• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters

    2018-09-10 01:40:12JIANGDongmeiBOLeZHUTingTAOJunbinYANGXiaoping
    物理化學學報 2018年7期

    JIANG Dongmei, BO Le, ZHU Ting, TAO Junbin, YANG Xiaoping

    College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China.

    Abstract: Heterometallic d-4f nanoclusters are currently of interest due to their potential use in material science and as probes in biology. Self-assembly by metalligand coordination is one of the most efficient processes that organize individual molecular components into nanosized species. However, for lanthanide-based selfassemblies, their stoichiometries and structures are difficult to control during synthesis, because the Ln(III) ions often display high and variable coordination numbers. As a result, the structures of lanthanide complexes are commonly influenced by a variety of factors, such as the type of metal ions, the formation of ligands, and the nature of counter anions. In this article, two Zn-Ln nanoclusters[Ln2Zn2L2(OAc)6] (Ln = Yb (1) and Er (2)) were prepared using a new long Schiff base ligand with a Ph(CH2)Ph backbone. These nanoclusters show interesting rectangular-like structures. The long Schiff base ligand displays a “stretched” configuration and is bound to the metal ions through its N and phenoxide and methoxy O atoms. As a result, large clusters (0.7 nm × 1.1 nm × 2.2 nm for 1) were formed. In the crystal structures of 1 and 2, each Ln3+ ion and its closer Zn2+ ion are linked by one OAc- anion and phenolic oxygen atoms of two long Schiff base ligands,forming a ZnLn unit. Two such ZnLn units are then bridged by two Schiff base ligands to form the nano-rectangular structures. Energy dispersive X-ray spectroscopy (EDX) analyses of the clusters indicate that the molar ratio of Zn : Ln is about 1 : 1, in agreement with their crystal structures. Thermogravimetric analyses show that the clusters lose about 5%of the weight when heated to below 100 °C. Melting point measurements show that the clusters are thermodynamically stable. Upon excitation of the ligand-centered absorption bands, 1 and 2 exhibit the NIR luminescence of Yb3+ and Er3+,respectively. The clusters show two excitation bands from 250 to 500 nm, in agreement with their absorption spectra,confirming that energy transfer occurs from the Zn/L centers to Ln3+ ions. These results indicate that the chromogenic Zn/L components in these nanoclusters can act as efficient sensitizers for lanthanide luminescence. The efficiencies of the energy transfer from Zn/L-centers to Yb3+ is higher than that to Er3+, being 75.71% and 25.00% for 1 and 2, respectively.These results provide new insights into the design of polynuclear nanoclusters with interesting luminescence properties.

    Key Words: Construction; Zn-Ln nanocluster; Schiff base ligand; Structure; Luminescence

    1 Introduction

    Metal nanoclusters have emerged as a new class of nanomaterials and have attracted considerable interest in the recent decade1–5. Heterometallic d-4f nanoclusters are currently of interest due to the remarkable physical and chemical properties associated with this class of materials6,7. Recently,attention has focused on the clusters of Yb(III), Nd(III) and Er(III) with the near-infrared (NIR) emission around 900–1600 nm, which is highly transparent to biological systems and fibre media8. The d-block metal ions introduced into the clusters may conceivably play two different roles in the luminescence properties of Ln3+ions. They may enhance the luminescence via d→4f energy transfer9,10, or they may quench the luminescence via 4f→d energy transfer11,12. For the Zn2+ion, the saturated d10electronic configuration prevents the quenching of lanthanide luminescence through a d-d transition (4f→d energy transfer)13,which favors the use of a light-absorbing Zn(II) chromophore as the sensitizer for lanthanide luminescence.

    Schiff base ligands are classical ligands to synthesize d-4f heteronuclear complexes. Our recent studies have focused on the synthesis of 4f homometallic and d-4f heterometallic clusters with Schiff-base ligands14,15. We have employed essentially two kinds of “salen” style Schiff-base ligands in which one is a rigid conjugated ligand with a phenylene backbone H2La(Scheme 1a),and the other is exemplified by the flexible Schiff-base ligands H2Lb–d(Scheme 1b). In past studies, we discovered that “multidecker” 4f and d-4f complexes with lanthanide ions sandwiched between alternating layers of the rigid Schiff-base ligand Lacould be isolated16,17. When the more flexible Schiff base ligands H2Lb–dwere used in the synthesis, a variety of 4f and d-4f polynuclear complexes (d = Ni2+, Cu2+, Zn2+and Cd2+) were formed18–20. In these polynuclear complexes, the ligands exhibit classical “salen” type of coordination modes with the d-metal ions bound in the N2O2cavities and the 4f-metal ions in the O2O2cavities (Scheme 1a, “bending” configurations). Obviously, the backbone structures of the Schiff base ligands may affect the formation of the polynuclear d-4f complexes. As part of our continuing studies focused on the construction of luminescent polynuclear lanthanide-based frameworks, we report here two Zn-Ln nanocluster [Ln2Zn2L2(OAc)6] (Ln = Yb (1) and Er (2))with a new Schiff base ligand 6,6′-((1E,1′E)-((methylenebis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol) (H2L), which has a Ph(CH2)Ph backbone(Scheme 1b). Differing from most other salen-type Schiff base ligands used in the synthesis of d-4f complexes (i.e., H2La–d,Scheme 1a), H2L has a longer backbones and exhibits a“stretched” coordination mode with metal ions in 1 and 2(Scheme 1b). In a linear configuration the length of H2L is approximately 2.5 nm. This appears to aid in the formation of large metal clusters. For example, 1 and 2 have nanorectangular-like structures with sizes of approximately 0.7 nm × 1.1 nm × 2.2 nm, which are much larger than those lanthanide- based complexes formed by H2La–d16–20. Interestingly, 1 and 2 display the typical emission spectra of lanthanide ions.

    2 Experimental

    2.1 Materials and General Methods

    All reactions were performed under dry oxygen-free dinitrogen atmospheres using standard Schlenk techniques. The Schiff-base ligand H2L was prepared according to wellestablished procedures21. Physical measurements: NMR:AVANCE III AV500. 500 spectrometer (1H, 500 MHz) at 298 K;IR: Nicolet IS10 spectrometer; Powder XRD: D8ADVANCE.Elemental analyses (C, H, N) of compounds were carried out on a EURO EA3000 elemental analysis after dried in an oven at 100 °C for 2 h. Melting points were obtained in sealed glass capillaries under dinitrogen and are uncorrected. The thermogravimetric analyses (TA) were carried out on a TA Instruments Q600. Absorption spectra were obtained on a UV-3600 spectrophotometer, and excitation and emission spectra on a FLS 980 fluorimeter.

    2.2 Preparation of H2L

    Scheme 1 Coordination modes of Schiff base ligands: (a) “bending”configuration (H2La–d); (b) “stretched” configuration (H2L).

    2-Hydroxy-3-methoxybenzaldehyde (20.0 mmol, 3.0430 g)was dissolved in 15 mL EtOH, and a solution of 4,4′-methylenedianiline (10.0 mmol, 1.9826 g) in 20 mL EtOH was then added drop by drop. The resulting solution was stirred and heated under reflux for 2.5 h. It was allowed to cool and was then filtered. The solid was washed with EtOH (3 × 5 mL) and then dried in the air at room temperature to give yellow product. Yield(based on 4,4′-methylenedianiline): 4.5251 g (97%). Elemental analysis: Found: C, 75.64%; H, 6.43%; N, 6.09%; Calc. for C29H26N2O4: C, 74.66%; H, 5.62%; N, 6.00%.1H NMR (500 MHz, CDCl3): 8.63 (2H), 7.24 (8H), 7.00 (4H), 6.88 (2H), 3.94(6H), 1.55 (2H). IR (CH3CN, cm-1): 2972(w), 1598 (m), 1470(m), 1260 (s), 1200 (m), 1082 (s), 974 (s), 791 (m), 731(s).

    2.3 Preparation of [Yb2Zn2L2(OAc)6] (1)

    Zn(OAc)2·2H2O (0.30 mmol, 0.0659 g), Yb(OAc)3·4H2O(0.30 mmol, 0.1267 g) and H2L (0.40 mmol, 0.1866 g) were dissolved in 50 mL MeOH at room temperature, and a solution of triethylamine in MeOH (7.19 mol·L-1, 1 mL) was then added.The resulting solution was stirred and heated under reflux for 30 min. It was allowed to cool and was then filtered. Diethyl ether was allowed to diffuse slowly into the filtrate at room temperature and pale yellow crystals were obtained after one week. The crystals were filtered off, washed with MeOH (5 mL)and dried in the air for one week. Yield (based on Yb(OAc)3·4H2O): 0.1031 g (35%). m. p. > 187.6 °C (dec.).Elemental analysis: Found: C, 44.21%; H, 4.83%; N, 3.20%.Calc. for C70H66Zn2N4Yb2O20·3MeOH·6H2O: C, 44.63%; H,4.62%; N, 2.85%. IR (CH3CN, cm-1): 1652 (s), 1594 (s), 1438(s), 1232 (s), 1192 (s), 1070 (w), 970 (s), 854 (m), 736 (s), 668(s).

    2.4 Preparation of [Er2Zn2L2(OAc)6] (2)

    The procedure was the same as that for 1 using Zn(OAc)2·2H2O (0.35 mmol, 0.0768 g), Er(OAc)3·4H2O (0.35 mmol, 0.1458 g) and H2L (0.45 mmol, 0.2099 g). Pale yellow single crystals of 2 were formed after one week. Yield (based on Er(OAc)3·4H2O): 0.1264 g (37%). m. p. > 188.5 °C (dec.).Elemental analysis: Found: C, 43.67%; H, 4.89%; N, 3.02%.Calc. For C70H66Zn2N4Er2O20·3MeOH·6H2O: C, 44.90%; H,4.65%; N, 2.87%. IR (CH3CN, cm-1): 1652 (s), 1596 (w), 1390(s), 1228 (s), 1188 (s), 968 (m), 854 (s), 736 (s).

    2.5 Photophysical Studies

    The UV-visible absorption spectra were recorded at RT using an UV-3600 spectrophotometer. The solvent employed was of HPLC grade. The wavelength range was set from 200 to 600 nm.Luminescence spectra in the visible and NIR regions were recorded on a FLS 980 fluorimeter. The light source for excitation and emission spectra was a 450 W xenon arc lamp with continuous spectral distribution from 190 to 2600 nm.Liquid nitrogen cooled Ge PIN diode detector was used to detect the NIR emissions from 800 to 1700 nm. The temporal decay curves of the fluorescence signals were stored by using the attached storage digital oscilloscope. The overall quantum yields(Φem) were obtained by using an integrating sphere, according to eqn Φem= Nem/Nabs, where Nemand Nabsare the numbers of emitted and absorbed photons, respectively. Besides, systematic errors have been deducted through the standard instrument corrections. All the measurements were carried out at room temperature.

    2.6 Crystallography

    Data were collected on a Smart APEX CCD diffractometer with graphite monochromated Mo-Kαradiation (λ = 0.071073 nm) at 190 K. The data set was corrected for absorption based on multiple scans and reduced using standard methods. Data reduction was performed using DENZO-SMN. The structures were solved by direct methods and refined anisotropically using full-matrix least-squares methods with the SHELX 97 program package. Coordinates of the non-hydrogen atoms were refined anisotropically, while hydrogen atoms were included in the calculation isotropically but not refined. Neutral atom scattering factors were taken from Cromer and Waber. Crystallographic data for 1 and 2 have been deposited with the Cambridge Crystallographic Data (CCDC reference numbers 1590241 and 1590242). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. Selected bond lengths and angles of 1 and 2 are given in Tables S1 and S2 (Supporting Information).

    1: C70H66Zn2N4Yb2O20, monoclinic, space group P2(1)/n, a =19.0913(18) nm, b = 20.7436(19) nm, c = 2.2387(2) nm, α = 90°,β = 100.947(2)°, γ = 90°, V = 8.7043(14) nm3, Z = 4, Dc= 1.447 g cm-3, μ(Mo-Kα) = 2.745 mm-1, F(000) = 3788, T = 190 K. R1= 0.0681, wR2= 0.1958 for 13750 independent reflections with a goodness-of-fit of 1.039.

    2: C70H66Zn2N4Er2O20, monoclinic, space group P2(1)/n, a =18.900(4) nm, b = 20.622(4) nm, c = 2.2531(4) nm, α = 90°, β =100.983(2)°, γ = 90°, V = 8.620(3) nm3, Z = 4, Dc= 1.464 g cm-3,μ(Mo-Kα) = 2.550 mm-1, F(000) = 3808, T = 190 K. R1=0.1056, wR2 = 0.2618 for 15087 independent reflections with a goodness-of-fit of 1.111.

    3 Results and discussion

    3.1 Preparation and crystal structures of the nanoclusters

    Fig. 1 Two views of the square-like structure of 1: viewed along the ac-axis (top) and b-axis (lower).Yb3+: blue; Zn2+: green. Color online.

    The new Schiff base ligand H2L was synthesized from the reaction of 2-Hydroxy-3-methoxybenzaldehyde with 4,4′-methylenedianiline in refluxing ethanol with yields of 97%21.The1H NMR spectrum of H2L show signals for imino protons(―CH=N―) at 8.63 (Fig. S1 in the Supporting Information),while the signal for the aldehyde proton (Ar-CHO) of the reactant at 10.0 disappears. In the presence of Et3N, reactions of H2L with Zn(OAc)2·2H2O and Ln(OAc)3·4H2O in refluxing methanol produced yellow solutions from which isomorphous 1 and 2 were isolated as pale yellow crystalline solids. The IR spectra of 1 and 2 show one absorption band of C=N stretching at 1652 cm-1, which blue shifts as compared to that of the free Schiff base ligand (1598 cm-1for H2L, Fig. S2 (Supporting Information)). Two views of the crystal structure of 1 are shown in Fig. 1. Each Yb3+ion and its closer Zn2+ion are linked by one OAc-anion and phenolic oxygen atoms of two L ligands with an average separation of 0.3406 nm, forming a ZnYb unit. Two such ZnYb units are bridged together by two long Schiff base ligands, forming a nano-rectangular structure of 1 (Fig. 1). The metric dimensions of 1 measure approximately 0.7 nm × 1.1 nm× 2.2 nm. In 1, both Yb3+ions have similar coordination environment. They have nine-coordinate deformed three prism geometries, surrounded by nine oxygen atoms from two L ligands and three OAc-anions. Two Zn2+ions show square pyramidal geometries, coordinated with three oxygen and two nitrogen atoms from two L ligands and one OAc-anion. The Schiff base ligands exhibit “stretched” coordination modes,bound to the metal ions through their N and phenoxide and methoxy O atoms. For the OAc-anions, four bind to two Yb3+ions (μ2-bridging modes), and two bind to one Yb3+and one Zn2+ions (μ2-bridging mode). For 1 and 2, the Zn―O and Zn―N bond lengths range from 0.1978 to 0.2094 nm and 0.2054 to 0.2097 nm, respectively. While, the Yb―O and Er―O bond lengths range from 0.2283 to 0.2610 nm and 0.2272 to 0.2596 nm, respectively.

    A panoramic scanning electron microscopy (SEM) image shows the crystalline nature of 1 (Fig. 2a). Energy dispersive X-ray spectroscopy (EDX) analysis of 1 indicates that the molar ratio of Zn : Yb is about 1 : 1, in agreement with the crystal structure (Fig. 2b). The powder XRD patterns of 1 and 2 show large background peaks (Fig. S3 (Supporting Information)),indicating that they are predominantly amorphous. This may be due to the fact that the uncoordinated solvent molecules in 1 and 2 can easily escape from the structures of clusters, and the crystalline products become amorphous. Thermogravimetric analyses show that on heating 1 and 2 undergo weight losses of about 5%–8% before 100 °C (Fig. S4), assigned to the loss of uncoordinated solvent molecules such as MeOH and H2O.Melting point measurements show that 1 and 2 are thermodynamically stable, starting to decompose from 187.6 and 188.5 °C, respectively (Supporting Information).

    3.2 Photophysical properties of the nanoclusters

    Fig. 3 UV-Vis spectra of the free H2L and clusters 1 and 2 in CH3CN.

    Fig. 4 Excitation and emission spectra of the free ligand H2L.

    Fig. 2 SEM image (a) and EDX spectrum (b) of 1.

    The photophysical properties of 1 and 2 were studied in CH3CN solution and the solid state. The free ligand H2L exhibits absorption bands at 230, 275 and 323 nm which are red-shifted upon co-ordination to metal ions in the clusters (Fig. 3). For the free ligand H2L, excitations at the absorption wavelengths produce broad emission bands at 515 nm (Fig. 4). Upon excitation of the ligand-centered absorption bands, 1 and 2 exhibit the NIR luminescence of Yb3+(2F5/2→2F7/2transition)and Er3+(4I13/2→4I15/2transition), respectively (Figs. 5 and 6). 1 and 2 show two excitation bands from 250 to 500 nm (i.e., λex=302, 421 nm for 1), in agreement with their absorption spectra,confirming that the energy transfers from the Zn/L centers to Ln3+ions occur. These results indicate that the Zn/L centers can act as efficient sensitizers for Ln(III) ions in 1 and 2 (Scheme 2).For each Zn-Ln cluster, the luminescence spectrum in the solid state is similar to that in the solution. The excitation and emission wavelengths (λexand λem), quantum yields (Φem), emission lifetimes (τ) and energy transfer efficiencies (ηsens) of H2L and 1–2 in solution are given in Table 1.

    Fig. 5 Excitation and NIR emission spectra of 1 in CH3CN.

    Fig. 6 Excitation and NIR emission spectra of 2 in CH3CN.

    Scheme 2 Relevant energy levels in 1–6.Those marked with * can act as energy acceptors by either F?rster or Dexter mechanism 25.

    Table 1 The excitation and emission wavelengths, quantum yields(Φem), emission lifetimes (τ) and energy transfer efficiencies (ηsens) of H2L and 1–2 in solution.

    Fig. 7 NIR emission lifetime of 1 in CH3CN.

    As shown in Figs. 5 and 6, 1 and 2 exhibit NIR emission bands of Yb3+and Er3+at 978 and 1532 nm, respectively. The emission lifetimes (τ) of 1 and 2 in CH3CN are 14.05 and 6.05 μs,respectively (Figs. 7 and S5 (Supporting Information)). The intrinsic quantum yields (ΦLn) of Yb3+and Er3+emissions in 1 and 2 are calculated as 0.70% and 0.04%, respectively, using ΦLn= τ/τ0(τ0= 2000 μs22and 14000 μs23for the natural lifetimes of Yb3+and Er3+, respectively). The overall emission quantum yields (Φem) of 1 and 2 are 0.53% and 0.01%, respectively. Thus,the efficiencies (ηsens) of the energy transfer from Zn/L-centers to Yb3+and Er3+in 1 and 2 are calculated as 75.71% and 25.00%,respectively, using ηsens= Φem/ΦLn24, indicating that the Zn/L center in 1 shows higher energy transfer efficiency than that in 2. This difference may be due to the fact that 1 and 2 can show different energy transfer mechanisms from the Zn/L-centers to Ln3+ions. As shown in Scheme 2, compared with Er3+ion, the Yb3+ion has only a single excited state2F5/2at 10200 cm-1which is much lower than those of Zn/L center. The energy-transfer process in 1 may perhaps be described as electron transfer mechanism and/or phonon-assisted energy-transfer mechanisms26,27.The former mechanism is based on the fact that among the lanthanides, Yb(III) does not possess a very negative reduction potential (-1.05 V vs the NHE) and can be transiently reduced to Yb(II) when the sensitizer acts as electron donor in its excited state.

    4 Conclusions

    In summary, we describe the successful synthesis of two Zn-Ln (Ln = Yb and Er) rectangular clusters from a Schiff base ligand featuring a Ph(CH2)Ph backbone. The long Schiff base ligand displays a “l(fā)inear” configuration in these clusters,resulting in the formation of molecules with nanoparticle like dimensions (0.7 nm × 1.1 nm × 2.2 nm). The Zn/L chromophores of the clusters can sensitize the lanthanide luminescence following Zn/L-center→4f energy transfer. 1 and 2 exhibit interesting NIR luminescence properties. The study of luminescence properties shows that the Zn-Yb cluster 1 has higher energy transfer efficiency than the Zn-Er cluster 2.Further studies focused on the construction of luminescent d-f nanoclusters with higher nuclearity are in progress.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 色网站视频免费| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| a 毛片基地| 亚洲精品国产av蜜桃| 女的被弄到高潮叫床怎么办| 成人美女网站在线观看视频| 日韩欧美一区视频在线观看 | 欧美xxⅹ黑人| 亚洲精品乱久久久久久| 国产精品嫩草影院av在线观看| 国产深夜福利视频在线观看| 女人久久www免费人成看片| 国产黄频视频在线观看| 国产综合精华液| 最近的中文字幕免费完整| 亚洲av成人精品一区久久| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 久久青草综合色| 少妇熟女欧美另类| 欧美变态另类bdsm刘玥| 久久久午夜欧美精品| 高清av免费在线| 国产精品熟女久久久久浪| 新久久久久国产一级毛片| 国产在线视频一区二区| 国产一区二区在线观看日韩| 高清不卡的av网站| 老熟女久久久| 插逼视频在线观看| 日韩中文字幕视频在线看片 | 亚洲av欧美aⅴ国产| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 亚洲国产精品国产精品| 日本免费在线观看一区| 国产精品人妻久久久影院| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 精品国产一区二区三区久久久樱花 | 免费观看a级毛片全部| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 赤兔流量卡办理| 边亲边吃奶的免费视频| 男女国产视频网站| 欧美3d第一页| 成人免费观看视频高清| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲最大成人中文| 在线观看一区二区三区| 午夜老司机福利剧场| 99久久人妻综合| 网址你懂的国产日韩在线| 草草在线视频免费看| 91在线精品国自产拍蜜月| 亚洲精品中文字幕在线视频 | 国产av精品麻豆| 亚洲怡红院男人天堂| 免费观看无遮挡的男女| 极品少妇高潮喷水抽搐| 精品国产一区二区三区久久久樱花 | 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 黑丝袜美女国产一区| 久久99热这里只有精品18| 亚洲高清免费不卡视频| 在线观看一区二区三区激情| 久久精品人妻少妇| 视频中文字幕在线观看| 99久久人妻综合| 熟女电影av网| 国产精品欧美亚洲77777| 亚洲欧美日韩另类电影网站 | 啦啦啦在线观看免费高清www| av不卡在线播放| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 大香蕉久久网| 亚州av有码| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 欧美三级亚洲精品| 成人特级av手机在线观看| 午夜激情福利司机影院| 久久久久久久久久久免费av| 日本vs欧美在线观看视频 | 欧美97在线视频| 纵有疾风起免费观看全集完整版| 欧美性感艳星| videos熟女内射| 在线天堂最新版资源| 色吧在线观看| 少妇 在线观看| 熟女av电影| 亚洲欧美日韩无卡精品| 高清欧美精品videossex| 美女中出高潮动态图| 日韩av在线免费看完整版不卡| a级毛片免费高清观看在线播放| 99热6这里只有精品| 国产精品一区二区性色av| 亚洲精品亚洲一区二区| 国产精品福利在线免费观看| 十分钟在线观看高清视频www | 十分钟在线观看高清视频www | 啦啦啦啦在线视频资源| 成人高潮视频无遮挡免费网站| 99热国产这里只有精品6| 嫩草影院入口| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 久久99热这里只频精品6学生| 特大巨黑吊av在线直播| 制服丝袜香蕉在线| 超碰av人人做人人爽久久| 欧美 日韩 精品 国产| 成人免费观看视频高清| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 国产精品一区二区三区四区免费观看| 大码成人一级视频| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 精品国产三级普通话版| 下体分泌物呈黄色| 国产一区二区三区综合在线观看 | 精品一品国产午夜福利视频| 亚洲成人中文字幕在线播放| 热99国产精品久久久久久7| 久久久欧美国产精品| 日本av免费视频播放| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 国产av码专区亚洲av| 高清av免费在线| 国产69精品久久久久777片| 国产成人精品福利久久| 国产亚洲欧美精品永久| 秋霞在线观看毛片| 老司机影院毛片| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 亚洲中文av在线| 中国三级夫妇交换| 干丝袜人妻中文字幕| 看十八女毛片水多多多| 亚洲国产欧美人成| 九九爱精品视频在线观看| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 久久久久久人妻| 亚洲国产精品999| 亚洲欧美日韩无卡精品| 亚洲精品日本国产第一区| 欧美高清成人免费视频www| 免费观看a级毛片全部| 亚洲va在线va天堂va国产| 一级毛片aaaaaa免费看小| 国产精品偷伦视频观看了| 啦啦啦视频在线资源免费观看| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 高清不卡的av网站| 成人午夜精彩视频在线观看| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 97在线视频观看| 如何舔出高潮| 成人毛片a级毛片在线播放| 国产综合精华液| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 亚洲va在线va天堂va国产| 蜜桃在线观看..| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 国产乱人视频| 能在线免费看毛片的网站| av专区在线播放| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 国产精品久久久久久久电影| 日本av手机在线免费观看| 亚洲av成人精品一区久久| 91aial.com中文字幕在线观看| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 午夜激情久久久久久久| 内地一区二区视频在线| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 久久久久性生活片| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜| 亚洲内射少妇av| 极品教师在线视频| 亚洲一区二区三区欧美精品| 男人和女人高潮做爰伦理| 国产在线视频一区二区| 九色成人免费人妻av| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 精品久久久精品久久久| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| tube8黄色片| 欧美精品人与动牲交sv欧美| 男女国产视频网站| 色视频www国产| 熟女电影av网| 人人妻人人添人人爽欧美一区卜 | 国产精品av视频在线免费观看| 丝袜脚勾引网站| 看免费成人av毛片| 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 国产 一区精品| 99久久精品国产国产毛片| 欧美人与善性xxx| 国产男人的电影天堂91| 99久久人妻综合| 日本与韩国留学比较| 免费观看的影片在线观看| 高清视频免费观看一区二区| av一本久久久久| 久久精品国产a三级三级三级| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线| 中国国产av一级| 老女人水多毛片| 亚洲国产精品成人久久小说| 黄色日韩在线| 天美传媒精品一区二区| 精品一区二区三卡| 高清日韩中文字幕在线| 亚洲人成网站在线播| 久久久亚洲精品成人影院| 亚洲va在线va天堂va国产| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 日韩av不卡免费在线播放| videossex国产| 蜜桃在线观看..| 亚洲av.av天堂| 亚洲成人一二三区av| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 麻豆成人av视频| 亚州av有码| 精品99又大又爽又粗少妇毛片| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 看免费成人av毛片| 噜噜噜噜噜久久久久久91| av黄色大香蕉| 久久国产乱子免费精品| 亚洲欧美日韩另类电影网站 | 国产免费视频播放在线视频| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 亚洲成人一二三区av| 91久久精品电影网| 国产精品熟女久久久久浪| 国产精品.久久久| 久久影院123| 国产一区有黄有色的免费视频| 欧美bdsm另类| 久久精品久久久久久久性| 日本黄大片高清| 91精品国产国语对白视频| 久久久精品免费免费高清| 最近最新中文字幕免费大全7| 欧美日韩亚洲高清精品| 免费人妻精品一区二区三区视频| a 毛片基地| 精品国产露脸久久av麻豆| 一区二区三区四区激情视频| 久久av网站| 有码 亚洲区| 日日啪夜夜爽| 日韩中字成人| 国产视频内射| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频 | 国产片特级美女逼逼视频| 国产黄片美女视频| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 欧美一区二区亚洲| 国产在线男女| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 少妇人妻 视频| 天堂俺去俺来也www色官网| 成年美女黄网站色视频大全免费 | 久久久久久久精品精品| 日韩成人伦理影院| 久久人人爽av亚洲精品天堂 | 亚洲色图综合在线观看| 国产成人一区二区在线| 国产综合精华液| 久久毛片免费看一区二区三区| 亚洲av男天堂| 97在线人人人人妻| 一区二区av电影网| 中文字幕制服av| 亚洲av国产av综合av卡| 亚洲精品第二区| 国产精品一区二区在线观看99| 偷拍熟女少妇极品色| 亚洲精华国产精华液的使用体验| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久精品古装| 91午夜精品亚洲一区二区三区| 老司机影院成人| 在线天堂最新版资源| 大片免费播放器 马上看| 国产探花极品一区二区| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 尤物成人国产欧美一区二区三区| 一区二区av电影网| 直男gayav资源| 在线观看一区二区三区| 99热这里只有精品一区| 成人国产麻豆网| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 久久久久久久久久人人人人人人| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 亚洲精品,欧美精品| a级毛片免费高清观看在线播放| 色婷婷久久久亚洲欧美| 国产成人午夜福利电影在线观看| 22中文网久久字幕| 精品久久久久久电影网| 久久 成人 亚洲| 天天躁日日操中文字幕| 精品一区二区三卡| 国产成人免费观看mmmm| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看| 尾随美女入室| 国产精品av视频在线免费观看| 春色校园在线视频观看| 纯流量卡能插随身wifi吗| 久久精品人妻少妇| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 黄片无遮挡物在线观看| av在线播放精品| 国产日韩欧美亚洲二区| 欧美区成人在线视频| 精品午夜福利在线看| 青春草国产在线视频| av福利片在线观看| 搡老乐熟女国产| av线在线观看网站| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 国产精品.久久久| 成人特级av手机在线观看| av黄色大香蕉| 国产一区二区三区av在线| 亚洲精品日本国产第一区| 少妇高潮的动态图| 国产精品免费大片| 黄色欧美视频在线观看| 午夜激情久久久久久久| 小蜜桃在线观看免费完整版高清| 亚洲国产精品一区三区| 亚洲欧美日韩东京热| 免费观看性生交大片5| 最近手机中文字幕大全| 亚洲成人av在线免费| 亚洲高清免费不卡视频| 全区人妻精品视频| 亚洲四区av| 欧美xxⅹ黑人| 水蜜桃什么品种好| 免费人妻精品一区二区三区视频| 国产精品久久久久久久久免| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一二三区| 蜜桃久久精品国产亚洲av| www.色视频.com| 老女人水多毛片| 日韩av免费高清视频| 成年女人在线观看亚洲视频| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 国产成人免费无遮挡视频| 夫妻性生交免费视频一级片| av不卡在线播放| 亚洲精品aⅴ在线观看| 日韩av不卡免费在线播放| 免费黄色在线免费观看| 少妇人妻一区二区三区视频| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品电影网| 亚洲av综合色区一区| 26uuu在线亚洲综合色| 亚洲美女搞黄在线观看| 国产精品一及| 中文字幕久久专区| 在线观看国产h片| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 性色av一级| 一区在线观看完整版| 亚洲精品一区蜜桃| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 视频中文字幕在线观看| 女人久久www免费人成看片| 欧美xxxx黑人xx丫x性爽| av在线蜜桃| 国产精品一区www在线观看| 日本黄大片高清| 狂野欧美激情性bbbbbb| 日本午夜av视频| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 97超碰精品成人国产| 亚洲,一卡二卡三卡| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 国产 一区精品| 国产深夜福利视频在线观看| 亚洲国产精品专区欧美| a级一级毛片免费在线观看| 天美传媒精品一区二区| 国产精品久久久久久久电影| 99热全是精品| 日本wwww免费看| 男女无遮挡免费网站观看| 搡老乐熟女国产| 五月开心婷婷网| 日韩亚洲欧美综合| 国产一区二区三区av在线| 日日啪夜夜爽| 亚洲欧洲日产国产| 日韩在线高清观看一区二区三区| 18禁在线无遮挡免费观看视频| 国产女主播在线喷水免费视频网站| 国产成人aa在线观看| 国产精品无大码| 99久久人妻综合| 亚洲欧洲日产国产| 精品酒店卫生间| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 内地一区二区视频在线| 精品久久国产蜜桃| 国产在线视频一区二区| 日本欧美国产在线视频| 自拍偷自拍亚洲精品老妇| 九九爱精品视频在线观看| 日韩av免费高清视频| 久久精品国产亚洲av涩爱| 插阴视频在线观看视频| 久久99精品国语久久久| 涩涩av久久男人的天堂| 舔av片在线| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 精品一区二区三卡| 91在线精品国自产拍蜜月| 成年美女黄网站色视频大全免费 | 国产美女午夜福利| 黄片wwwwww| 美女中出高潮动态图| 黄色怎么调成土黄色| av.在线天堂| 午夜激情福利司机影院| 精品一区二区免费观看| 午夜视频国产福利| 美女内射精品一级片tv| 国产永久视频网站| 中文字幕亚洲精品专区| 国产精品免费大片| 看十八女毛片水多多多| 97精品久久久久久久久久精品| 久久精品国产自在天天线| 日韩电影二区| 久久国产亚洲av麻豆专区| 男的添女的下面高潮视频| 纯流量卡能插随身wifi吗| 国产亚洲欧美精品永久| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久亚洲| 国产成人精品一,二区| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 久久久久性生活片| 色吧在线观看| 在线精品无人区一区二区三 | 欧美日韩视频精品一区| 国产色婷婷99| 亚洲色图综合在线观看| 久久久久久九九精品二区国产| 99热这里只有精品一区| 男女国产视频网站| 欧美区成人在线视频| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 日本一二三区视频观看| 成人黄色视频免费在线看| 久久久久久久亚洲中文字幕| 观看美女的网站| 久久人妻熟女aⅴ| 91精品国产九色| 亚洲内射少妇av| 一个人看的www免费观看视频| 熟女人妻精品中文字幕| 亚洲国产精品专区欧美| 91狼人影院| 一区二区三区乱码不卡18| 蜜臀久久99精品久久宅男| 观看免费一级毛片| 久久久久久久精品精品| 91久久精品电影网| 国产在线一区二区三区精| 国产视频首页在线观看| 99精国产麻豆久久婷婷| 建设人人有责人人尽责人人享有的 | 久久午夜福利片| 亚洲精品,欧美精品| 国产成人精品一,二区| 女人十人毛片免费观看3o分钟| 成人毛片a级毛片在线播放| 国产深夜福利视频在线观看| 青春草亚洲视频在线观看| 欧美xxⅹ黑人| 99热这里只有精品一区| 久久久久人妻精品一区果冻| 全区人妻精品视频| 极品教师在线视频| a级毛片免费高清观看在线播放| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 国产亚洲午夜精品一区二区久久| 老司机影院毛片| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 最近中文字幕2019免费版| 成年免费大片在线观看| xxx大片免费视频| h日本视频在线播放| 国产精品一二三区在线看| 一级片'在线观看视频| 五月开心婷婷网| 国产视频内射| 日韩av免费高清视频| 大陆偷拍与自拍| 热re99久久精品国产66热6| 日韩av免费高清视频| 成人亚洲欧美一区二区av| 美女高潮的动态| 精品久久国产蜜桃| 全区人妻精品视频| 久久久久久久国产电影| 亚洲av电影在线观看一区二区三区| 人妻夜夜爽99麻豆av| 欧美成人午夜免费资源| 天堂8中文在线网| 中文字幕av成人在线电影|