• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+

    2018-09-10 01:40:08ZHUMinLIManboYAOChuanhaoXIANanZHAOYanYANNanLIAOLingwenWUZhikun
    物理化學(xué)學(xué)報 2018年7期

    ZHU Min , LI Manbo , YAO Chuanhao , XIA Nan , ZHAO Yan ,2, YAN Nan , LIAO Lingwen ,WU Zhikun ,*

    1 Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.

    2 University of Science and Technology of China, Hefei 230026, P. R. China.

    Abstract: Research on gold nanoclusters is at the frontier of nanoscience and nanotechnology. The introduction of the first phosphineprotected gold nanocluster, Au11(PPh3)7(SCN)3 (where PPh3 stands for triphenylphosphine and Ph stands for benzene), can be dated back to 1969. As research in the field progressed, many structures of phosphineprotected nanoclusters such as Au5, Au8, Au13, and Au39 were reported.However, the stability of these phosphine-protected nanoclusters was not satisfactory, which handicapped their research and application. In an attempt to find alternatives for phosphine-protected nanoclusters,thiolated gold nanoclusters have attracted extensive attention in recent years. So far, there has been great progress primarily owing to the development of wet-chemical synthesis techniques,among which the utilization of ligand-exchange has been proved to be very effective to synthesize thiolated gold nanoclusters. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligand-exchange, i.e., the exchange of thiolate with phosphine, can also take place. Some questions have naturally arisen: Is the reverse ligand-exchange only applicable to superatomic [Au25(SR)18]- (SR: thiolate) nanoclusters? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand-exchange also dependent on the starting nanoclusters? These intriguing issues have inspired us to conduct this work.

    Key Words: Thiolated gold nanoparticles; PPh3; Universal converter; Luminescence

    1 Introduction

    The study of gold nanoclusters (ultrasmall nanoparticles)protected by phosphine has long history1–10, much longer than that of the thiolated ones. The first phosphine-protected gold nanocluster can be dated back to 1969, when McPartlin et al.1reported the Au11(PPh3)7(SCN)3nanocluster. As research in the field progressed, many structures of phosphine-protected nanoclusters such as Au52, Au73, Au84, Au111,5,6, Au137,8and Au399were unravelled. However, the stability of these phosphine-protected nanoclusters was not satisfactory. For this reason, people had to move their sights to the more stable species,thiolated gold nanoclusters, thus booming the related research11–47.So far, great progress has been achieved primarily owing to the development of wet-chemistry synthesis techniques, among which, ligand-exchange, developed by Schmid, Hutchison,Tsukuda, Jin, et al. has been proved to be very effective to synthesize thiolated gold nanoclusters25,48–57. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligandexchange, i.e., thiolate was exchanged by phosphine, can also take place58,59. Questions naturally arising are: Is the reverse ligand-exchange only applicable to superatomic Au25? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand exchange also dependent on the starting nanoclusters25,43,57,60? These intriguing issues inspired us to make an investigation on the reactions of PPh3 with some other thiolated gold nanoclusters. Surprisingly, the experimental results show that thiolated gold nanoclusters (nanoparticles) with different compositions, structures, sizes and protecting thiolates can be uniformly transformed to [Au11(PPh3)8Cl2]+(Au11for short), and finally to [Au25(PPh3)10(SR)5Cl2]2+(SR: thiolate)under the action of PPh353, while [Ag25(SPhMe2)18]-(Ag25 for short)61, and PVP(citrate)-protected gold nanoparticles can’t be transformed to [Au25(PPh3)10(SR)5Cl2]2+(or [Ag25(PPh3)10(SR)5Cl2]2+) under the same conditions, indicating the unique chemistry of thiolated gold nanoparticles. Employing this special chemistry, we synthesized seven [Au25(PPh3)10(SR)5Cl2]2+species with various ligands, and investigated the ligand influence on the luminescence properties of [Au25(PPh3)10(SR)5Cl2]2+.

    2 Experimental and section

    2.1 Chemicals

    Tetraoctylammonium bromide (TOABr, 98%), 2-phenylethanethiol (PhC2H4SH, ≥ 99%), 4-(tert-butyl) benzene-1-thiol (t-Bu-PhSH, 99.0%), cyclohexanethiol (C6H11SH,99.0%), 1-hexanethiol (C6H14S, ≥ 98%), 1-dodecanethiol(C12H26S, ≥ 98%), benzyl mercaptane (PhCH2SH, 99.0%), 4-tert-butylbenzylmethanethiol (t-Bu-PhCH2SH, 99.0%) were purchased from Sigma-Aldrich. Sodium borohydride (NaBH4, ≥96%), dichloromethane (CH2Cl2, ≥ 99.5%), and methanol(CH3OH, ≥ 99.5%) were purchased from Sinopharm Chemical Reagent Co. Ltd.

    All chemicals were used as received. The water used in all experiments was ultrapure (resistivity 18.2 MΩ?cm), produced with a Milli-Q NANO pure water system.

    2.2 Materials

    [Au23(SC6H11)16]-(Au23for short)62, Au24(SC2H4Ph)20(Au24for short)60, Au36(TBBT)28(Au36for short)57, Au38(SC2H4Ph)24(Au38for short)40, 3 nm Au nanoparticles38, PVP/citrate protected Au nanoparticles63,64and Ag2561were synthesized following the previous methods.

    2.3 Measurements

    All UV-Vis-NIR absorption spectra were recorded using a UV-2550 spectrophotometer (Shimadzu, Japan) at room temperature. Electrospray ionization mass spectra (ESI-MS)were acquired on a Waters Q-TOF mass spectrometer equipped with a Z-spray source. The sample was dissolved in toluene (~1 mg?mL-1) and diluted 1 : 1 in dry ethanol (5 mmol?L-1CsOAc).The sample was directly infused at 5 μL?min-1. The source temperature was fixed at 70 °C. The spray voltage was set at 2.20 kV and the cone voltage at 60 V. Fluorescence spectra were recorded on a Fluoromax-4 spectrofluorometer (HORIBA JobinYvon), and the excitation wavelength was kept at 514 nm with slit of 10 nm.

    2.4 Isolation and purification of[Au15(PPh3)7(SC6H11)7]+

    Au23was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 30 min. After the reaction was completed, the reaction mixture was concentrated by vaporating solvent under a reduced pressure.[Au15(PPh3)7(SC6H11)7]+(Au15for short) was purified by fractional precipitation with petroleum ether as the precipitator.

    2.5 Isolation and purification of [Au11(PPh3)8Cl]2+and [Au(PPh3)2]+

    Au23(Au24and Au36) was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, the reaction mixture was concentrated by evaporating solvent under a reduced pressure. Au11and [Au(PPh3)2]+were purified by column chromatography on silica gel (methanol/dichloromethane = 1/20,V/V).

    2.6 Isolation and purification of[Au25(PPh3)10(SR)5Cl2]2+

    Au23(Au24and Au36) was dissolved in CH2Cl2and 20 equivalents of PPh3were added to the solution in a dropwise fashion. The reaction mixture was stirred at room temperature for 24 h. After the reaction was completed, the reaction mixture was concentrated by evaporating solvent under a reduced pressure. [Au25(PPh3)10(SR)5Cl2]2+was purified by column chromatography on silica gel (methanol/ dichloromethane =1/20, V/V).

    2.7 Synthesis of Aux(SR)y mixture nanocluster

    HAuCl4?4H2O (0.42 mmol, dissolved in 2 mL of water) was mixed with TOAB (0.48 mmol, dissolved in 10 mL of dichloromethane), the solution was vigorously stirred to facilitate phase transfer of the Au(III) salt into the organic phase.After 15 min., the aqueous layer was removed and 2-phenylethanethiol (6.0 equivs. relative to gold) was added. After 1 h, 5 mL of aqueous NaBH4(10 equivs. relative to gold atom)was rapidly added to the solution. The reaction was allowed to proceed under constant stirring for 2 h. The CH2Cl2 phase was then removed via rotary evaporation and washed with methanol.

    3 Results and discussion

    Au23is the second case that is negatively charged as Au25, and its molecular composition differs from Au25only by an Au2(SR)2unit (without considering the ligand difference), but the structure and protecting thiolate are utterly different from those of Au2562,so Au23was first chosen as the starting nanocluster. In a typical transformation test (details are provided in the experimental section), Au23was dissolved in dichloromethane (DCM), after which a freshly prepared dichloromethane solution of PPh3(20 equivs. per mole of Au nanoclusters) was added dropwise. The reaction mixture was stirred at room temperature and monitored by UV-Vis-NIR spectrometry, which reveals three main reaction stages similar to those in the reaction of Au25with PPh3(Fig. 1a).In the first stage, the characteristic peak of Au23at 450 nm blueshifted to 430 nm, and the characteristic peak of Au23at 570 nm blue-shifted to 550 nm, with a new absorption band centered at 690 nm appeared in the UV-Vis-NIR spectrum. In the second stage, the peak at 430 nm blue-shifted to 415 nm, and the peak at 550 nm red-shifted to 580 nm, with the peak at 690 nm disappeared and a new absorption band centered at 380 nm appeared in the UV-Vis-NIR spectrum in the meantime. Thirdly,two new peaks at 450 and 700 nm were observed with the previous peaks at 415 and 380 nm unchanged. The UV-Vis-NIR spectra of the products at stage 2 and 3 are analogous to those of the reaction between Au25and PPh358, respectively, indicating that Au11and biicosahedral [Au25(PPh3)10(SR)5Cl2]2+rod might also be formed in the reaction of Au23 with PPh3. Electrospray ionization mass spectrometry (ESI-MS), a well-known technology for the formula determination of metal nanoclusters,indeed confirm this, see Fig. 2.

    Fig. 1 UV-Vis-NIR spectrometry monitoring the reaction between Au23 (a), Au24 (b), Au36 (c) and PPh3; UV-Vis-NIR spectrum of PPh3 (d) (solvent: CH2Cl2).

    Fig. 2 The UV-Vis-NIR and the corresponding ESI-MS spectra of stage 1 (a, b), stage 2 (c, d) and stage 3 (e, f) for the reaction between Au23 with PPh3.Inset: The comparison of simulated and experimentally obtained isotopic patterns.

    Since the ligand-exchange reaction is closely related to the cluster size25,57and might be influenced by the protecting ligand25,43,57,60, a larger nanocluster with different protecting thiolate Au3657was then chosen to react with PPh3. After the addition of 20 equivs. of PPh3, the characteristic peaks of Au36disappeared and new absorption bands centered at 415 nm and 380 nm appeared in the UV-Vis-NIR spectra, indicating the formation of Au11. A few hours later, the characteristic peaks of Au11disappeared and new absorption peaks at 341, 392, 426, 460 and 694 nm appeared, indicating that Au11was transformed to[Au25(PPh3)10(TBBT)5Cl2]2+, which was identified by ESI-MS.Interestingly, Au25, Au23 and Au36 are all uniformly transformed to [Au25(PPh3)10(SR)5Cl2]2+through the same intermediate Au11.Due to the fact that the kernels in Au25, Au23and Au36are all bigger than Au11(Au13for Au2535,36, Au15for Au2362, and Au23for Au3657), we speculate that the nanoclusters with kernels smaller than Au11may not be tranformed to Au11, and finally to[Au25(PPh3)10(SR)5Cl2]2+after etched by PPh3. To test this, Au24 was chosen as the starting nanocluster since it has a Au8kernel60.However, the reaction process of Au24with PPh3is similar to the case of Au36with PPh3: Au11was first generated and then[Au25(PPh3)10(SR)5Cl2]2+formed, which was identified by the UV-Vis-NIR and ESI-MS spectrometry (see Figs. 1b and 3a–d).Further experiments demonstrate that even Au38 and the polydisperse gold nanocluster protected by 2-phenylethanethiolatecan be transformed to [Au25(PPh3)10(SR)5Cl2]2+, see Figs. S1b and 4b. The fact that nanoclusters with kernels smaller than Au11can be transformed to Au11and[Au25(PPh3)10(SR)5Cl2]2+indicates that the peeling process found in the case of Au25 may not be applicable to these cases.To address this, we conducted more investigations on the intermediates of the above mentioned reactions.

    Fig. 3 UV-Vis-NIR and corresponding ESI-MS spectra of the reaction between Au24 (a–d), Au36 (e–h) and PPh3.Inset: The comparison of simulated and experimentally obtained isotopic patterns.

    Fig. 4 UV-Vis-NIR spectra of the reaction between ~3 nm thiolated Au nanoparticles (a), polydispersed Aux(SR)y (b) and PPh3.

    In the reaction of Au23and PPh3, we obtained three different products by controlling the reaction time. The first one (denoted as S1) exhibiting similar absorption as that in stage 1 (see above)was isolated when Au23and PPh3were reacted for 30 min, the second one (denoted as S2) showing a similar UV-Vis-NIR spectrum as that in stage 2 was obtained after 5 h’s reaction, and the third product (denoted as S3) with similar absorption as that in stage 3 was isolated after reaction of 24 h. Two distinct peaks centered at M/Z 4335 and 5598 are shown in ESI-MS spectrum of S1, which are assigned to [Au11(PPh3)8Cl2]2+and[Au15(PPh3)7(SC6H11)2]+, respectively, and the isotopic patterns are in good agreement with the simulated ones, see Fig. 2b,confirming these assignments. Moreover, S2 and S3 were identified to be [Au11(PPh3)8Cl2]2+(Fig.2d) and [Au25(PPh3)10(SC6H11)5Cl2]2+(Fig. 2f) by ESI-MS, respectively. It’s known that Au23has a Au15core62, thus the identification of Au15(PPh3)7(SC6H11)7+indicates that the peeling of staples may also occur to the etching of Au23by PPh3. However, in the cases of Au36and Au24, Au11was formed immediately after the addition of PPh3 monitored by UV-Vis-NIR, indicating that the staples peeling is very fast or not applicable to the two cases. Of note, in all of these reactions,we isolated and identified three small nanoclusters [Au2(PPh3)2(SR)]+, [Au3(PPh3)2(SR)2]+and[Au(PPh3)2]+(See Fig.5a), among which, [Au3(PPh3)2(SR)2]+is newly found, while [Au2(PPh3)2(SR)]+65and [Au(PPh3)2]+58have been previously reported.

    Why can thiolated gold nanoclusters with different compositions, structures, sizes and protecting ligands be transformed into [Au25(PPh3)10(SR)5Cl2]2+(see Fig. 6)? The reason could be assigned to the exceptional stability of[Au25(PPh3)10(SR)5Cl2]2+under the investigated conditions. We exclude the quantumn size effect reason by revealling that ~3 nm thiolated gold nanoparticles can also be transformed to[Au25(PPh3)10(SR)5Cl2]2+, while gold nanoparticles protected by polyvinylpyrrolidone (PVP)/citrate or Ag25(SPhMe2)-18(for their synthesis and characterization, see experimental section)cannot be transformed to [Au25(PPh3)10(SR)5Cl2]2+(or[Ag25(PPh3)10(SR)5Cl2]2+) under the similar conditions (Fig. S2).Especially, Ag25 shares the similar structure with Au2561,however, there are no change in the UV-Vis-NIR spectrum of Ag25upon the addition of PPh3(Fig. 5b) even if the reaction time is extended to 48 h, indicating that Ag25is inert to PPh3. These experiment results indicate the unique reactivity of thiolated gold nanoparticles with PPh3, in other words, PPh3acts as a universal converter for thiolated gold nanoparticles.

    Fig. 5 ESI-MS spectrum of three small byproducts [Au(PPh3)2]+,[Au2(PPh3)2(SR)]+ and [Au3(PPh3)2(SR)2]+(a), UV-Vis-NIR spectral evolution for the reaction between Ag25 and PPh3(b).

    One utility of this kind of uniform transformation is that it provides ideal opportunities to investigate ligands influence on the properties of gold nanoclusters and screen ligands for special applications. For example, we synthesized seven[Au25(PPh3)10(SR)5Cl2]2+species with different thiolates(including S-c-C6H11, SC6H13, SC12H25, SC2H4Ph, SCH2Ph,SCH2Ph-t-Bu and SPh-t-Bu) (see Fig. 7a) by using this reverse exchange method, investigated their luminescence properties,and found that their luminescence quantum yields follow the order of [Au25(PPh3)10(SCH2Ph-t-Bu)5Cl2]2+(1.32 × 10-4) >[Au25(PPh3)10(SCH2Ph)5Cl2]2+(8.23 × 10-5) > [Au25(PPh3)10(SC2H4Ph)5Cl2]2+(5.35 × 10-6) > [Au25(PPh3)10(SC12H25)5Cl2]2+(5.02 × 10-6) > [Au25(PPh3)10(SPh-t-Bu)5Cl2]2+(3.97 × 10-6) >[Au25(PPh3)10(SC6H13)5Cl2]2+(3.73 × 10-6) > [Au25(PPh3)10(S-c-C6H11)5Cl2]2+(1.53 × 10-6). (See Fig. 7b). Basing on the QY comparison, we might conclude that SCH2Ph-t-Bu is the best ligand, while S-c-C6H11is the worse ligand for the luminescence triggering of gold nanoparticles in these investigated ligands. It is known that the surface ligands greatly influence the luminescence properties of metal nanoclusters, and one effecting factor is the electron donability of the ligands18. However, it is worth noting that the fluorescence mechanism is complex,and there are some other influencing factors on basis of our previous work18,43,60,66–68. Such diversity in surface ligand is not found in other nanoclusters, for example, although several Au25(SR)-18(SRH: thiols, including 1-hexanethiol, 1-octanethiol, 1-dodecanethiol, 2-phenylethanethiol, glutathione, 2-naphthalenethiol) nanoclusters have been reported32,69, the TBBT-protected Au25nanocluster is not obtained yet until now due to steric hindrance, which limits the systematic investigation on ligand effect.

    Fig. 6 Mechanism illustration of the etching process. Purple,Au atoms; yellow, S atoms; blue, P atoms; green, Cl atoms.Note: The structures used here are all from the solid single crystals,might different from those in liquid phases.

    Fig. 7 UV-Vis-NIR (a) and luminescence (b) spectra of[Au25(PPh3)10(SR)5Cl2]2+ species with different thiolate ligands.Excitation wavelength: 514 nm.

    4 Conclusions

    In summary, we have demonstrated that thiolated gold nanoparticles have different compositions, structures, sizes and protecting thiolates can be transformed to [Au25(PPh3)10(SR)5Cl2]2+(SR: thiolate) through [Au11(PPh3)8Cl2]2+intermediate under the action of PPh3, i.e., PPh3acts as a universal converter for thiolated gold nanoparticles. But this transformation was not found in gold nanoparticles protected by other ligands (PVP, citrate) and Ag25, indicating the unique reactivity of thiolated gold nanoparticles with PPh3. The utility of this finding is that it provides ideal opportunity to investigate the ligand effect and screen ligand for speical applications of thiolated gold nanoparticles.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    亚洲色图av天堂| 在线观看av片永久免费下载| 亚洲国产精品合色在线| h日本视频在线播放| 在线观看66精品国产| 少妇熟女aⅴ在线视频| 日本-黄色视频高清免费观看| 成人毛片a级毛片在线播放| 日韩精品青青久久久久久| 日本与韩国留学比较| 国产精品久久久久久精品电影| 国产亚洲午夜精品一区二区久久 | 精品久久久久久成人av| 级片在线观看| 亚洲不卡免费看| 精品国内亚洲2022精品成人| 大又大粗又爽又黄少妇毛片口| 波多野结衣巨乳人妻| 岛国毛片在线播放| 午夜福利在线观看免费完整高清在| 久久久午夜欧美精品| 99久久精品热视频| 有码 亚洲区| 亚洲av熟女| 午夜爱爱视频在线播放| 嘟嘟电影网在线观看| 国产成人精品一,二区| 欧美日韩国产亚洲二区| 一级爰片在线观看| videos熟女内射| 蜜桃久久精品国产亚洲av| 99久久人妻综合| 国产在线男女| 99久久九九国产精品国产免费| 麻豆久久精品国产亚洲av| 亚洲精品日韩av片在线观看| 精品国产三级普通话版| 精品午夜福利在线看| 久久99热这里只频精品6学生 | 男女那种视频在线观看| 精品久久久久久久人妻蜜臀av| www.av在线官网国产| 欧美一区二区精品小视频在线| 日本午夜av视频| 爱豆传媒免费全集在线观看| 一级二级三级毛片免费看| 能在线免费看毛片的网站| 久久精品国产亚洲网站| 精品人妻一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 亚洲成人av在线免费| 人人妻人人澡欧美一区二区| 美女黄网站色视频| 欧美一区二区亚洲| 毛片女人毛片| 极品教师在线视频| 免费观看精品视频网站| 亚洲色图av天堂| 午夜福利在线在线| 99热网站在线观看| 淫秽高清视频在线观看| 成人无遮挡网站| 久久99热6这里只有精品| 婷婷色av中文字幕| 国产色婷婷99| 黄色一级大片看看| 男的添女的下面高潮视频| 免费播放大片免费观看视频在线观看 | 国产成人精品久久久久久| 国产精品无大码| 又粗又硬又长又爽又黄的视频| 一区二区三区四区激情视频| 国产精品熟女久久久久浪| 如何舔出高潮| 亚洲人成网站在线观看播放| 在线天堂最新版资源| 精品人妻视频免费看| 色哟哟·www| 久久6这里有精品| 51国产日韩欧美| 真实男女啪啪啪动态图| 亚洲国产精品合色在线| 日韩欧美 国产精品| 亚洲怡红院男人天堂| 听说在线观看完整版免费高清| 亚洲四区av| 亚洲美女搞黄在线观看| 人人妻人人看人人澡| 欧美日韩一区二区视频在线观看视频在线 | 校园人妻丝袜中文字幕| 在线免费十八禁| 99久久人妻综合| 亚洲在久久综合| 久久热精品热| 亚洲一级一片aⅴ在线观看| 久久精品久久精品一区二区三区| 国产精品美女特级片免费视频播放器| av线在线观看网站| 日韩成人伦理影院| 亚洲中文字幕一区二区三区有码在线看| 国产不卡一卡二| 亚洲最大成人av| 好男人在线观看高清免费视频| 欧美高清性xxxxhd video| 久久亚洲国产成人精品v| 大话2 男鬼变身卡| 国内揄拍国产精品人妻在线| 听说在线观看完整版免费高清| 国产精品一区www在线观看| 欧美成人午夜免费资源| 亚洲欧美成人精品一区二区| 亚洲中文字幕一区二区三区有码在线看| 婷婷六月久久综合丁香| 嫩草影院精品99| 日本欧美国产在线视频| 九九爱精品视频在线观看| 一个人看视频在线观看www免费| 国产三级中文精品| 日韩大片免费观看网站 | av黄色大香蕉| 黄色配什么色好看| 身体一侧抽搐| 国产一区二区三区av在线| 久久精品影院6| 一级毛片我不卡| 九九爱精品视频在线观看| 一个人看视频在线观看www免费| 日日啪夜夜撸| 精品久久久久久久久av| 最后的刺客免费高清国语| 亚洲国产精品久久男人天堂| 亚洲,欧美,日韩| 婷婷色麻豆天堂久久 | 欧美变态另类bdsm刘玥| 精品熟女少妇av免费看| 菩萨蛮人人尽说江南好唐韦庄 | 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| av播播在线观看一区| 日韩强制内射视频| 精品一区二区三区视频在线| 精品久久久久久久久久久久久| www.av在线官网国产| 亚洲国产精品sss在线观看| 我要看日韩黄色一级片| 狂野欧美白嫩少妇大欣赏| 联通29元200g的流量卡| 亚洲电影在线观看av| 26uuu在线亚洲综合色| 免费搜索国产男女视频| 一级黄片播放器| 免费观看精品视频网站| 夜夜看夜夜爽夜夜摸| 亚洲av男天堂| 亚洲高清免费不卡视频| 久热久热在线精品观看| 中文资源天堂在线| 日韩av在线免费看完整版不卡| 长腿黑丝高跟| 免费大片18禁| 99热全是精品| 日韩欧美在线乱码| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 日本欧美国产在线视频| 老女人水多毛片| 欧美区成人在线视频| 国产精品,欧美在线| 嫩草影院入口| 亚洲国产成人一精品久久久| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 18禁在线播放成人免费| 国产精品国产三级国产专区5o | 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 一级爰片在线观看| 欧美三级亚洲精品| 久久久久久久久大av| 亚洲五月天丁香| 国产久久久一区二区三区| 女人久久www免费人成看片 | 成年av动漫网址| 欧美激情久久久久久爽电影| 日韩中字成人| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 欧美一区二区国产精品久久精品| 亚洲国产色片| 国产探花在线观看一区二区| 午夜福利网站1000一区二区三区| av又黄又爽大尺度在线免费看 | 国产伦理片在线播放av一区| 国产av在哪里看| 亚洲av电影在线观看一区二区三区 | 在线观看66精品国产| 亚洲国产精品专区欧美| 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 在线观看66精品国产| 久久久成人免费电影| 亚洲高清免费不卡视频| 国产在视频线在精品| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂影院成人在线观看| 精品少妇黑人巨大在线播放 | 国产精品久久久久久久久免| 伦精品一区二区三区| 男人舔奶头视频| 久久久久久大精品| 久久午夜福利片| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一小说| 中文字幕亚洲精品专区| 黄色一级大片看看| 婷婷色综合大香蕉| 精品免费久久久久久久清纯| 免费看av在线观看网站| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 毛片一级片免费看久久久久| 午夜福利成人在线免费观看| 国产精品.久久久| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 久久精品国产鲁丝片午夜精品| 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 久久久久久久久久成人| 免费观看a级毛片全部| 国产黄片视频在线免费观看| 国产久久久一区二区三区| 高清午夜精品一区二区三区| 黑人高潮一二区| 国产黄色视频一区二区在线观看 | 国产av不卡久久| 欧美成人a在线观看| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 男女国产视频网站| 久久久久网色| 青春草视频在线免费观看| 国内精品美女久久久久久| 亚洲av福利一区| 日本一二三区视频观看| 亚洲在线观看片| 22中文网久久字幕| 日韩强制内射视频| 啦啦啦啦在线视频资源| 日本熟妇午夜| 2022亚洲国产成人精品| 亚洲18禁久久av| 1024手机看黄色片| 国产免费又黄又爽又色| 全区人妻精品视频| 日韩三级伦理在线观看| 欧美色视频一区免费| 亚洲图色成人| 国产毛片a区久久久久| 精品人妻视频免费看| 亚洲av熟女| 女的被弄到高潮叫床怎么办| 精品久久久久久久人妻蜜臀av| 熟妇人妻久久中文字幕3abv| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久 | 最新中文字幕久久久久| 男人的好看免费观看在线视频| 免费观看精品视频网站| 国产精品无大码| 国内精品宾馆在线| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 女人十人毛片免费观看3o分钟| 国产 一区 欧美 日韩| 22中文网久久字幕| 国产精品人妻久久久久久| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 国产单亲对白刺激| 大香蕉久久网| 99久久中文字幕三级久久日本| 免费黄色在线免费观看| 成人亚洲欧美一区二区av| 中文字幕熟女人妻在线| 在线播放国产精品三级| av.在线天堂| 久久精品综合一区二区三区| 久久久久性生活片| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 观看美女的网站| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 午夜爱爱视频在线播放| 国产伦一二天堂av在线观看| 色噜噜av男人的天堂激情| 亚洲va在线va天堂va国产| 亚洲三级黄色毛片| 99视频精品全部免费 在线| 国产亚洲午夜精品一区二区久久 | 亚洲欧洲国产日韩| 在现免费观看毛片| 人人妻人人看人人澡| 国产一区二区三区av在线| 丝袜美腿在线中文| 别揉我奶头 嗯啊视频| 看免费成人av毛片| 高清日韩中文字幕在线| 高清av免费在线| 亚洲欧美日韩卡通动漫| 超碰97精品在线观看| 欧美人与善性xxx| 日韩欧美精品v在线| 欧美zozozo另类| 精品久久久久久成人av| 一级黄色大片毛片| 国产一区亚洲一区在线观看| 国产精品国产三级国产专区5o | 九九久久精品国产亚洲av麻豆| 禁无遮挡网站| 亚洲精华国产精华液的使用体验| 久久精品国产自在天天线| 99久国产av精品国产电影| 免费av观看视频| 热99在线观看视频| 久久午夜福利片| 国产色婷婷99| 免费看a级黄色片| 国产黄片视频在线免费观看| 国产乱人偷精品视频| av在线蜜桃| 97在线视频观看| 成人二区视频| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 两性午夜刺激爽爽歪歪视频在线观看| 热99在线观看视频| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 99久国产av精品| 两个人的视频大全免费| 日韩强制内射视频| 久久精品国产亚洲av天美| 国产一级毛片七仙女欲春2| 日韩强制内射视频| 亚洲av成人精品一区久久| 国产三级在线视频| av卡一久久| 尾随美女入室| 国产成人免费观看mmmm| 99在线视频只有这里精品首页| 黄色一级大片看看| 久久久久久大精品| 99热6这里只有精品| 国产av码专区亚洲av| 成人漫画全彩无遮挡| av在线老鸭窝| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 精品酒店卫生间| 亚洲熟妇中文字幕五十中出| 国产亚洲一区二区精品| 国产老妇女一区| 我要看日韩黄色一级片| 国产成人a区在线观看| 又粗又爽又猛毛片免费看| av在线播放精品| 男女那种视频在线观看| 久久草成人影院| 在线观看66精品国产| 又粗又硬又长又爽又黄的视频| 极品教师在线视频| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 亚洲国产成人一精品久久久| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 天堂网av新在线| 亚洲自拍偷在线| 简卡轻食公司| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| kizo精华| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 久久精品人妻少妇| 成人午夜高清在线视频| 国产精品野战在线观看| 精品久久久久久久久亚洲| 欧美色视频一区免费| 人人妻人人澡人人爽人人夜夜 | 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美| 国产 一区精品| 国产精品一区www在线观看| 精品国产露脸久久av麻豆 | 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 国产极品精品免费视频能看的| 六月丁香七月| 日日摸夜夜添夜夜添av毛片| 日本免费a在线| 一个人看视频在线观看www免费| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 午夜免费激情av| 三级国产精品欧美在线观看| 久久久久性生活片| 少妇被粗大猛烈的视频| 最近最新中文字幕大全电影3| 美女黄网站色视频| 午夜精品一区二区三区免费看| 国产国拍精品亚洲av在线观看| 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 国模一区二区三区四区视频| 国产精品一区二区性色av| 国产成人aa在线观看| 久久久午夜欧美精品| 久久草成人影院| 日本wwww免费看| 国产 一区 欧美 日韩| 床上黄色一级片| 国产又色又爽无遮挡免| 中国国产av一级| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 亚洲精品aⅴ在线观看| 秋霞在线观看毛片| 婷婷色综合大香蕉| 十八禁国产超污无遮挡网站| 国产视频首页在线观看| 九草在线视频观看| 亚洲欧美清纯卡通| 男女啪啪激烈高潮av片| 中文字幕制服av| 亚洲综合色惰| 欧美潮喷喷水| 我要搜黄色片| 中文字幕另类日韩欧美亚洲嫩草| 97人妻天天添夜夜摸| 欧美日韩成人在线一区二区| 韩国精品一区二区三区 | 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 免费av不卡在线播放| 秋霞在线观看毛片| 国产极品天堂在线| 18禁观看日本| 在线观看三级黄色| 深夜精品福利| 性色avwww在线观看| 久久99一区二区三区| 建设人人有责人人尽责人人享有的| 日本午夜av视频| 老女人水多毛片| 黑人猛操日本美女一级片| 亚洲在久久综合| 成人无遮挡网站| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 色吧在线观看| 另类亚洲欧美激情| 美女福利国产在线| 天堂中文最新版在线下载| 久久人人爽人人片av| 又大又黄又爽视频免费| 在线观看一区二区三区激情| 男女国产视频网站| 少妇高潮的动态图| 在现免费观看毛片| 如日韩欧美国产精品一区二区三区| 亚洲国产精品国产精品| 色哟哟·www| 日本黄色日本黄色录像| 又黄又粗又硬又大视频| 欧美亚洲 丝袜 人妻 在线| 黑人巨大精品欧美一区二区蜜桃 | 中国美白少妇内射xxxbb| 91在线精品国自产拍蜜月| 亚洲人成77777在线视频| 欧美日韩av久久| 日本午夜av视频| 高清在线视频一区二区三区| 精品一区在线观看国产| 国产成人精品在线电影| a 毛片基地| 日本色播在线视频| 亚洲国产毛片av蜜桃av| 国产精品女同一区二区软件| 国产有黄有色有爽视频| 天堂俺去俺来也www色官网| 美女国产视频在线观看| 亚洲精品一二三| 国产精品久久久久久av不卡| 欧美精品人与动牲交sv欧美| 三上悠亚av全集在线观看| av又黄又爽大尺度在线免费看| videos熟女内射| 国产亚洲最大av| 90打野战视频偷拍视频| 亚洲av免费高清在线观看| 免费人妻精品一区二区三区视频| videos熟女内射| 制服人妻中文乱码| 熟女电影av网| 国产69精品久久久久777片| 色吧在线观看| 深夜精品福利| 热99国产精品久久久久久7| 日本av免费视频播放| 亚洲国产毛片av蜜桃av| 色视频在线一区二区三区| 国产av精品麻豆| 麻豆乱淫一区二区| 精品一区二区三区四区五区乱码 | 亚洲av日韩在线播放| 在线观看www视频免费| 女人精品久久久久毛片| 人妻一区二区av| av电影中文网址| 国产精品成人在线| 国产高清三级在线| 人人妻人人添人人爽欧美一区卜| 亚洲中文av在线| 亚洲婷婷狠狠爱综合网| 精品熟女少妇av免费看| 国产精品 国内视频| 男人爽女人下面视频在线观看| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区| 人妻系列 视频| 91aial.com中文字幕在线观看| 成人二区视频| 久久精品国产自在天天线| 日韩制服丝袜自拍偷拍| 日日撸夜夜添| 久久久国产欧美日韩av| 国产男人的电影天堂91| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 亚洲国产精品999| 久久 成人 亚洲| 国产av码专区亚洲av| 美女国产高潮福利片在线看| 亚洲精品日韩在线中文字幕| 亚洲av综合色区一区| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| 亚洲综合色网址| 久久久欧美国产精品| 观看美女的网站| 国产免费现黄频在线看| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 国产乱来视频区| 亚洲精品美女久久久久99蜜臀 | 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| 成人国产麻豆网| 涩涩av久久男人的天堂| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 人人澡人人妻人| 90打野战视频偷拍视频| 热99国产精品久久久久久7| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频| 国产高清三级在线| 一级毛片电影观看| 国产在线视频一区二区| 最近手机中文字幕大全| 久久免费观看电影| 如何舔出高潮| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 日韩成人av中文字幕在线观看| 亚洲经典国产精华液单| av不卡在线播放| 丝袜人妻中文字幕| 18禁观看日本| 午夜激情久久久久久久| 国产毛片在线视频| 国产成人a∨麻豆精品| 在线观看免费日韩欧美大片| 国产淫语在线视频| 丰满少妇做爰视频| 欧美日韩视频精品一区| 欧美变态另类bdsm刘玥| av线在线观看网站| 午夜免费鲁丝| 美女大奶头黄色视频| 国产在线一区二区三区精| 久久人人爽av亚洲精品天堂| 伊人亚洲综合成人网| 一个人免费看片子| 少妇猛男粗大的猛烈进出视频|