential V(x,t),and we call it pseudo-PT-antisymmetry.We expect the study on the optical side could eventually shed light on the quantum-mechanical side,for interest of investigating V(x,t)= ?V?(x,?t).

    One may ask why in casting back the pseudo-PT-antisymmetry to Schr?dinger equation,both variables x and t are included in potential V,while in Eq.(2)only variable x is shown.This comes from the features of 1D atomic optical lattices,which cause the difference between paraxial wave equation and Schr?dinger equation in spite of the isomorphism.Since the atomic lattices are constructed by forming dipole traps to trap the atoms,there is density distribution in transverse plane,which affects the complex refractive index n,so n is not only function of z,but also x.However along the z axis of atomic optical lattices,settlement on any value of x does not affect the pseudo-PT-antisymmetry,so we can express n as n(z).

    3 Universal Pseudo-PT-antisymmetry on One-dimensional Atomic Lattices

    For any atomic configuration,the density matrix equations of o ff-diagonal terms can be expressed in the general form of master equation

    The Hamiltonian can be written as,whereis the Hamiltonian of free atom,andthe interaction between atom and applied fields.Then since(En? Em)ρnm,the master equation becomes

    On 1D atomic lattices,we are applying a weak field to probe the optical response.Compared to all the other strong coupling fields,this is a perturbation,therefore we can turn to the traditional perturbative calculation method in nonlinear optics to carry out our calculation.

    First suppose all external fields are treated as perturbation,then from Eq.(7),we have the first and second order perturbed ρnmexpressed as

    therefore

    and we can derive from here

    where N is the atomic distribution function.

    To get the second order perturbed density matrix term,normally we should directly bring the result ofinto Eq.(9)for a second round calculation.But things get different here when using weak probe field approximation.Because the probe field is so small compared to the strong coupling fields,in the first round calculation of,we usually ignore the existance of the probe field.Then when calculating,we begin to include the effect of probe field.This is to say,thein Eq.(8)and Eq.(9)are different by an addition of probe field.And the optical response of the probe field is the difference between the originalwithout throwing in probe field

    and that after throwing in the probe field

    where under the assumption that the probe field is coupled to energy leveland

    On the other hand,it is straightforward to get

    since this is analogous to the expression in Eq.(10),comparing with following the same path we have

    This is the expression of weak probe field susceptibility.Now we relate this to the spatial sinusoidal field detuning set.We get this idea from solving the zigzag-type configuration problems,which we will present as an example in the next section.We rewrite the above expression as

    The part i(ωkl?ωf(kl))in the denominator is by definition the term i?d,where?dis the frequency detuning of the probe field.So in a generalized way,we can say that the denominator can be expressed as the polynomial in the indeterminate i?din the form

    knowing γklcan be looked on as γkl(i?d)0.On the other hand,for the numerator,bothandare real numbers that can be expressed in form

    which is a special case of Σj=0Aj(i?d)j.Therefore we can say the expression of Eq.(14)is a special case of expression

    where N1is the highest order of indeterminate i?din the numerator’s polynomial,and N2the highest order of i?din the denominator’s polynomial.If we can prove that the expression in Eq.(15)can have the universal pseudo-PT-antisymmetry,then it will also work on its special case,Eq.(14).

    Equation(15)can be rewritten as

    where C2m,C2m+1(m = 0,1,2,...)and D2p(p=0,1,2,...)are real coefficients from rearranged polynomials of Aj(j=0,1,...,N1)and Bl(l=0,1,...,N2).Normally for 1D atomic lattices,N=N(z)is the periodic Gaussian distribution function of the atom density,which can be expressed as

    where z0iis the i-th lattice center,a the length of the lattice unit(also the spatial period of the 1D optical lattice),N0the density of atoms at lattice center,and σ the standard deviation of the Gaussian distribution.We can always choose an appropriate reference point z0(in this case,any z0i)to make N(z)an even function about z0.After that,it is straightforward to see that if we set the coupling field frequency detuning?dto be a sine function of z axis,i.e.,

    where A represents the real amplitude of the oscillation,then about the reference point z0along z direction,is an odd function andis an even function,which indicates the realization of pseudo-PT-antisymmetry n(z)= ?n?(?z).

    We have proved that under spatial sinusoidal detuning setting,a probe field susceptibility described by Eq.(15)will demonstrate pseudo-PT-antisymmtry.Since under the weak probe field approximation,the probe susceptibility of 1D atomic lattices of any configuration can always be expressed by Eq.(14),a special case of Eq.(15),we have arrived at the conclusion that the sinusoidal detuning setting can induce universal pseudo-PT-antisymmtry on 1D atomic optical lattices,regardless of energy level configuration.

    In the next section we will present an example of universal pseudo-PT-antisymmtry inducement on the zigzagtype configuration family of 1D atomic lattices,where we first found the idea of sinusoidal detuning setting in our early study,and where we got our first inspiration on the general case proof shown above.

    4 Universal Pseudo-PT-Antisymmetry on Zigzag-Type Configuration Family:An Example

    4.1 Case Study:N Configuration(i)The Model

    We first point out that the control of n is eq uivalent to modulating probe susceptibility χp.and from Sec.2 we know that n=n0+δn with n0being the background refractive index,also for atomic optical lattices n0=1,so we have δn= χp/2.

    Fig.1 (Color online)(a)Diagram of the four-level N configuration(4-zigzag),into which the atoms are driven by a weak probe field ?pand two moderate coupling field?cand ?d.(b)An ensemble of cold87Rb atoms forming 1D optical lattice by being trapped at the bottom of periodically distributed dipole traps along z direction.The spatial period of the dipole trap distribution(and therefore the spatial period of atom distribution)is a.Within each dipole trap,we assume the atoms to be in Gaussian distribution,with σ being the standard deviation,as described by Eq.(17).

    We design a system of one-dimensional optical lattice,composed of Gaussian-distributed bunches of cold87Rb atoms,with each bunch seated at the bottom of a dipole trap along z direction,and atoms coherently driven into N-type configuration by three coherent laser if elds applied to the system,at frequencies(amplitudes)ωp(Ep), ωc(Ec),and ωd(Ed),as shown in Figs.1(a)and 1(b).The N-configuration consists of two ground levelsandand two excited levelsandand the weak probe field ωpinteracts with the dipole-allowed transitionwhile the two strong pump fields ωcand ωdact upon transitionsandrespectively.The corresponding frequency detunings are defined asand the Rabi frequenciesandwith ωij= ωi? ωjbeing resonant transition frequencies and dijthe relevant dipole moments(i,j are labels of the energy levels).

    With rotating-wave and electric-dipole approximations,the interaction Hamiltonian can be written as

    We then get the density matrix equations:

    (ii)A Special Case of Pseudo-PT-Antisymmetry on N Configuration

    Fig.2 (Color online)The pseudo-PT-antisymmetry of χp(z)under condition of Eq.(18).(a)The real part of probe susceptibility Re[χp]for N configuration as function of z,with x axis in unit of z/a.(b)The imaginary part of probe susceptibility Im[χp]for N configuration as function of z,with x axis in unit of z/a.Here we set z0=0 and A=1 MHz in ?d=Asin[2π(z? z0)/a],?c= ?d=5 MHz,?p=0.06 MHz,and Γ31= Γ32=Γ41= Γ42=3 MHz.We take σ =0.2a in Gaussian distribution function of Eq.(17).

    Using weak probe field approximation,we obtain the first-order steady-state solutions of Eqs.(19),and since we are interested in the probe field,we directly go for the expression of.For simplicity,we set γ12=0 and look at the special case

    then obtain

    Here we have uniformly replaced all the?cby?d,while still writing down ?cand ?dseparately.The reason of doing this will be explained later.

    We can see that under the assumption that ?c= ?dare real numbers,both the numerator and the denominator of the formula can be expressed as polynomials in indeterminate i?d,i.e.,

    where N1is the highest order of term i?din numerator,and N2the highest order of i?din denominator.Aj(j=0,1,...,N1)and Bl(l=0,1,...,N2)are real coefficients determined by Eq.(21). The expression of Eq.(22)goes back to the form of Eq.(17),usingand setting N(z)to be the periodic Gaussian distribution function described by Eq.(17),we realize pseudo-PT-antisymmetry n(z)= ?n?(?z)for 1D optical lattice on N-configuration.

    In Figs.2(a)and 2(b)we plot the real and imaginary parts of probe susceptibility χpas function of z.The parameters used here are ?c= ?d=5 MHz,?p=0.06 MHz,Γ31= Γ32= Γ41= Γ42=3 MHz.For the frequency detuning function?d=Asin[2π(z?z0)/a],we choose z0=0 and set A=1 MHz.

    Fig.3 (Color online)(a)and(b)are the real and imaginary parts of χp(z)under different oscillation amplitudes of?cand?d.The red solid line corresponds to A1/A2=0.3,black dashed line corresponds to A1/A2=1,and orange dashed line corresponds to A1/A2=3 in Eqs.(23).(c)and(d)are the real and imaginary parts of χp(z)under different spatial periods of?cand?d.Red solid line corresponds to m=3,n=1,gray dashed line corresponds to m=5,n=7 in Eqs.(24).(e)and(f)are the real and imaginary parts of χp(z)under different values of ?cand ?d.Red solid line corresponds to?c=3 MHz,?d=6 MHz,orange dashed line corresponds to ?c=5 MHz,?d=5 MHz,black dashed line corresponds to ?c=7 MHz,?d=2 MHz.All the other parameters are the same as in Fig.2.

    (iii)Pseudo-PT-Antisymmetry on N Configuration under Modified Parameters

    Setting?c=?din Eq.(20)ensures the expression of ρ14in Eq.(21)to be a function of indeterminate i?d,however,loosening this condition to

    where A1≠A2are both real amplitudes,we still get the pseudo-PT-antisymmetry,as shown in Figs.3(a)and 3(b).

    We can also modify the periods instead of amplitudes of the sine functions by setting

    where m and n are different integers,and we get the modulated periodical spatial distribution of χp,which still satis fies the pseudo-PT-antisymmetry as shown in Figs.3(c)and 3(d).

    For the condition ?c= ?din Eq.(20),we change them to different values and still get the pseudo-PT-antisymmetry.The results are shown in Figs.3(e)and 3(f).

    4.2 Numerical Study on Di ff erent Zigzag Con figurations

    We now look at the different zigzag-type atom configurations as shown in Fig.4,on the same setting of optical lattice described by Fig.1(a).In Fig.4(a)we show the M-type zigzag configuration,which is the original N-type configuration spreading out one“l(fā)eg” on the left-hand side to an additional ground level state(labeled|1?here).Figure 4(b)is the N-type configuration spreading out one“l(fā)eg” on the right-hand side to an additional excited level(labeled|5?here),which we call W-type configuration.Combining these two,the N-type spreading out one “l(fā)eg”to each side gives the six-level zigzag type in Fig.4(c).And lastly,adding one more“l(fā)eg” on the right-hand side of six-level zigzag gives seven-level zigzag in Fig.4(d).

    For convenient comparison between different configuration types,we assume that in and between each type:

    (i)All the Rabi frequencies ?ciand ?di(i is integer)are of equal values.

    (ii)All the lower level states are treated as ground states,and for integer i,j representing different ground states,γij=0.

    (iii)Γij(i,j are different integers)only exists between adjacent excited and ground states that are coupled by external fields.

    Notice that if we also include the N-type into the current group for comparison,we should set Γ32=0,which is different from the N-type setting previously used in this section.

    Fig.4 (Color online)(a)M-type zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the left-hand side to the newly added ground state labeled|1?.(b)W-type zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the right-hand side to the newly added excited state labeled|5?.(c)Six-level zigzag configuration,which is N-type configuration spreading out one “l(fā)eg” on the left-hand side to the newly added ground state labeled|1?,and one “l(fā)eg” on the right-hand side to the newly added excited state labeled|6?.(d)Seven-level zigzag configuration,which is six-level zigzag configuration spreading out one “l(fā)eg” on the right-hand side to the newly added ground state labeled|4?.

    Fig.5 (Color online)The pseudo-PT-antisymmetry of χp(z)on N-type(red solid line),M-type(green dashed line),W-type(blue dotted line),six-level zigzag(black dotted line)and seven-level zigzag(orange dashed line)atom configurations.(a)The real part of probe susceptibility Re[χp]for different atom configurations as function of z,with x axis in unit of z/a.(b)The imaginary part of probe susceptibility Im[χp]for different atom configurations as function of z,with x axis in unit of z/a.The parameters used here are ?ci= ?di=5 MHz,?p=0.06 MHz,Γij=3 MHz(when being nonzero term),?ci= ?di=Asin[2π(z? z0)/a]with z0=0 and A=1 MHz.The atom density distribution function is the periodic Gaussian function given by Eq.(17)and σ=0.2a.

    Following these setting,in drawing the plot of Fig.5,we set ?ci= ?di=5 MHz,?p=0.06 MHz,Γij=3 MHz whenever it is nonzero,and for the key role of coupling field detunings,we set and choose z0=0 and A=1 MHz.The periodic Gaussian distribution function of atom density on the optical lattice is still given by Eq.(17).The uniform inducement of pseudo-PT-antisymmetry on different zigzag-type atomic optical lattices are shown in Fig.5.

    From Fig.5 we see that the N-type configuration has the largest amplitude in both real and imaginary parts of probe susceptibility χp.The M-type and W-type are both N-type spreading out one “l(fā)eg”,one to an extra ground state,one to an excited state.Compared to N-type,the W-type has both the real and imaginary parts of χpsuppressed to a moderate level,while for the M-type,the real part of χpis also suppressed largely but less than the W-type,however the imaginary part is suppressed almost to zero.The six-level zigzag configuration is the W-type spreading out one“l(fā)eg” to an extra ground state,and the seven-level zigzag configuration is the six-level configuration spreading out one more“l(fā)eg” to a ground state on the other side.Compared to the W-type,the real part of χpof six-level configuration is strongly suppressed,but that of seven-level is strongly enlarged.On the contrary,the imaginary part of χpof six-level configuration is strongly enlarged,and that of seven-level is strongly suppressed.We leave the detailed and systematic study of the correlation between the atom configuration and probe susceptibility to the future work.

    5 Conclusions

    In this paper,we show the result that under the setting of sinusoidal spatial distribution of coupling field detunings,the pseudo-PT-antisymmetry,i.e.δn(z)=?δn?(?z),the complex refractive index antisymmetry along propagation direction of 1D atomic lattices,can be universally induced on the 1D atomic lattices of any configuration.

    We find that the reason for the uniform inducement of pseudo-PT-antisymmetry is rooted in the quantummechanical nature of atom- field interaction,which can be derived directly from the general form of master equation under weak probe field approximation.

    Forfutureinterestoftheuniversalpseudo-PT-antisymmetry,we also point out that when being cast back to quantum-mechanical side,δn(z)= ?δn?(?z)corresponds to V(x,t)= ?V?(x,?t),the conjugate timereversal antisymmetry of complex potential V(x,t)in 1D Schr?dinger equation.

    In conclusion,the universal inducement of pseudo-PT-antisymmetry is a novel observation.It expands our understanding of the origin of optical response of atomic lattices,provides more reliable and variable method in designing atomic optical lattices,and o ff ers more flexibility and stability to the optical features of atomic lattices.

    Acknowledgements

    X.Wang would like to thank Jilin University and Center for Quantum Sciences of Northeast Normal University,where this work was first started.

    猜你喜歡
    王欣
    Turing/Turing-like patterns: Products of random aggregation of spatial components
    Photonic-plasmonic hybrid microcavities: Physics and applications*
    黑洞
    太空探索(2021年2期)2021-02-27 07:59:34
    風(fēng)
    小保安晉身“都教授”有多難?
    小保安晉身“都教授”有多難?
    小保安晉身“都教授”有多難?
    Analysis of Means of Strength in "Letter From a Birmingham Jail"
    還我腎來,我才同意和你離婚
    女性天地(2009年8期)2009-11-23 06:19:50
    捐腎,索腎,這對“血脈相連”的夫妻怎么了
    精品卡一卡二卡四卡免费| 人妻少妇偷人精品九色| 香蕉精品网在线| 久热这里只有精品99| 色网站视频免费| 国产一区二区在线观看日韩| 偷拍熟女少妇极品色| 在线 av 中文字幕| 日韩电影二区| 亚洲精品亚洲一区二区| 亚洲自偷自拍三级| 国精品久久久久久国模美| 国产精品国产三级国产专区5o| av专区在线播放| 亚洲第一区二区三区不卡| 精品久久久久久电影网| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃 | 成人二区视频| 国产探花极品一区二区| 2022亚洲国产成人精品| 免费大片18禁| 亚洲av不卡在线观看| 亚洲国产精品999| 一级,二级,三级黄色视频| 亚洲内射少妇av| 老司机影院成人| 又黄又爽又刺激的免费视频.| 国产男女超爽视频在线观看| 视频区图区小说| 亚洲精品久久午夜乱码| 亚洲人成网站在线播| 免费大片黄手机在线观看| 国产真实伦视频高清在线观看| 国产亚洲最大av| 亚洲精品国产av成人精品| 久久久午夜欧美精品| 精品午夜福利在线看| 亚洲综合精品二区| 国产色婷婷99| 国产黄色免费在线视频| 天堂8中文在线网| 性色av一级| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| 黑人猛操日本美女一级片| a 毛片基地| 日韩电影二区| 亚洲精品,欧美精品| 国产亚洲91精品色在线| 婷婷色综合www| 极品少妇高潮喷水抽搐| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片| 一二三四中文在线观看免费高清| 97在线人人人人妻| 男女免费视频国产| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 少妇被粗大的猛进出69影院 | 99久久精品一区二区三区| 我的老师免费观看完整版| 国产一区亚洲一区在线观看| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区 | 极品教师在线视频| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| 亚洲综合精品二区| 99久久精品一区二区三区| 久久免费观看电影| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 丝袜喷水一区| 熟女人妻精品中文字幕| 搡老乐熟女国产| av国产精品久久久久影院| videossex国产| 建设人人有责人人尽责人人享有的| 人人妻人人看人人澡| 亚洲av中文av极速乱| 国产日韩一区二区三区精品不卡 | 欧美精品亚洲一区二区| 亚洲久久久国产精品| 美女主播在线视频| 一本大道久久a久久精品| 老女人水多毛片| 色网站视频免费| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 免费高清在线观看视频在线观看| 美女内射精品一级片tv| 久久久a久久爽久久v久久| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 久热久热在线精品观看| 黄色一级大片看看| 日本vs欧美在线观看视频 | 男人舔奶头视频| 国产日韩一区二区三区精品不卡 | 国产日韩欧美在线精品| 最新的欧美精品一区二区| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 中国三级夫妇交换| 在线免费观看不下载黄p国产| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 免费观看的影片在线观看| 免费少妇av软件| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 精品一区二区免费观看| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| 99热国产这里只有精品6| 嫩草影院入口| 欧美变态另类bdsm刘玥| 精品国产一区二区久久| 乱系列少妇在线播放| 久久亚洲国产成人精品v| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 日日啪夜夜爽| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 国产成人午夜福利电影在线观看| 国产一区二区在线观看av| 春色校园在线视频观看| 中文资源天堂在线| 亚洲伊人久久精品综合| 久久久久精品性色| 性高湖久久久久久久久免费观看| 国国产精品蜜臀av免费| 久热久热在线精品观看| 成人毛片60女人毛片免费| av一本久久久久| 亚洲精品456在线播放app| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 久久精品久久久久久久性| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 国产黄片美女视频| 免费av中文字幕在线| 亚洲av综合色区一区| av专区在线播放| 亚洲无线观看免费| 亚洲性久久影院| 日韩欧美一区视频在线观看 | www.色视频.com| 久久青草综合色| 丰满少妇做爰视频| 免费看av在线观看网站| 亚洲国产色片| 国产精品久久久久久久久免| 老女人水多毛片| 内射极品少妇av片p| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 国产成人免费无遮挡视频| 亚洲精品456在线播放app| 熟女av电影| 亚洲精品自拍成人| 色哟哟·www| 大香蕉97超碰在线| 久久久a久久爽久久v久久| av天堂中文字幕网| 精华霜和精华液先用哪个| 免费大片18禁| 国产一级毛片在线| 国产成人一区二区在线| 一区二区三区精品91| 日韩成人av中文字幕在线观看| 97在线人人人人妻| av播播在线观看一区| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 桃花免费在线播放| 另类精品久久| 免费观看av网站的网址| 亚洲,一卡二卡三卡| tube8黄色片| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 女性生殖器流出的白浆| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 久久av网站| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 男男h啪啪无遮挡| 免费人成在线观看视频色| 如日韩欧美国产精品一区二区三区 | 亚洲高清免费不卡视频| 中国美白少妇内射xxxbb| 日本vs欧美在线观看视频 | 日本午夜av视频| 国产精品久久久久成人av| 在线精品无人区一区二区三| 日韩av免费高清视频| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| 亚洲精华国产精华液的使用体验| 欧美精品国产亚洲| 久久精品国产a三级三级三级| 精品熟女少妇av免费看| 少妇的逼好多水| 欧美丝袜亚洲另类| 欧美区成人在线视频| 少妇人妻 视频| 乱系列少妇在线播放| .国产精品久久| 亚洲精品国产成人久久av| av黄色大香蕉| 3wmmmm亚洲av在线观看| 丰满饥渴人妻一区二区三| 亚洲av二区三区四区| 日韩强制内射视频| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 韩国高清视频一区二区三区| 日韩欧美 国产精品| 免费观看无遮挡的男女| 亚洲性久久影院| 午夜激情久久久久久久| av黄色大香蕉| 日本午夜av视频| 欧美精品亚洲一区二区| 免费观看在线日韩| 一级毛片我不卡| 欧美人与善性xxx| 少妇的逼好多水| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕| 国产 精品1| 老司机影院毛片| 久久影院123| 久久久久久久亚洲中文字幕| 国产成人91sexporn| 国产精品久久久久久精品古装| 寂寞人妻少妇视频99o| 高清不卡的av网站| 内射极品少妇av片p| 亚洲欧洲日产国产| 精品视频人人做人人爽| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 男女边摸边吃奶| 人妻人人澡人人爽人人| 久久国产精品大桥未久av | 色网站视频免费| 色视频在线一区二区三区| 亚洲丝袜综合中文字幕| 99久久精品热视频| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 国产精品嫩草影院av在线观看| av有码第一页| av在线播放精品| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 只有这里有精品99| 国产乱来视频区| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 精品一区在线观看国产| 成年女人在线观看亚洲视频| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 午夜日本视频在线| 久久精品夜色国产| 亚洲精品视频女| 成年人午夜在线观看视频| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 国产成人一区二区在线| 免费大片18禁| 在线精品无人区一区二区三| 人人妻人人添人人爽欧美一区卜| 国产又色又爽无遮挡免| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 激情五月婷婷亚洲| 啦啦啦视频在线资源免费观看| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 国产91av在线免费观看| 久久久久精品久久久久真实原创| 中文字幕免费在线视频6| 中文欧美无线码| 免费黄色在线免费观看| 男女免费视频国产| 成年人午夜在线观看视频| 夜夜看夜夜爽夜夜摸| 卡戴珊不雅视频在线播放| 伊人久久精品亚洲午夜| 亚洲色图综合在线观看| 国产在线视频一区二区| 成人毛片a级毛片在线播放| 热re99久久国产66热| 国产精品99久久久久久久久| 9色porny在线观看| 国产毛片在线视频| 欧美日韩视频高清一区二区三区二| 国产伦精品一区二区三区四那| 97超视频在线观看视频| 国产日韩欧美在线精品| 国产国拍精品亚洲av在线观看| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91 | 噜噜噜噜噜久久久久久91| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 青春草视频在线免费观看| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲 | 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 美女主播在线视频| 自线自在国产av| 国产极品粉嫩免费观看在线 | 精品久久久噜噜| 99久久中文字幕三级久久日本| 亚洲国产精品国产精品| 99久久中文字幕三级久久日本| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 精品亚洲成a人片在线观看| 亚洲怡红院男人天堂| 欧美日韩亚洲高清精品| 国产精品无大码| 韩国av在线不卡| 2022亚洲国产成人精品| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 日本黄色片子视频| 美女主播在线视频| av线在线观看网站| 七月丁香在线播放| 极品少妇高潮喷水抽搐| 亚洲精品色激情综合| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 人人妻人人看人人澡| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线 | 国产一区二区在线观看av| 亚洲精品456在线播放app| 欧美日韩视频精品一区| 中文字幕制服av| 又大又黄又爽视频免费| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www | 最新中文字幕久久久久| 高清在线视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱| 观看美女的网站| 欧美激情国产日韩精品一区| 美女福利国产在线| 国产精品久久久久久久电影| 色婷婷久久久亚洲欧美| 男人舔奶头视频| 丰满饥渴人妻一区二区三| 午夜av观看不卡| 美女视频免费永久观看网站| 草草在线视频免费看| 99久久人妻综合| 十分钟在线观看高清视频www | 国产一区二区在线观看av| 中文字幕人妻熟人妻熟丝袜美| 七月丁香在线播放| 成年女人在线观看亚洲视频| 中国国产av一级| 亚洲国产精品999| 嫩草影院新地址| 性高湖久久久久久久久免费观看| 最近手机中文字幕大全| 久久热精品热| 一级av片app| 欧美日韩精品成人综合77777| 九九爱精品视频在线观看| 99热网站在线观看| 亚洲三级黄色毛片| 亚洲国产精品一区三区| 国产一区二区三区综合在线观看 | 青青草视频在线视频观看| 十八禁网站网址无遮挡 | 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 国产极品天堂在线| 91精品国产九色| 99热国产这里只有精品6| 国产乱人偷精品视频| 五月玫瑰六月丁香| 免费看不卡的av| 天堂8中文在线网| 五月开心婷婷网| 一本久久精品| 91午夜精品亚洲一区二区三区| 99热全是精品| 免费播放大片免费观看视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品免费大片| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 午夜福利在线观看免费完整高清在| 乱系列少妇在线播放| 在线观看免费日韩欧美大片 | 三级经典国产精品| 99久国产av精品国产电影| 91久久精品电影网| 亚洲人与动物交配视频| 日本午夜av视频| 又爽又黄a免费视频| 日韩三级伦理在线观看| 97超碰精品成人国产| 人人妻人人添人人爽欧美一区卜| av天堂中文字幕网| 欧美日韩av久久| 亚洲欧美精品专区久久| 亚洲国产精品国产精品| 午夜久久久在线观看| 蜜桃在线观看..| 日本av手机在线免费观看| 亚洲成色77777| 在现免费观看毛片| 国产精品福利在线免费观看| 精品亚洲乱码少妇综合久久| 你懂的网址亚洲精品在线观看| 国内精品宾馆在线| 一区二区三区精品91| 午夜精品国产一区二区电影| 97超视频在线观看视频| 亚洲精品一二三| 亚洲欧美日韩卡通动漫| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 老女人水多毛片| √禁漫天堂资源中文www| 伦精品一区二区三区| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 又大又黄又爽视频免费| 男人添女人高潮全过程视频| 色视频在线一区二区三区| 亚洲成人av在线免费| 国产片特级美女逼逼视频| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 女人精品久久久久毛片| kizo精华| 男男h啪啪无遮挡| 永久免费av网站大全| 欧美3d第一页| 女人精品久久久久毛片| 日韩在线高清观看一区二区三区| 美女内射精品一级片tv| 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 色吧在线观看| 在线播放无遮挡| 好男人视频免费观看在线| 国内少妇人妻偷人精品xxx网站| 丝袜在线中文字幕| 亚洲av福利一区| 色5月婷婷丁香| 能在线免费看毛片的网站| 亚洲激情五月婷婷啪啪| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看| 内射极品少妇av片p| 国产精品女同一区二区软件| 精品国产一区二区三区久久久樱花| 51国产日韩欧美| 日韩中字成人| 久久婷婷青草| 91精品国产国语对白视频| 日韩欧美 国产精品| 国产无遮挡羞羞视频在线观看| 久久久久久伊人网av| 人人妻人人看人人澡| 少妇猛男粗大的猛烈进出视频| 永久免费av网站大全| 久热久热在线精品观看| 自拍欧美九色日韩亚洲蝌蚪91 | 大片免费播放器 马上看| 国内少妇人妻偷人精品xxx网站| 久久久久久久大尺度免费视频| 欧美精品国产亚洲| 久久久久国产网址| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 纯流量卡能插随身wifi吗| 777米奇影视久久| 麻豆成人av视频| 性色avwww在线观看| 久久99精品国语久久久| 观看免费一级毛片| 777米奇影视久久| 伦精品一区二区三区| 中文字幕精品免费在线观看视频 | 交换朋友夫妻互换小说| 国产91av在线免费观看| 免费av中文字幕在线| 成人亚洲精品一区在线观看| 午夜激情福利司机影院| 亚洲怡红院男人天堂| 18+在线观看网站| 99久久综合免费| 亚洲精品自拍成人| av在线app专区| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| 国产乱来视频区| 丰满人妻一区二区三区视频av| 色5月婷婷丁香| 国产亚洲精品久久久com| 亚洲天堂av无毛| videos熟女内射| 国产综合精华液| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 男女边吃奶边做爰视频| 黑丝袜美女国产一区| 久久99热6这里只有精品| 日韩中文字幕视频在线看片| 99国产精品免费福利视频| 久久久久网色| 亚洲美女视频黄频| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 在线观看免费日韩欧美大片 | 成人毛片60女人毛片免费| 久久久久久久国产电影| 国产亚洲最大av| 全区人妻精品视频| 国产精品伦人一区二区| 欧美精品国产亚洲| 国产黄片美女视频| 99热这里只有是精品在线观看| 日韩三级伦理在线观看| 欧美激情极品国产一区二区三区 | 夜夜骑夜夜射夜夜干| 亚洲精品日韩av片在线观看| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 99热这里只有精品一区| 久久99蜜桃精品久久| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 久久久久网色| 亚洲电影在线观看av| 黄色视频在线播放观看不卡| 精品久久久久久电影网| 在线精品无人区一区二区三| 欧美日韩av久久| 桃花免费在线播放| 欧美日本中文国产一区发布| 国产 精品1| 我的女老师完整版在线观看| 亚洲国产日韩一区二区| 国产成人aa在线观看| 十分钟在线观看高清视频www | 亚洲精品国产色婷婷电影| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 激情五月婷婷亚洲| 精品熟女少妇av免费看| 久久久久久人妻| 成人漫画全彩无遮挡| 永久免费av网站大全| 又爽又黄a免费视频| 亚洲精品久久午夜乱码| 亚洲一区二区三区欧美精品| 国产成人精品一,二区| 大片免费播放器 马上看|