• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRETEnhanced Photodynamic Activity under Visible Light Irradiation

    2018-09-10 01:40:10TOMINAGAChiakiHIKOSOUDailoOSAKAIsseyKAWASAKHideya
    物理化學(xué)學(xué)報 2018年7期

    TOMINAGA Chiaki , HIKOSOU Dailo , OSAKA Issey , KAWASAK Hideya ,*

    1 Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University,Suita-shi, Osaka 564-8680, Japan.

    2 Center for Nano Materials and Technology, Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi-shi, Ishikawa 923-1292, Japan.

    Abstract: Singlet oxygen (1O2) plays an important role in various applications, such as in the photodynamic therapy (PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters (NCs) have been utilized as photosensitizers for the generation of highly reactive 1O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability (i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6 (MBISA = 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1O2 generation ability under the irradiation of white light emitting diodes (LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters (Agn(SR)m) for efficient 1O2 generation under visible light irradiation. The 1O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin (BSA)-Au25 NCs, BSA-Ag8 NCs, BSA-Ag14 NCs, Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs, and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 >BSA-Au25 >> BSA-Ag8 (not detected) and Ag25(DHLA)14 (not detected). For further improving the 1O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer (FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine (QC) (molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process, from QC to Ag7(MBISA)6 NCs, occurring in the conjugate. That is, the QC works as a donor chromophore, while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.

    Key Words: Silver nanoclusters; Singlet oxygen; Photodynamic therapy; Organic dyes; FRET;Hybrid photosensitizers

    1 Introduction

    Metal nanoclusters (NCs) ofsizes less than 3 nm have been recognized as a new substance with unique crystal structures and novel physical/chemical properties, such as electronic,magnetic, optical, and chemical properties, that differ from those of metal nanoparticles greater than 3 nm in size1–3. The size of metal NCs, the metallic core, and the core/ligand interfacial structures determine their physicochemical properties at the atomic level. Because of such atomically dependent-properties, several atomically controlled solution-phase synthesis of metal nanoclusters have been developed for gold nanoclusters (Au NCs) and silver nanoclusters (Ag NCs)4–9. The Au/Ag NCs have shown great potential in various applications including catalysis,fluorescence, sensing, electronics, bio-imaging, biomedical assays, and biomedical therapies10–15.

    Recently, water-soluble Au NCs have been utilized as photosensitizers for the generation of highly reactive singlet oxygen (1O2) toward biomedical applications, including photodynamic therapy (PDT)16–21, because of their high water-solubility, low toxicity, and surface functionalizability for targeted substances. For effective1O2generation, in general,photosensitizers require the following photo-physical properties: (1) a high absorption coefficient in the excitation light region; (2) a triplet state energy of more than 95 kJ?mol-1for energy transfer to ground-state oxygen; (3) a high quantum yield of the triplet state; and (4) high photostability22.

    In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. However, there have been few reports about what kinds of metal NCs have the ability to generate high amounts of1O2.

    Previously, we have reported that Aun(SR)mNCs have the ability to generate1O2, and the effectiveness depended on their size: Au25(SR)18> Au18(SR)14> Au38(SR)2418,23,where SR represents an organic thiolate ligand. We also investigated the ligand effect of biomolecular-protected Au25NCs on1O2generation. The1O2generation efficiency of bovine serum albumin (BSA)-Au25NCs was higher than that of Au25(glutathione)18NCs23. More recently, it has been reported that BSA-Ag14NCs show much higher1O2generation efficiency under visible light irradiation compared to BSA-Au25NCs24. Moreover, the antimicrobial property of Ag NCs makes them superior to Au NCs for biomedical applications25,26. A wide range of atomically precise Au NCs have been reported;however, reports on the synthesis of atomically precise Ag NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs27.

    In this study, we report the atomically precise synthesis of Ag7(MBISA)6NCs, where MBISA represents 2-mercapto-5-benzimidazolesulfonic acid sodium salt. The molecular formula of the Ag NCs and the purity were determined by electrospray ionization mass spectrometry (ESI-MS) and gel electrophoresis. Herein, for the first time, we employed MBISA as the ligand for Ag NCs. Interestingly, the Ag7(MBISA)6NCs exhibited highly efficient1O2generation under white light emitting diode (LED)light irradiation. The1O2generation efficiency of the Ag7(MBISA)6NCs was higher than those of other known water-soluble Ag NCs: BSA-Ag8,BSA-Ag14,Ag25(dihydrolipoic acid)14, Ag35(glutathione)18, and Ag75(glutathione)40. Furthermore, we developed a novel fluorescence resonance energy transfer (FRET) system by conjugating Ag7(MBISA)6NCs to quinacrine (QC), where the QC acts as a donor and the Ag NCs act as an acceptor. The1O2generation by Ag NCs will be discussed on the basis of intersystem crossing and triplet-triplet energy transfer processes.

    2 Experimental

    2.1 Chemicals

    All of the chemicals were used as received without further purification. Glutathione (reduced form, GSH, 98%), methanol(99.7%), ethanol (99.5%), 1-butanol (99%), silver nitrate(AgNO3, 99.9%), bovine serum albumin (crystalized, BSA),acrylamide (99%), N,N-methylenebis-(acrylamide) (97.0%),tetraoctylammonium bromide (TOAB, > 98%), hydrochloric acid (1 mol?L-1), ammonium peroxodisulphate (APS, 99%),formic acid (99%), glycerol (99.0%), quinacrine dihydrochloride dihydrate (95%), N,N,N,N-tetramethyl-ethylenediamine (TEMED, 99.0%), and tris-HCl (1 mol?L-1, pH 8.8)were purchased from Wako Pure Chemical Industries Ltd.,Japan. 2-Mercapto-5-benzimidazolesulfonic acid (MBISA, >98.0%) and dihydrolipoic acid (DHLA, > 97.0%) were purchased from TCI, Japan. Sodium borohydride (NaBH4,99.99%) and 9,10-anthracenediyl-bis(methylene)dimalonic acid(ABDA, 99.9%) were purchased from Sigma-Aldrich, USA.tris (hydroxymethyl)aminomethane (TRIS) was purchased from Serva, Germany. Glycine was purchased from the Peptide Institute, Japan. Nanopure water (resistivity 18.2 MΩ·cm) was obtained using a pure de-ionized water system (Barnstead NANO, Thermo Scientific, USA).

    2.2 Synthesis

    The synthesis of Ag7(MBISA)6was performed at room temperature. In a typical synthesis, an AgNO3aqueous solution(4.1 mg, 1 mL) is added to 20 mL water, and a MBISA aqueous solution (13.84 mg. 0.48 mL) is added with stirring at 650 r?min-1. Thereafter, a NaBH4aqueous solution (2.7 mg, 1 mL)is rapidly added with stirring at 650 r?min-1. The solution color immediately changes to brown-black. The reaction is further stirred for 5 h. To purify the Ag NCs, we added 1-butanol (16 mL) and methanol (4 mL) into the resultant solution with vigorous shaking. After centrifugation at 6000 r?min-1for 5 min, the supernatant is removed and this treatment is repeated 5 times. Finally, Ag7(MBISA)6is extracted from a mixed solution(V(methanol) : V(ethanol) = 1 : 1, 0.5 mL) twice and the extracted clusters are dried under vacuum.

    The synthesis of other Ag NCs and Au NCs reported previously were performed in air according to the syntheses described in the literature: Ag75(SG)4028, Ag25(DHLA)1429,Ag35(SG)1830, BSA-Ag14NCs24, BSA-Ag8NCs24, and BSA-Au25NCs6.

    The Ag7(MBISA)6NCs-QC conjugates were prepared through the electrostatic interaction between anionic Ag7(MBISA)6NCs and cationic QC. A 1 mmol?L-1QC solution and a 1 mmol?L-1Ag NCs solution were prepared as stock solutions. The QC solution was mixed with the Ag7(MBISA)6NC solution in molar ratios of 1 : 0.1, 1 : 0.5,and 1 : 0.7 (AgNC : QC). The resultant solutions were stirred at 200 r?min-1for 2 h. Thereafter, the solution is purified with a centrifugal ultrafiltration tube (Millipore, 3 KD) to remove the free QC. After the ultrafiltration treatment, the filtrate solution(< MW 3000) is colorless at the ratio of 1 : 0.5 as shown in no absorbance of QC, in the filtrate solution (Fig. S1, Supporting Information), indicating that most of the QC binds to the Ag NCs. It should be noted that we did not experimentally determine quantitative binding numbers of QC to the Ag NCs.

    2.3 Detection of 1O2

    The1O2generation efficiency by the photoexcited Ag NCs and Au NCs was evaluated with an1O2chemical trap probe,ABDA31. ABDA can react irreversibly with1O2, inducing a reduction in the ABDA absorption band around 380 nm. In a typical procedure, a 10 mmol?L-1stock solution of ABDA in DMF is prepared and then added to a deuterated aqueous solution (D2O) of the metal NCs (2 mL) to give final concentrations of ABDA at 20 μmol?L-1. The solutions are then irradiated with a white LED light (15 mW, SPF-D2, Shodensha,Osaka, Japan).

    2.4 Measurements

    UV-Vis (absorption) and fluorescence (excitation and emission) spectra were recorded using a UV-Vis-NIR spectrophotometer (V-670, JASCO, Japan) and spectrofluorometer (FP-6300, JASCO, Japan), respectively. ESI-MS was conducted in the positive mode on the Ag NC solutions(0.3 mg?mL-1) using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR) on a SolariX 9.4T device (Bruker Daltonics Inc., Billerica, MA, USA). The following settings were used: solvent (V(H2O) : V(MeOH) = 1 : 1); sample flow rate, 2 μL?min-1; drying gas temperature, 200 °C; spray voltage, -4.5 kV; polyacrylamide gel electrophoresis (PAGE)was performed on a five-lane electrophoresis system(Mini-Protean, Bio-Rad, USA). In the ESI-MS, TOAB was added in the Ag7(MBISA)6solution (V(TOAB) : V(Ag NCs) =3 : 1) to solvate the Ag NCs into the organic solution.

    The mass fractions of acrylamide monomer and cross-linker in the resolving gels were 47% and 3% [acrylamide/bis(acrylamide)], respectively. The eluting buffer contained 1.4 mol?L-1tris-HCl (pH = 8.4). The as-synthesized Ag NCs were dissolved in 5% (volume fraction) water, after which 0.3 mL of the sample was loaded and subjected to elution at 150 V for 5 h.

    3 Results and discussion

    3.1 Synthesis and characterization

    In the synthesis of Ag7(MBISA)6NCs, the size-focusing process after 3–5 h resulted in five absorption peaks in the UV-Vis spectrum (463, 505, 552, 612, and 684 nm) (Fig. 1a).PAGE of the as-prepared Ag NCs showed one main band (band A) with a minor band (band B) (Fig. 1a). The absorption spectrum of the product extracted from band A was consistent with that of the as-prepared Ag NCs (Fig. S2), indicating good mono-dispersity of the as-prepared Ag NCs. The highresolution FT-ICR ESI-MS spectrum obtained for the as-prepared Ag NCs indicated that the ion carried a positive charge at m/z = 2176.150 (Fig. 1b). Good agreement between simulated and experimental isotope patterns allowed for the elemental formula: Ag7(MBISA)6(Fig. S3). A quasi-twodimensional Ag7core structure was reported in [Ag7(SR)4]-with a stable motif of [-RS-Ag-RS-]32. At present, the crystal structure of Ag7(MBISA)6NCs has not been obtained, but such a stable motif is also likely for Ag7(MBISA)6NCs.

    3.2 Singlet Oxygen Generation using Ag7(MBISA)6 NCs

    Fig. 1 (a) UV-Vis spectrum of Ag7(MBISA)6NCs in an aqueous media; (b) ESI-mass spectrum of the Ag7(MBISA)6 NCs.

    Fig. 2 (a) UV-Vis spectra of ABDA in the presence of Ag7(MBISA)6 NCs during the white LED light irradiation;(b) QY values as a measure of 1O2 generation efficiency for different Ag NCs under white light irradiation.

    In the present study, ABDA was employed to examine the1O2generation efficiency of Ag7(MBISA)6NCs. It is wellknown that1O2can selectively react with ABDA to decrease the absorbance of ABDA31,33. Ag7(MBISA)6NCs have a broad absorbance in the UV-Vis-NIR range of 400 to 800 nm;hence, a white LED light was chosen as an effective photoexcitation source for the Ag NCs. The UV-Vis spectra of ABDA in the presence of Ag7(MBISA)6NCs in D2O were acquired. In the dark, there was no change over time in the UV-Vis spectra. After irradiation with the white LED, the three absorbance peaks of ABDA, at around 350–400 nm, decreased over time because the1O2generated by the photoexcited Ag7(MBISA)6NCs reacted with ABDA (Fig. 2a). It should be noted that a change of the absorbance in the UV region during the LED light irradiation was observed for both Ag7(MBISA)6NCs and Ag7(MBISA)6NCs-QC (Fig. S4). This indicates the occurrence of partial degradation of Ag NCs under the LED light irradiation, in contrast to the case of stable photo-stability of Au NCs18. This is because easier photo-oxidation of Ag NCs than that of Au NCs27.

    3.3 Comparison of singlet oxygen production efficiency of Ag7(MBISA)6 NCs with other thiolate-protected Ag NCs

    To compared the1O2generation efficiency of various thiolate-protected Ag NCs, we determined the QY value, where QY = Slope/Area. Here Slope is the decrease of ABDA absorbance (ΔAbs) during the white light irradiation (ΔTime/min.), which is represented by Slope = (ΔAbs/ΔTime). Area is the absorption area from 400 to 800 nm in the UV-Vis spectrum of the Ag NCs. We compared the QY values of Ag7(MBISA)6with the other water-soluble Ag NCs and BSA-Au NCs: BSA-Au25NCs, BSA-Ag8, BSA-Ag14, Ag25(DHLA)14, Ag35(SG)18, and Ag75(SG)40. Similar1O2generation tests using ABDA were performed for the other Ag NCs (Figs.S5–S7).

    Fig. 2b shows the QY values of all the metal NCs examined here. The Ag7(MBISA)6NCs showed largest QY value among them, showing that Ag7(MBISA)6NCs had the highest1O2generation capability. As for other Ag NCs, BSA-Ag14NCs showed relatively high1O2generation efficiency while the other Ag NCs showed low1O2generation efficiency. We could not estimate the QY value for Ag25(DHLA)14NCs because of its low photostability under white light irradiation (Fig. S8).The1O2generation by BSA-Ag8NCs was not detectable by using the ABDA probe. Thus, we concluded the order of1O2generation efficiency under white light irradiation by the metal NCs examined in this study as follows: Ag7(MBISA)6(QY =150 × 10-5) > BSA-Ag14(QY = 38 × 10-5) > Ag75(SG)40(QY =14 × 10-5) > Ag35(SG)18(QY = 8 × 10-5) > BSA-Au25(QY = 4 ×10-5) >> BSA-Ag8(Not detected) and Ag25(DHLA)14(Not detected).

    1O2is generated by the triplet-triplet energy transfer (TTET)between ground-state oxygen (triplet state) and the photosensitizer (PS) through intersystem crossing (ISC) (Fig.3), which competes with other deactivation processes. In general, high ISC efficiency causes a high1O2quantum yield22,33. Therefore, the high1O2generation by Ag7(MBISA)6NCs may be attributed to the high ISC efficiency. If the production of1O2was inhibited by other pathways, the1O2generation efficiency would be low. All of the Ag NCs examined here (except for Ag7(MBISA)6) exhibited strong red fluorescence6,24,25,28–30. The negligibly weak fluorescence of Ag7(MBISA)6NCs might be attributed to fluorescent quenching as a consequence of the ISC and subsequent1O2generation.

    Fig. 3 The generation of 1O2 through intersystem crossing (ISC) and triplet-triplet energy transfer (TTET) processes.

    3.4 FRET-mediated enhancement of 1O2 generation using an Ag7(MBISA)6–QC conjugate

    Conjugation of other ligands into metal NCs can create novel properties depending on the individual properties of ligands and the interaction of metal NCs with the ligands. In this study, we developed a FRET-mediated enhancement of1O2generation using the conjugation of Ag7(MBISA)6NCs with QC (Ag7(MBISA)6-QC conjugate). In order to construct an efficient FRET system, several conditions must be met. In particular, the donor (QC) emission and the acceptor(Ag7(MBISA)6) absorption spectra should significantly overlap34,35. Clinically, QC is already used as malaria preventative treatment36, and more recently, it has been also reported to inhibit tumorigenesis in endometrial cancer in vitro37.

    Fig. 4 (a) UV-Vis absorption spectrum of Ag7(MBISA)6 NCs and the fluorescence emission spectrum of QC from 413 nm excitation in an aqueous solution; (b) UV-Vis spectra of the Ag7(MBISA)6-QC conjugates with various ratios of Ag7(MBISA)6 to QC.

    Fig. 5 (a) Fluorescence emission spectra (excitation at 413 nm) of QC, Ag7(MBISA)6 NCs, and Ag7(MBISA)6-QC conjugate (1 : 0.5);(b) UV-Vis spectra of ABDA in the presence of the Ag7(MBISA)6-QC conjugate (1 : 0.5) during white LED light irradiation.

    Fig. 6 (a) QY values as a measure of 1O2 generation efficiency for Ag7(MBISA)6 NCs, QC, and Ag7(MBISA)6-QC conjugates of different molar ratios under white light irradiation; (b) Schematic illustration of the FRET system: conjugation of Ag7(MBISA)6NCs to QC for enhanced 1O2 generation from white LED light irradiation.

    The key issues for FRET efficiency are energy level matching and suitable linkers between the energy donor and the energy acceptor. The broad absorption band of Ag7(MBISA)6at less than 750 nm overlaps well with the emission spectrum of QC at around 500 nm (Fig. 4a), satisfying the overlap condition for an efficient FRET34,35. Moreover, the distance for the FRET event to occur is generally 1–10 nm. Thus, if QC can be attached to Ag7(MBISA)6NCs, a FRET process can be expected. Fig. 4b shows the UV-Vis spectra of the Ag7(MBISA)6-QC conjugate. The QC has strong absorbance at 400–500 nm (Fig. S9). Upon conjugation of QC with Ag7(MBISA)6NCs, the QC absorbance at around 400–500 nm increases with the ratio of QC to Ag7(MBISA)6. The conjugation of Ag7(MBISA)6NCs with QC (molar ratio of AgNCs to QC is 1 : 0.5) increased the fluorescence intensity of Ag7(MBISA)6NCs at around 600–800 nm with a simultaneous decrease in the fluorescence intensity of QC (Fig. 5a). These observations suggest that the FRET process, from QC to Ag7(MBISA)6NCs, occurred in the conjugate. That is, the QC works as a donor chromophore while the Ag NCs work as an acceptor chromophore in the FRET process.

    The1O2generation tests using ABDA were performed the for Ag7(MBISA)6-QC conjugates (Figs. 5b and S6). The QY values of Ag7(MBISA)6-QC conjugate, Ag7(MBISA)6NCs,and QC are summarized in Fig. 6a. It is clear that the Ag7(MBISA)6-QC conjugates show larger QY values than that of Ag7(MBISA)6NCs alone or that of QC alone. In particular,Ag7(MBISA)6-QC conjugate (1 : 0.5) showed the highest QY value (QY = 362 × 10-5), which was a 2.3-fold increase in1O2generation compared to that of Ag7(MBISA)6NCs alone. It is reasonable that the FRET process from QC to Ag7(MBISA)6NCs mainly contributes to the enhanced1O2generation in the conjugate, as shown in Fig. 6b.

    4 Conclusions

    We performed a one-pot synthesis of atomically precise silver thiolate nanoclusters (Ag7(MBISA)6) using the size-focusing method. The molecular formula and purity were determined by ESI-MS and gel electrophoresis. We found that water-soluble Ag7(MBISA)6NCs generated1O2with high efficiency under irradiation with a white LED, superior to the following water-soluble metal NCs examined here: BSA-Au25NCs, BSA-Ag14, BSA-Ag8, Ag25(DHAL)14, Ag75(SG)40, and Ag35(SG)18. To the best of our knowledge, this is the first report of atomically precise thiolate silver clusters (Agn(SR)m) being used for efficient1O2generation. For improving the1O2generation of Ag7(MBISA)6NCs further, we developed a novel FRET system by conjugating Ag7(MBISA)6NCs to quinacrine.The conjugation further doubled the1O2generation efficiency of the Ag7(MBISA)6NCs.

    超碰97精品在线观看| 日韩欧美一区视频在线观看 | 成人毛片60女人毛片免费| 亚洲第一区二区三区不卡| 国产成人freesex在线| 色网站视频免费| 国产成人freesex在线| 久久亚洲国产成人精品v| 久久这里有精品视频免费| 亚洲精华国产精华液的使用体验| 午夜福利,免费看| 麻豆成人av视频| 内射极品少妇av片p| h日本视频在线播放| 成人毛片60女人毛片免费| 国产有黄有色有爽视频| 大陆偷拍与自拍| 欧美三级亚洲精品| av网站免费在线观看视频| 自拍偷自拍亚洲精品老妇| 深夜a级毛片| 久久久午夜欧美精品| 成人黄色视频免费在线看| 亚洲怡红院男人天堂| 色婷婷av一区二区三区视频| 国产一区亚洲一区在线观看| 亚洲欧洲日产国产| 久久人人爽av亚洲精品天堂| 日日爽夜夜爽网站| av国产久精品久网站免费入址| 亚洲av免费高清在线观看| 欧美日韩av久久| 国产无遮挡羞羞视频在线观看| 91成人精品电影| 成年女人在线观看亚洲视频| 色5月婷婷丁香| 国产精品一区二区三区四区免费观看| 日本免费在线观看一区| 美女大奶头黄色视频| 亚洲av欧美aⅴ国产| 欧美日韩在线观看h| 少妇人妻久久综合中文| 亚洲自偷自拍三级| 精品一区在线观看国产| 国产黄片视频在线免费观看| 99久久综合免费| 中文乱码字字幕精品一区二区三区| 最近的中文字幕免费完整| 妹子高潮喷水视频| 久久精品国产a三级三级三级| 国产一区有黄有色的免费视频| 在线播放无遮挡| 国产白丝娇喘喷水9色精品| 日韩欧美 国产精品| 欧美精品一区二区免费开放| 国内揄拍国产精品人妻在线| 亚洲自偷自拍三级| 色视频在线一区二区三区| 国产成人免费无遮挡视频| 成人无遮挡网站| 亚洲国产精品成人久久小说| 天堂俺去俺来也www色官网| 如何舔出高潮| 新久久久久国产一级毛片| 久久毛片免费看一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲第一区二区三区不卡| 街头女战士在线观看网站| 亚洲av男天堂| 精品一区在线观看国产| 亚洲精品国产av成人精品| 国产深夜福利视频在线观看| 国产成人freesex在线| 久久精品国产亚洲av涩爱| 国产在线免费精品| 国产精品一区二区在线观看99| 国产成人精品久久久久久| 国产永久视频网站| 日日啪夜夜撸| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲最大av| 欧美性感艳星| 久久午夜福利片| 亚洲av免费高清在线观看| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| av有码第一页| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 一区二区av电影网| 精品久久国产蜜桃| 嫩草影院入口| 国内精品宾馆在线| 99热全是精品| 欧美 日韩 精品 国产| 国产成人精品一,二区| 国产精品人妻久久久久久| 亚洲成人av在线免费| 一级,二级,三级黄色视频| 少妇人妻一区二区三区视频| 美女国产视频在线观看| 中文字幕亚洲精品专区| 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 国产淫语在线视频| a级片在线免费高清观看视频| www.av在线官网国产| 成人免费观看视频高清| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区| 久久女婷五月综合色啪小说| 我的老师免费观看完整版| av播播在线观看一区| 亚洲综合色惰| 国产亚洲最大av| 毛片一级片免费看久久久久| 最近手机中文字幕大全| 丝袜在线中文字幕| 日本91视频免费播放| 国产精品国产av在线观看| 夫妻性生交免费视频一级片| 亚洲激情五月婷婷啪啪| 少妇被粗大猛烈的视频| 亚洲欧美成人综合另类久久久| 多毛熟女@视频| 精品少妇久久久久久888优播| 好男人视频免费观看在线| 丝袜脚勾引网站| 亚洲精品中文字幕在线视频 | av天堂中文字幕网| 久久久亚洲精品成人影院| 国产欧美日韩综合在线一区二区 | 亚洲va在线va天堂va国产| 日韩一区二区三区影片| 涩涩av久久男人的天堂| 熟女av电影| 亚洲第一区二区三区不卡| 国产欧美日韩综合在线一区二区 | 51国产日韩欧美| 亚洲国产成人一精品久久久| 久久婷婷青草| 伊人久久精品亚洲午夜| 高清黄色对白视频在线免费看 | 免费看日本二区| av在线app专区| 国产伦理片在线播放av一区| 国产男女超爽视频在线观看| 日韩人妻高清精品专区| 亚州av有码| 日日爽夜夜爽网站| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 成人免费观看视频高清| 亚洲精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 多毛熟女@视频| 中文字幕精品免费在线观看视频 | 又大又黄又爽视频免费| 少妇的逼好多水| 9色porny在线观看| 国产在视频线精品| 美女视频免费永久观看网站| 男女无遮挡免费网站观看| 国产精品一区二区在线观看99| av在线观看视频网站免费| 啦啦啦在线观看免费高清www| 亚洲成人手机| 成人二区视频| 少妇的逼水好多| 伦理电影大哥的女人| 男女啪啪激烈高潮av片| 十分钟在线观看高清视频www | 99热网站在线观看| 国产精品人妻久久久影院| 国产成人免费无遮挡视频| 简卡轻食公司| 狠狠精品人妻久久久久久综合| 秋霞伦理黄片| 精品酒店卫生间| 蜜臀久久99精品久久宅男| 亚洲av.av天堂| 嫩草影院新地址| 欧美精品亚洲一区二区| 乱码一卡2卡4卡精品| 精品酒店卫生间| 少妇人妻一区二区三区视频| 91久久精品国产一区二区三区| 一本一本综合久久| 乱码一卡2卡4卡精品| www.av在线官网国产| 亚洲天堂av无毛| 18禁在线播放成人免费| 国产精品99久久99久久久不卡 | 大香蕉97超碰在线| 亚洲国产精品国产精品| 亚洲国产日韩一区二区| 免费高清在线观看视频在线观看| 日韩av免费高清视频| 午夜91福利影院| 亚洲美女搞黄在线观看| 国产在线视频一区二区| 国产 一区精品| 精品一区在线观看国产| 97精品久久久久久久久久精品| av在线app专区| 欧美日韩综合久久久久久| 精品久久久久久久久亚洲| 日韩强制内射视频| 国产精品一区www在线观看| 日韩电影二区| 亚洲国产精品一区二区三区在线| 日韩大片免费观看网站| 一级毛片我不卡| 久久久久久久久久久丰满| 大香蕉久久网| 国产熟女午夜一区二区三区 | 久久久国产一区二区| 亚洲成人手机| 久久久久久久国产电影| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 制服丝袜香蕉在线| 97超视频在线观看视频| 欧美日韩国产mv在线观看视频| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 夫妻午夜视频| 麻豆成人午夜福利视频| 午夜免费观看性视频| 亚洲激情五月婷婷啪啪| 97在线视频观看| 亚洲精品第二区| 国产探花极品一区二区| 少妇人妻 视频| 男男h啪啪无遮挡| 欧美成人午夜免费资源| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| www.av在线官网国产| 久久精品国产自在天天线| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线 | 伦理电影大哥的女人| 少妇人妻 视频| 99九九在线精品视频 | 成人国产av品久久久| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 日韩中文字幕视频在线看片| 婷婷色综合www| 久久久久久久久久久丰满| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 国产精品99久久99久久久不卡 | 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 精品人妻偷拍中文字幕| 一级毛片电影观看| 国产日韩欧美视频二区| 色5月婷婷丁香| 免费观看a级毛片全部| 中文字幕av电影在线播放| 黑人巨大精品欧美一区二区蜜桃 | 中文乱码字字幕精品一区二区三区| 成年女人在线观看亚洲视频| av网站免费在线观看视频| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| a级片在线免费高清观看视频| 久久99蜜桃精品久久| 亚洲av电影在线观看一区二区三区| 99热6这里只有精品| 麻豆成人av视频| 深夜a级毛片| 最近中文字幕高清免费大全6| 久久久久久久国产电影| 黄色日韩在线| 亚洲人与动物交配视频| 午夜免费观看性视频| 街头女战士在线观看网站| 中文字幕av电影在线播放| 国产在线一区二区三区精| 欧美xxⅹ黑人| 男女国产视频网站| 韩国高清视频一区二区三区| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 黄色毛片三级朝国网站 | 国产午夜精品久久久久久一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美 日韩 精品 国产| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 青春草国产在线视频| 看十八女毛片水多多多| 大码成人一级视频| 免费在线观看成人毛片| 欧美激情极品国产一区二区三区 | 在线精品无人区一区二区三| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 深夜a级毛片| 日韩欧美精品免费久久| 人妻 亚洲 视频| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 日韩视频在线欧美| av播播在线观看一区| 六月丁香七月| 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠久久av| 一级毛片久久久久久久久女| 午夜精品国产一区二区电影| 欧美区成人在线视频| 亚洲av福利一区| 51国产日韩欧美| 久久亚洲国产成人精品v| 如日韩欧美国产精品一区二区三区 | 青春草国产在线视频| 尾随美女入室| av福利片在线| 嫩草影院新地址| 丝瓜视频免费看黄片| 欧美xxⅹ黑人| 国产精品三级大全| 毛片一级片免费看久久久久| 久久久国产欧美日韩av| 边亲边吃奶的免费视频| 久久影院123| 精品亚洲乱码少妇综合久久| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 久久久国产欧美日韩av| 久久免费观看电影| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 欧美日韩综合久久久久久| 丰满乱子伦码专区| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 多毛熟女@视频| 超碰97精品在线观看| 欧美三级亚洲精品| 亚洲国产精品一区三区| 99热这里只有精品一区| 亚洲国产精品一区二区三区在线| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 伊人亚洲综合成人网| 免费观看无遮挡的男女| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区| av在线观看视频网站免费| 亚洲高清免费不卡视频| 成人综合一区亚洲| 成人黄色视频免费在线看| 日韩亚洲欧美综合| 免费看光身美女| 日本wwww免费看| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 欧美少妇被猛烈插入视频| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 天堂8中文在线网| 久久久a久久爽久久v久久| 国产午夜精品久久久久久一区二区三区| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 搡女人真爽免费视频火全软件| 丝袜脚勾引网站| 国产成人freesex在线| 黑人高潮一二区| 青春草国产在线视频| 波野结衣二区三区在线| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 久久久午夜欧美精品| 婷婷色综合www| 麻豆成人av视频| 2018国产大陆天天弄谢| 亚洲国产精品国产精品| 国产精品无大码| 中文字幕精品免费在线观看视频 | 人妻人人澡人人爽人人| 国产伦理片在线播放av一区| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区三区在线 | 这个男人来自地球电影免费观看 | 草草在线视频免费看| 亚洲国产色片| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 中文乱码字字幕精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 黄色一级大片看看| 国产真实伦视频高清在线观看| 日本爱情动作片www.在线观看| 亚洲精品第二区| 国产av一区二区精品久久| 亚洲欧美一区二区三区黑人 | 日本-黄色视频高清免费观看| 久久国产乱子免费精品| 青青草视频在线视频观看| 性色av一级| 伊人亚洲综合成人网| 国产在视频线精品| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 高清在线视频一区二区三区| 蜜臀久久99精品久久宅男| 我要看黄色一级片免费的| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| 下体分泌物呈黄色| 亚洲经典国产精华液单| 伦理电影免费视频| 乱人伦中国视频| 91午夜精品亚洲一区二区三区| 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 69精品国产乱码久久久| 国内精品宾馆在线| 欧美人与善性xxx| 色哟哟·www| 老熟女久久久| 婷婷色麻豆天堂久久| 一级毛片我不卡| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 在线观看免费高清a一片| 91精品一卡2卡3卡4卡| 国产国拍精品亚洲av在线观看| 中文字幕制服av| 日日啪夜夜撸| 亚洲四区av| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 日韩电影二区| 国产一区二区在线观看av| 一级av片app| 久久久午夜欧美精品| 国产淫片久久久久久久久| 黄色日韩在线| 黄色怎么调成土黄色| 亚洲人成网站在线观看播放| 亚洲精品色激情综合| 99热这里只有精品一区| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 高清不卡的av网站| 99国产精品免费福利视频| 国国产精品蜜臀av免费| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 国产精品国产三级国产专区5o| 美女大奶头黄色视频| 日韩亚洲欧美综合| 国产av精品麻豆| 99久久综合免费| 亚洲在久久综合| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 一本色道久久久久久精品综合| 成年av动漫网址| 人人妻人人澡人人看| 国产一级毛片在线| 亚洲精品,欧美精品| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 我的女老师完整版在线观看| 成人二区视频| 国产黄片美女视频| 亚洲欧洲精品一区二区精品久久久 | 男人添女人高潮全过程视频| 国产成人91sexporn| 久久久久久久大尺度免费视频| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 国产成人精品一,二区| 美女国产视频在线观看| 欧美 日韩 精品 国产| 街头女战士在线观看网站| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 国产精品一区二区在线观看99| 免费观看无遮挡的男女| 亚洲在久久综合| 青青草视频在线视频观看| 久热这里只有精品99| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频| av免费在线看不卡| 久久久久久久大尺度免费视频| 久久99精品国语久久久| 久久精品国产亚洲网站| 国产黄色免费在线视频| 麻豆成人午夜福利视频| 久久99一区二区三区| 美女cb高潮喷水在线观看| 大陆偷拍与自拍| 亚洲va在线va天堂va国产| 国产av精品麻豆| 亚洲综合精品二区| 欧美区成人在线视频| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 男男h啪啪无遮挡| 日韩成人伦理影院| 亚洲国产精品一区三区| 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 麻豆成人av视频| 日本av手机在线免费观看| 欧美日本中文国产一区发布| 最近中文字幕高清免费大全6| 日本黄色日本黄色录像| 啦啦啦中文免费视频观看日本| 内射极品少妇av片p| 一区二区三区四区激情视频| av有码第一页| 插阴视频在线观看视频| 免费观看av网站的网址| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| a 毛片基地| 这个男人来自地球电影免费观看 | 亚洲内射少妇av| 久久这里有精品视频免费| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 精品一区在线观看国产| 国产精品不卡视频一区二区| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲一区二区精品| 男女免费视频国产| 国产老妇伦熟女老妇高清| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 国产极品天堂在线| 青春草国产在线视频| 街头女战士在线观看网站| 亚洲av不卡在线观看| 人人妻人人澡人人看| 日本91视频免费播放| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 搡老乐熟女国产| 免费看光身美女| 日本av手机在线免费观看| 国产在线免费精品| 成人无遮挡网站| 日本-黄色视频高清免费观看| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 免费看日本二区| 国产精品秋霞免费鲁丝片| 老女人水多毛片| 少妇的逼好多水| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 亚洲成色77777| 欧美 亚洲 国产 日韩一| 国产免费一级a男人的天堂| 亚洲精品第二区| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 亚洲精品乱久久久久久| h视频一区二区三区| 中国国产av一级| 亚洲中文av在线| 2021少妇久久久久久久久久久| 久久免费观看电影| 欧美成人精品欧美一级黄| 女人精品久久久久毛片| 久久婷婷青草| 免费久久久久久久精品成人欧美视频 | 十分钟在线观看高清视频www | 日韩欧美 国产精品| 女性被躁到高潮视频| 国产黄片美女视频| 我要看黄色一级片免费的| 亚洲精品自拍成人| 免费看日本二区| www.色视频.com|