張寶月 鄭一夫 龐曉叢
摘要目的:為了探討抗腫瘤中藥復(fù)方的物質(zhì)基礎(chǔ)和網(wǎng)絡(luò)藥理機(jī)制,并且闡明中藥方劑中各種有效成分的協(xié)同作用機(jī)理。方法:本文通過收集腫瘤防治相關(guān)的中藥復(fù)方,并從中選取出現(xiàn)頻次較高的單味藥,使用CNPC和TCMSP數(shù)據(jù)庫進(jìn)行化學(xué)成分的收集,對(duì)有效化學(xué)成分進(jìn)行了抗腫瘤作用的物質(zhì)基礎(chǔ)研究;利用TCMID及CTD數(shù)據(jù)庫尋找化學(xué)成分的作用基因,在此基礎(chǔ)上利用Cytoscape構(gòu)建網(wǎng)絡(luò),進(jìn)行網(wǎng)絡(luò)機(jī)制研究。結(jié)果:收集了65個(gè)抗腫瘤中藥復(fù)方,其中出現(xiàn)頻次大于10的單味藥有4個(gè),分別為甘草、黃芪、人參和黃芩,其已知化學(xué)成分分別為172,70,293和92個(gè),抗腫瘤有效成分主要包括三萜類、黃酮類、多糖類、皂苷類化合物。在化學(xué)成分相關(guān)基因分析的基礎(chǔ)上,構(gòu)建了化學(xué)成分—基因調(diào)控網(wǎng)絡(luò),蛋白質(zhì)相互作用網(wǎng)絡(luò),基因通路富集網(wǎng)絡(luò)以及基因疾病網(wǎng)絡(luò),以揭示中藥復(fù)方的多種有效成分的協(xié)同作用機(jī)制。此外,應(yīng)用分子對(duì)接方法,對(duì)化學(xué)成分影響較大的基因相關(guān)蛋白進(jìn)行了相互作用分析,包括PTG2、EGFR、PPARG、ESR1、MTOR、AKT1、MAPK1、PPARA和MAPK8。大部分化合物都能作用于多個(gè)靶點(diǎn),主要涉及生物堿、黃酮及其苷、有機(jī)酸及二蒽酮等結(jié)構(gòu)類型,代表性的化學(xué)成分有水仙苷、蘆丁、北豆根堿、黃岑素、漢黃芩甙、異夏佛塔苷、亞葉酸、偽金絲桃素等。結(jié)論:本文應(yīng)用統(tǒng)計(jì)學(xué)方法、網(wǎng)絡(luò)藥理學(xué)方法及分子對(duì)接方法,初步揭示了抗腫瘤傳統(tǒng)中草藥有效成分及其網(wǎng)絡(luò)作用機(jī)制,為中藥抗腫瘤多靶點(diǎn)藥物設(shè)計(jì)提供重要信息。
關(guān)鍵詞腫瘤;中藥;網(wǎng)絡(luò)藥理學(xué);數(shù)據(jù)挖掘;分子對(duì)接
Network Pharmacologybased Study of the Active Constituents of Chinese Medicinal Formulae for Antitumor Mechanism
Zhang Baoyue1,Zheng Yifu2,Pang Xiaocong1,Zheng Xiangjin1,Wang Zhe1,Ding Hong2,Liu Ailin1,Du Guanhua1
(1 Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China; 2 School of Pharmaceutical Sciences,Wuhan University,Wuhan 430072,China)
AbstractObjective:To investigate the network pharmacology of antitumor Chinese medicinal formulae and explain the synergistic mechanism of various active ingredients of Chinese medicinal formulae.Methods:We collected the antitumor Chinese medicinal formulae and chose several single herbs with the top frequency for further study.The chemical constituents of these herbs were downloaded from databases CNPC and Traditional Chinese Medicine Systems Pharmacology and were analyzed to set up the antitumor material basis.The genes regulated by these constituents were retrieved in Traditional Chinese Medicine integrated database and Comparative Toxicogenomics database.Results:We collected 65 antitumor Chinese medicinal formulae,and 4 single herbs were selected,including Radix Glycyrrhizae,Radix Astragali seu Hedysari,Radix Ginseng and Radix Scutel ariae,which consist of 172,70,293,and 92 known constituents,respectively.Antitumor active ingredients mainly included triterpenoids,flavonoids,polysaccharides,and saponin compounds.The constituentgene network,proteinprotein interaction network,genepathway enrichment network,and genedisease network were constructed based on chemical compositionrelated genetic analysis.Moreover,molecular docking was employed to clarify the interactions between active constituents and key drug targets (PTG2,epidermal growth factor receptor,peroxisome proliferatoractivated receptor gamma,estrogen receptor 1,mammalian target of rapamycin,AKT1,mitogenactivated protein kinase 1 (MAPK1),peroxisome proliferatoractivated receptor alpha,and MAPK8).Most of the constituents could act on multiple targets,whose structures mainly belonged to alkaloids,flavonoids,and their glycosides,organic acids,or dianthrone,and their representative chemical constituents included narcissus glycosides,rutin,dauricine,scutellarin,baicalin,isoschaftoside,and leucovorin.Conclusion:The network mechanism of the effective constituents from traditional Chinese medicines (TCMs) for antitumor therapy was partially uncovered by using statistical methods,network pharmacology methods,and molecular docking methods.This study will provide important information for new drug design with multiple targets for antitumor therapy.
Key WordsTumor; Traditional Chinese medicine; Network pharmacology; Data mining; Molecular docking
中圖分類號(hào):R285文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2018.08.044
腫瘤作為一種嚴(yán)重威脅人類生命健康的惡性疾病,其發(fā)病率及死亡率一直呈上升趨勢(shì),我國(guó)最近統(tǒng)計(jì)資料表明,腫瘤引起的死亡人數(shù)已經(jīng)超過心血管疾病,居城市及農(nóng)村居民死因的首位[12]。目前惡性腫瘤的治療以傳統(tǒng)的手術(shù)、放療和化療為主,雖然放療可以殺滅腫瘤細(xì)胞,短期抑制其增殖,化學(xué)藥物對(duì)一些腫瘤也有不錯(cuò)的治療效果,但作用的特異性低,殺傷腫瘤細(xì)胞的同時(shí),也抑制人體正常組織細(xì)胞的活動(dòng),所以大部分藥物都有嚴(yán)重的不良反應(yīng)[3]。
我國(guó)中醫(yī)從《神農(nóng)本草經(jīng)》開始就已經(jīng)認(rèn)識(shí)到了癌癥的存在,歷代中醫(yī)名家在攻克癌癥的道路上流傳下來的方劑是中醫(yī)藥治療癌癥的寶貴遺產(chǎn),其中約200種中草藥已被學(xué)者證明確有抗癌作用[4]。相比于傳統(tǒng)西方醫(yī)學(xué)針對(duì)腫瘤放療化療的治療手段,中藥有同樣治療癌癥效果的同時(shí),還具有來源廣泛、價(jià)格低廉、不良反應(yīng)小等優(yōu)點(diǎn),并在提高患者免疫力,改善患者生命質(zhì)量,防止復(fù)發(fā)轉(zhuǎn)移,延長(zhǎng)生存期等諸多方面發(fā)揮著重要作用[5]。中西醫(yī)結(jié)合抗腫瘤治療時(shí),運(yùn)用中藥可增強(qiáng)放、化療敏感性,減輕放、化療不良反應(yīng),所以,中藥作為輔助療法協(xié)同治療癌癥已經(jīng)成為我國(guó)醫(yī)院中普遍采取的治療手段[6]。此外,與西醫(yī)比較,中醫(yī)學(xué)在個(gè)體化治療方面具有獨(dú)特的優(yōu)勢(shì),有助于選擇適合患者的藥物,提高治療的針對(duì)性[7]。
目前,中藥復(fù)方在腫瘤治療的整個(gè)過程中的不同階段均發(fā)揮了重要作用,療效也得到充分肯定,成為中藥現(xiàn)代研究的熱點(diǎn)之一。中藥具有多成分,多靶點(diǎn),多種調(diào)節(jié)方式的特點(diǎn)。以西方單一靶標(biāo)和單一成分的研究方法難以反映中藥的系統(tǒng)性[8],不能科學(xué)地解釋中草藥復(fù)方的物質(zhì)基礎(chǔ)和處方規(guī)律?;羝战鹚筟9]提出了網(wǎng)絡(luò)藥理學(xué)研究方法,并且認(rèn)為藥物作用于多個(gè)靶點(diǎn),并通過多個(gè)靶點(diǎn)之間的相互作用產(chǎn)生協(xié)同作用和衰減作用[10]。網(wǎng)絡(luò)藥理學(xué)從相互連接的角度研究問題,這恰恰與中藥的核心思想不謀而合。因此,利用網(wǎng)絡(luò)藥理學(xué)對(duì)中醫(yī)藥進(jìn)行研究具有獨(dú)特的優(yōu)勢(shì)和巨大的發(fā)展?jié)摿?。隨著近些年中藥現(xiàn)代化發(fā)展,國(guó)內(nèi)外建立了多個(gè)中藥數(shù)據(jù)庫,比如TCMID、CTD、TCMSP、HIT、TCMDB@Taiwan等[11]?;诂F(xiàn)有數(shù)據(jù)庫的數(shù)據(jù)挖掘及相關(guān)生物信息學(xué)分析,結(jié)合計(jì)算模擬方法,為中藥網(wǎng)絡(luò)機(jī)制研究提供了方便有效的方法途徑。
本文首先搜集了五大類抗腫瘤的中藥復(fù)方,包括扶正固本類、清熱解毒類、活血化瘀類、軟堅(jiān)散結(jié)類、化痰利濕類。根據(jù)單味藥在復(fù)方中出現(xiàn)的頻次,從中選取出現(xiàn)頻次較高的中草藥,對(duì)其抗腫瘤物質(zhì)基礎(chǔ)進(jìn)行了分析研究。在化學(xué)成分收集及其對(duì)基因調(diào)控作用分析的基礎(chǔ)上,進(jìn)行KEGG及GO富集分析,并構(gòu)建化學(xué)成分基因調(diào)控網(wǎng)絡(luò),蛋白質(zhì)相互作用網(wǎng)絡(luò),基因富集通路網(wǎng)絡(luò)以及基因疾病網(wǎng)絡(luò),以揭示其抗腫瘤的網(wǎng)絡(luò)機(jī)制。最后,對(duì)化學(xué)成分與基因作用網(wǎng)絡(luò)進(jìn)行分析,確定關(guān)鍵基因的對(duì)應(yīng)靶點(diǎn),并以此建立分子對(duì)接模型,來進(jìn)一步驗(yàn)證化學(xué)成分對(duì)抗腫瘤靶點(diǎn)的作用機(jī)制,為抗腫瘤多靶點(diǎn)藥物設(shè)計(jì)提供重要信息依據(jù)。
1材料與方法
11中藥復(fù)方及單體收集中藥用于防治疾病的基本形式是中藥復(fù)方,即定量的若干種特定中草藥植物的混合物。中藥復(fù)方中含有大量的化學(xué)物質(zhì),它們是與疾病相關(guān)多個(gè)靶點(diǎn)相互作用的物質(zhì)基礎(chǔ)。中藥復(fù)方的收集主要通過以下2個(gè)途徑:1)通過在方劑現(xiàn)代應(yīng)用數(shù)據(jù)庫(http://coworkcintcmcom/engine/login_dojsp?u=guest&p=guest321&cnid=12895),以“腫瘤”或“癌癥”為關(guān)鍵詞進(jìn)行查詢;2)對(duì)中國(guó)知網(wǎng)及Pubmed數(shù)據(jù)庫進(jìn)行檢索,收集治療腫瘤中藥復(fù)方。在此基礎(chǔ)上,統(tǒng)計(jì)每味中藥出現(xiàn)的頻次。對(duì)出現(xiàn)頻次大于10的中草藥進(jìn)行后續(xù)的研究。這些中草藥植物中所含的化學(xué)成分從國(guó)家人口與健康科學(xué)數(shù)據(jù)共享平臺(tái)最新版的中國(guó)天然產(chǎn)物化學(xué)成分?jǐn)?shù)據(jù)庫CNPC(http://pharmdatancmicn/cnpc/)以及TCMSP數(shù)據(jù)庫(http://ibtshkbueduhk/LSP/tcmspphp)中收集。
12作用基因及靶點(diǎn)收集對(duì)于中藥的已知成分,我們利用TCMID(http://wwwmegabionetorg/tcmid/)[12]和CTD(http://ctdbaseorg/)[13]數(shù)據(jù)庫,分析化學(xué)成分的作用靶點(diǎn)。TCMID由6個(gè)部分組成,即處方、草藥、成分、靶標(biāo)、藥物和疾病。TCMID通過對(duì)STITCH,Herb Ingredients′ Targets(HIT),以及文獻(xiàn)進(jìn)行數(shù)據(jù)挖掘來確定化學(xué)成分與靶點(diǎn)的潛在關(guān)系。CTD提供關(guān)于化學(xué)成分基因/蛋白質(zhì)相互作用,化學(xué)成分疾病和基因疾病關(guān)系信息。其中化學(xué)成分與基因/蛋白質(zhì)相互作用數(shù)據(jù)來源于已報(bào)道的文獻(xiàn)。
13作用網(wǎng)絡(luò)分析我們使用FunRich 212(http://wwwfunrichorg)對(duì)中藥有效成分調(diào)控基因的分布進(jìn)行分析,并得到共同調(diào)控的基因。一方面,對(duì)每味中藥相關(guān)基因進(jìn)行KEGG及GO富集分析,以分析它們抗腫瘤的作用特點(diǎn)。另一方面,利用Cytoscape_321對(duì)共同調(diào)控的基因,構(gòu)建核心調(diào)控網(wǎng)絡(luò),即化學(xué)成分基因網(wǎng)絡(luò)。利用STRING數(shù)據(jù)庫對(duì)基因的相互關(guān)系進(jìn)行預(yù)測(cè),構(gòu)建蛋白質(zhì)相互作用網(wǎng)絡(luò)。利用DAVID數(shù)據(jù)庫對(duì)中藥化學(xué)成分調(diào)控基因的代謝通路進(jìn)行GO、KEGG、OMIM富集分析,構(gòu)建基因通路網(wǎng)絡(luò)以及基因疾病網(wǎng)絡(luò),以揭示其抗腫瘤作用機(jī)制。
14相互作用分析利用Cytoscape_321的cytohubba插件從蛋白質(zhì)相互作用網(wǎng)絡(luò)中找出關(guān)鍵節(jié)點(diǎn)。將有上市藥物的靶點(diǎn)或已進(jìn)入II期臨床試驗(yàn)藥物的靶點(diǎn)挑選出來,構(gòu)建分子對(duì)接模型。這些靶點(diǎn)蛋白的晶體結(jié)構(gòu)來自PDB(Protein Data Bank)數(shù)據(jù)庫[14]。為了保證分子對(duì)接的可靠性,我們選擇分辨率<25 且具有配體復(fù)合物的蛋白晶體結(jié)構(gòu),建立分子對(duì)接模型。分子對(duì)接程序使用Discovery Studio 2016(San Diego,CA,USA)的Libdock軟件包。首先去除PDB結(jié)構(gòu)中的水分子,對(duì)接的活性口袋由原始配體分子進(jìn)行定義。對(duì)接參數(shù)設(shè)置之后,我們將晶體結(jié)構(gòu)中的配體分子抽取出來并重新對(duì)接至預(yù)先定義好的活性口袋,同時(shí)計(jì)算對(duì)接后的配體分子構(gòu)象與晶體結(jié)構(gòu)中的初始構(gòu)象之間的均方根差值(Rootmeansquare Deviation,RMSD),從而驗(yàn)證分子對(duì)接的可靠性。
2結(jié)果
21用于治療腫瘤的中藥復(fù)方及化學(xué)成分收集通過方劑現(xiàn)代應(yīng)用數(shù)據(jù)庫及文獻(xiàn)檢索,共收集到65個(gè)治療腫瘤的中藥復(fù)方,包括扶正固本類復(fù)方、清熱解毒類復(fù)方、活血化瘀類復(fù)方、軟堅(jiān)散結(jié)類復(fù)方、化痰利濕類復(fù)方。然后,對(duì)這些復(fù)方中單味藥出現(xiàn)的頻次進(jìn)行統(tǒng)計(jì)分析。見圖1。其中出現(xiàn)頻次大于10的中草藥有4個(gè),分別為甘草、黃芪、人參和黃芩。然后,通過中國(guó)天然產(chǎn)物數(shù)據(jù)庫以及TCMSP數(shù)據(jù)庫收集這些單味藥的主要化學(xué)成分,由于這些化學(xué)成分不一定是有效成分,因此我們利用TCMID和CTD數(shù)據(jù)庫,又分析了這4個(gè)單味藥中已報(bào)道的有效成分?jǐn)?shù)據(jù)。見表1。
22抗腫瘤的物質(zhì)基礎(chǔ)研究
通過文獻(xiàn)調(diào)研的方法,對(duì)甘草、黃芪、人參、黃芩4種單味藥進(jìn)行了抗腫瘤的物質(zhì)基礎(chǔ)研究。
221甘草甘草中的三萜類、黃酮類化合物及甘草粗提物對(duì)結(jié)腸直腸癌、乳腺癌、前列腺癌、肝癌、胃癌、膀胱癌、肺癌有顯著的抑制作用[15]。Khan等[16]指出,化合物甘草甜素(glycyrrhizin)能明顯降低腫瘤壞死因子α(Tumor Necrosis Factor,TNFα)的水平,也減弱了黏液層的消耗以及唾液酸粘蛋白向蘇氨粘蛋白的轉(zhuǎn)移;甘草甜素對(duì)1,2一二甲肼(DMH)誘導(dǎo)的結(jié)腸癌具有很強(qiáng)的化學(xué)預(yù)防潛力。甘草抗腫瘤活性的相關(guān)文獻(xiàn)報(bào)道中,關(guān)于抗乳腺癌的最多。Hsu等[17]指出,化合物光甘草定(glabridin)可以通過抑制黏著斑激酶/Rho信號(hào)通路進(jìn)而抑制MDAMB231人乳腺癌細(xì)胞的侵襲,轉(zhuǎn)移和血管生成。Lee等[18]發(fā)現(xiàn)化合物isoangustone A是用于治療前列腺癌的有效的CDK2分子抑制劑。Lin等[19]報(bào)道,化合物甘草次酸(Glycyrrhetinic Acid)能有效抑制裸鼠胃癌細(xì)胞的形成,通過在G2期誘導(dǎo)胃癌細(xì)胞凋亡和阻滯細(xì)胞周期發(fā)揮作用。Tsai等[20]報(bào)道,化合物甘草查耳酮A(licochalcone A)可以抑制人肝細(xì)胞癌細(xì)胞SKHep1和HA22T/VGH的遷移和侵襲能力。發(fā)現(xiàn)該化合物抑制了尿激酶型纖溶酶原激活物(Urokinase Plasminogen Activator,uPA)的活性和表達(dá),并在上述細(xì)胞中降低了uPA的轉(zhuǎn)錄水平。Yuan等[21]發(fā)現(xiàn),化合物甘草查耳酮B(licochalcone B)顯著抑制人膀胱癌T24和EJ細(xì)胞株的增殖,并具有濃度和時(shí)間依賴性。Tsai等[22]報(bào)道,化合物光甘草定抑制人非小細(xì)胞肺癌A549細(xì)胞的侵襲和轉(zhuǎn)移,并通過抑制FAK/Rho信號(hào)通路降低A549介導(dǎo)的血管發(fā)生。
222黃芪黃芪中含有多種活性成分,包括多糖類、黃酮類、皂苷類、氨基酸類化合物和多種微量元素??鼓[瘤作用機(jī)制主要包括抑制腫瘤細(xì)胞增殖、促進(jìn)腫瘤細(xì)胞凋亡、抑制腫瘤細(xì)胞遷移、清除自由基、增強(qiáng)機(jī)體免疫功能等[23]。Li等[24]研究黃芪多糖對(duì)人紅白血病K562細(xì)胞增殖和凋亡的影響,證明黃芪多糖可能是通過下調(diào)細(xì)胞周期蛋白Cyclin B和Cyclin E的表達(dá)以及上調(diào)p21抑癌基因的水平從而抑制K562細(xì)胞的增殖。Wang等[25]用流式細(xì)胞術(shù)觀察了經(jīng)黃芪總黃酮干預(yù)的BGC823細(xì)胞的細(xì)胞周期及凋亡率的變化,發(fā)現(xiàn)黃芪總黃酮可劑量依賴地將BGC823細(xì)胞的細(xì)胞周期阻滯于G0/G1期。Cheng等[26]實(shí)驗(yàn)結(jié)果表明黃芪甲苷通過蛋白激酶(PKC)α細(xì)胞外調(diào)節(jié)蛋白激酶(ERK1)/2NFκB通路降低基質(zhì)金屬蛋白酶2(Matrix Metallo Proteinase2,MMP2)和基質(zhì)金屬蛋白酶9(Matrix Metallo Proteinase2,MMP9)的表達(dá),從而抑制肺癌細(xì)胞A549的轉(zhuǎn)移。Yin等[27]證明黃芪提取液能顯著降低Ⅰ期腫瘤中環(huán)氧合酶2(Cyclooxygenase,COX2)和血管內(nèi)皮生長(zhǎng)因子(Vascular Endothelial Growth Factor,VEGF)的表達(dá),提示黃芪提取液可能抑制腫瘤細(xì)胞的遷移。另有研究[2829]發(fā)現(xiàn),黃芪皂苷、黃芪毛蕊異黃酮和芒柄花黃素均有抗氧化應(yīng)激的作用,可以清除自由基。此外,黃芪注射液及其多糖不僅能夠提高超氧化物歧化酶(Superoxide Dismutase,SOD)活性,降低丙二醛(Malon Dialdehyde,MDA)的含量,清除細(xì)胞內(nèi)氧化應(yīng)激產(chǎn)生的活性氧(ROS)和活性氮(RNS),而且還能減少自由基生成[30]。Zhang等[31]用流式細(xì)胞術(shù)檢測(cè)了經(jīng)黃芪甲苷口服給藥的肺癌小鼠脾臟中調(diào)節(jié)性T細(xì)胞(Regulatory T Cells,Tregs)及L淋巴細(xì)胞(Cytotoxic T Lymphocytes,CTLs)的比例,發(fā)現(xiàn)脾臟中Treg比例下降,L淋巴細(xì)胞比例增加,提示黃芪甲苷可能通過增強(qiáng)機(jī)體免疫功能抑制腫瘤的生長(zhǎng)。
223人參人參中具有抗腫瘤活性的成分主要有人參皂苷及其代謝產(chǎn)物、人參多糖和人參炔醇。目前文獻(xiàn)報(bào)道人參對(duì)肝癌、胃癌、肺癌、腎癌、鱗癌、鼻咽癌、食管癌、結(jié)腸癌、膽囊癌、黑色素瘤、膠質(zhì)瘤、乳腺癌、乳頭瘤、卵巢癌、宮頸癌、子宮內(nèi)膜癌、膀胱癌、前列腺癌、腹水癌、淋巴瘤、骨髓瘤、骨肉瘤、白血病等腫瘤的增殖具有顯著的抑制作用[32]。研究表明20(S)人參皂苷Rg3[3334]、人參皂苷Rd[35]、PNT[36]、PNN[37]等能夠抑制腫瘤細(xì)胞的有絲分裂及在分裂間期DNA的合成,如在結(jié)腸癌細(xì)胞中抑制細(xì)胞內(nèi)增殖相關(guān)蛋白,增殖細(xì)胞核抗原的表達(dá),導(dǎo)致DNA復(fù)制和修復(fù)減少,從而抑制細(xì)胞增殖。人參皂苷Rg3[38]、Rg5[39]、CK[40]及25OHPPD[41]等在多種腫瘤如乳腺癌、胃癌、肺癌、前列腺癌等細(xì)胞周期相關(guān)蛋白調(diào)控階段發(fā)揮作用,最終將腫瘤細(xì)胞周期阻滯在G0/G1期。人參皂苷Rg5[39]、Rh2[42]、Rk1[43]、CK[40]、PPD[37]等能誘導(dǎo)腫瘤細(xì)胞內(nèi)源性凋亡;人參皂苷Rh2[42]、Rk1[43]、CK[40]、PPD[41]可以誘導(dǎo)腫瘤細(xì)胞外源性凋亡。目前對(duì)人參誘導(dǎo)腫瘤細(xì)胞分化的研究主要針對(duì)于白血病,研究表明人參總皂苷通過促紅細(xì)胞生成素受體(Erythropoietin Receptor,EpoR)的內(nèi)化誘導(dǎo)白血病細(xì)胞向紅系分化[44]。研究表明人參有效成分對(duì)多種腫瘤的侵襲與轉(zhuǎn)移具有明顯的抑制作用,人參皂苷Rb2[45]、Rg1[46]、Rg3[4748]、Rh1[49]、Rh2[50]、Rd[51]、CK[52]等可通過抑制MMP1、2、3、7、9、13、14等基質(zhì)金屬蛋白酶在癌細(xì)胞中表達(dá)以避免其破壞細(xì)胞外基質(zhì)(Extra Cellular Matrix,ECM)屏障,從而抑制癌細(xì)胞侵襲和轉(zhuǎn)移。
224黃芩黃芩的抗腫瘤作用主要通過黃酮類化合物表現(xiàn)出來,包括黃芩素、黃芩苷、漢黃芩素、千層紙素A等,可通過影響細(xì)胞周期、誘導(dǎo)細(xì)胞凋亡、抑制端粒酶活性等多種機(jī)制發(fā)揮抗腫瘤作用[53]。漢黃芩素對(duì)肝腫瘤細(xì)胞SKHEP1具有增殖抑制作用(IC50=80 μmol/L),可誘導(dǎo)SKHEP1發(fā)生凋亡并增強(qiáng)細(xì)胞中Caspase3/cpp32基因的活性[54]。Wang等[55]研究發(fā)現(xiàn),黃芩素可誘導(dǎo)HL60細(xì)胞線粒體釋放細(xì)胞色素C,導(dǎo)致細(xì)胞內(nèi)過氧化氫水平升高,從而誘發(fā)細(xì)胞凋亡并發(fā)生DNA斷裂,過氧化氫酶可有效阻斷黃芩素誘導(dǎo)細(xì)胞凋亡導(dǎo)致的DNA斷裂,說明黃芩素可能通過ROS介導(dǎo)的線粒體功能失效誘導(dǎo)細(xì)胞凋亡。研究表明黃芩素、黃芩苷、漢黃芩素均可抑制肝腫瘤細(xì)胞HepG2、Hep3B、SKHEP1的增殖。3種化合物均可將HepG2細(xì)胞的細(xì)胞周期阻滯于G2/M期,將Hep3B細(xì)胞的細(xì)胞周期阻滯于G1亞期;黃芩素和漢黃芩素可將SKHEP1細(xì)胞的細(xì)胞周期分別阻滯于G1亞期和G1期[5658]。Huang等[59]研究發(fā)現(xiàn),漢黃芩素對(duì)HL60細(xì)胞的生長(zhǎng)抑制作用(IC50為50 μmol/L)與端粒酶活性的降低有關(guān)。Zhang等[60]研究發(fā)現(xiàn),HNSCC模型小鼠經(jīng)黃芩中黃酮提取物灌胃后,腫瘤體積顯著減小,腫瘤生長(zhǎng)抑制率為66%。給予黃芩提取物千層紙素A(40 mg/kg),可使黑色素瘤B16F10小鼠的腫瘤體積減小73%[61]。
23調(diào)控基因富集分析
通過利用TCMID和CTD對(duì)甘草、黃芪、人參及黃芩4個(gè)單味藥的有效成分的作用基因進(jìn)行分析,分別得到521,576,208及678個(gè)無重復(fù)基因,其中共同作用于80個(gè)基因(圖2)。我們利用DAVID分別對(duì)這4個(gè)單味藥調(diào)控的基因進(jìn)行了KEGG富集分析。根據(jù)富集的基因數(shù)目及P值,列出了前5條通路,結(jié)果見表2。表2中的所有通路都有文獻(xiàn)報(bào)道,說明我們實(shí)驗(yàn)結(jié)果的可靠性。它們的作用通路具有一定相似性,均作用于Tolllike受體信號(hào)轉(zhuǎn)導(dǎo)途徑。此外,甘草與人參作用更為相似,而黃芪與黃芩作用更相似。利用Funrich 212對(duì)它們的GO通路及分子功能進(jìn)行了富集。從圖3可以看出,甘草與人參主要作用于絲氨酸型酶活性,黃芪與黃芩分別主要作用于酪氨酸激酶活性與轉(zhuǎn)錄因子活性。從GO_BP富集分析的結(jié)果(圖4)來看,這4個(gè)中藥對(duì)能量代謝通路及體內(nèi)代謝相關(guān)通路均有較大影響。
24作用網(wǎng)絡(luò)分析圖2表明,4個(gè)單味藥共同調(diào)控80個(gè)基因,說明它們存在共同的抗腫瘤機(jī)制。因此,我們對(duì)共同調(diào)控的80個(gè)基因進(jìn)行了富集分析,以揭示這些化學(xué)成分對(duì)基因的調(diào)控作用,作用通路及相關(guān)疾病的關(guān)系。通過圖5可以看出,大部分化學(xué)成分可以調(diào)控多個(gè)基因,是潛在的多靶點(diǎn)化學(xué)成分。圖6分析了這些基因共同調(diào)控的通路,主要包括Tolllike受體信號(hào)通路,P53信號(hào)通路,脂肪細(xì)胞因子信號(hào)通路,MAPK(Mitogenactivated Protein Kinase)信號(hào)通路,T cell相關(guān)免疫信號(hào)通路等。從圖7我們可以發(fā)現(xiàn),這些中藥涉及多種癌癥,比如前列腺癌、乳腺癌、黑色素瘤等,此外,這4種中藥也對(duì)阿爾茲海默病及II型糖尿病相關(guān)的信號(hào)通路具有一定的作用。
25分子對(duì)接通過基因相互作用(圖8)及hub基因分析,我們確定了9個(gè)有上市藥物或已進(jìn)入II期臨床試驗(yàn)藥物的靶點(diǎn),分別為PTG2,EGFR(epidermal growth factor receptor),PPARG(peroxisome proliferatoractivated receptor gamma),ESR1(estrogen receptor 1),MTOR(mammalian target of rapamycin),AKT1,MAPK1,PPARA(peroxisome proliferatoractivated receptor alpha)和MAPK8。通過建立分子對(duì)接模型,分析比較化學(xué)成分與靶點(diǎn)的相互作用情況。在化學(xué)成分與靶點(diǎn)進(jìn)行分子對(duì)接計(jì)算之前,對(duì)靶點(diǎn)晶體結(jié)構(gòu)中的配體進(jìn)行redocking驗(yàn)證,通過計(jì)算對(duì)接后配體與晶體中的配體的空間坐標(biāo),計(jì)算其RMSD值,當(dāng)RMSD<25時(shí),說明對(duì)接結(jié)果是可靠的。從表3中的結(jié)果可以看出,其RMSD值均小于25,表明分子對(duì)接計(jì)算結(jié)果是可靠的。隨后,基于Figure 5的化學(xué)成分與基因的調(diào)控網(wǎng)絡(luò),我們進(jìn)一步研究這些有效化學(xué)成分與9個(gè)核心靶點(diǎn)的相互作用。表4介紹了每個(gè)靶點(diǎn)對(duì)接后打分排名在前5的化學(xué)成分信息及作用靶點(diǎn)信息。大部分化合物都能作用于多個(gè)靶點(diǎn),比如水仙苷、蘆丁、北豆根堿、黃岑素、漢黃芩甙、異夏佛塔苷、亞葉酸、偽金絲桃素等,主要涉及生物堿類、黃酮及其苷類、有機(jī)酸及二蒽酮類等。這些骨架為多靶點(diǎn)化合物設(shè)計(jì)提供結(jié)構(gòu)基礎(chǔ)。我們以出現(xiàn)頻數(shù)最高的石蒜堿為例,研究了其與多個(gè)靶點(diǎn)相互作用特點(diǎn)。Figure 9舉例了作用于多靶點(diǎn)的化合成分水仙苷可以通過氫鍵、Pi鍵、離子間的引力與多個(gè)靶點(diǎn)結(jié)合。
3討論
中藥作為我國(guó)傳統(tǒng)藥物的主要組成部分,幾千年來在腫瘤防治中發(fā)揮著重要作用。但是由于中藥成分復(fù)雜,而腫瘤又是多因素復(fù)雜性疾病,因此,中藥抗腫瘤的藥理機(jī)制尚不明確。
甘草、黃芪、人參、黃芩中的化合物成分復(fù)雜,主要包括三萜類、黃酮類、多糖類、皂苷類、氨基酸類、炔醇類等,均表現(xiàn)出良好的抗腫瘤活性,為這4種單味藥的藥理網(wǎng)絡(luò)機(jī)制研究奠定了良好的物質(zhì)基礎(chǔ)。
本文通過數(shù)據(jù)挖掘及計(jì)算機(jī)模擬等多種方法探討具有代表性單味藥甘草、黃芪、人參、黃芩的抗腫瘤作用機(jī)制。我們通過基因富集分析發(fā)現(xiàn),甘草及人參能夠影響Toll樣及NOD樣模式受體信號(hào)傳導(dǎo)途徑,激活免疫應(yīng)答,增強(qiáng)機(jī)體免疫功能。甘草與類固醇激素的合成有密切關(guān)系,可以解釋甘草抗乳腺癌的報(bào)道較多的原因。此外,我們發(fā)現(xiàn)甘草能夠作用于多種CYP450,這可以解釋甘草解藥毒、緩解藥物烈性的作用。但是也要注意甘草與西藥聯(lián)合應(yīng)用時(shí),應(yīng)避免因代謝誘導(dǎo)或抑制產(chǎn)生的不良反應(yīng)。人參的化學(xué)成分除了作用于腫瘤直接相關(guān)通路,還能影響脂肪因子信號(hào)通路。近年來的研究發(fā)現(xiàn),脂肪組織是一個(gè)代謝活躍的分泌器官,可分泌多種與腫瘤相關(guān)的脂肪因子,在多種類型腫瘤的惡化過程中,腫瘤微環(huán)境中的脂肪細(xì)胞代謝和分泌作用受到廣泛的重視。腫瘤的發(fā)生和轉(zhuǎn)移與腫瘤細(xì)胞所處的微環(huán)境密切相關(guān)[82],因此,人參對(duì)脂肪因子信號(hào)通路的影響為其抗腫瘤機(jī)制研究提供了新的方向。通過KEGG及GO富集分析,我們發(fā)現(xiàn)黃芪可以通過影響凋亡通路,p53信號(hào)通路,細(xì)胞粘附及Toll樣信號(hào)傳導(dǎo)途徑,來抑制腫瘤細(xì)胞增殖、促進(jìn)腫瘤細(xì)胞凋亡、抑制腫瘤細(xì)胞遷移、增強(qiáng)機(jī)體免疫功能等,與文獻(xiàn)報(bào)道一致。此外,我們還發(fā)現(xiàn)黃芪可顯著影響脂肪因子信號(hào)通路及腫瘤微環(huán)境。
通過對(duì)4個(gè)單味藥共同調(diào)控的80個(gè)核心基因的分析,發(fā)現(xiàn)其化學(xué)成分對(duì)基因的調(diào)節(jié)是多對(duì)多的關(guān)系。中藥的多成分及多基因調(diào)控機(jī)制,也決定了其廣譜抗腫瘤作用。圖7表明,這四味中藥對(duì)多種腫瘤均有作用,包括前列腺癌、小細(xì)胞肺癌、甲狀腺癌、腎癌、結(jié)腸癌、黑色素瘤、子宮內(nèi)膜癌、慢性粒細(xì)胞白血病、胰腺癌及膀胱癌。此外,這4味中藥對(duì)阿爾茨海默病及II型糖尿病也有調(diào)控作用,這可能與其調(diào)節(jié)體內(nèi)能量代謝有關(guān),而能量代謝與癌癥、老年癡呆、糖尿病均密切相關(guān)。從圖6中我們可以歸納出中藥抗腫瘤作用的幾種機(jī)制:1)激活免疫應(yīng)答,提高自身免疫力。可通過調(diào)節(jié)B細(xì)胞、T細(xì)胞以及Toll樣、NOD樣受體信號(hào)通路發(fā)揮作用;2)改善腫瘤微環(huán)境??赏ㄟ^調(diào)節(jié)脂肪因子、炎性反應(yīng)因子及細(xì)胞間的粘連發(fā)揮作用;3)通過調(diào)節(jié)抑癌因子p53及激酶相關(guān)代謝通路,調(diào)節(jié)腫瘤細(xì)胞增殖、遷移、分化和凋亡。
與之前報(bào)道的大多網(wǎng)絡(luò)藥理學(xué)的研究相比[8384],本實(shí)驗(yàn)有所不同。我們沒有對(duì)中藥來源的化合物進(jìn)行類藥性篩選,而是對(duì)所有的化學(xué)組分進(jìn)行了抗腫瘤作用研究,避免了遺漏有藥理活性的化合物骨架;此外,我們構(gòu)建了基因疾病網(wǎng)絡(luò),不僅發(fā)現(xiàn)這些中藥與多種癌癥相關(guān),還與其他疾病如阿爾茲海默病等相關(guān)的信號(hào)通路具有一定的作用;最后,我們不僅建立網(wǎng)絡(luò)進(jìn)行預(yù)測(cè),還通過分子對(duì)接發(fā)現(xiàn)了作用于多靶點(diǎn)的化學(xué)成分,這些化學(xué)成分是中藥抗腫瘤作用的重要物質(zhì)基礎(chǔ),也是研究其作用機(jī)理的重要基礎(chǔ),同時(shí)為多靶點(diǎn)抗腫瘤新藥設(shè)計(jì)提供了重要信息。
綜上所述,本研究以抗腫瘤的中藥復(fù)方為研究對(duì)象,針對(duì)中藥方劑中出現(xiàn)頻次較高的單味藥,通過數(shù)據(jù)挖掘,分析了甘草、黃芪、人參及黃芩所含的有效成分的作用基因、靶點(diǎn)及通路,并構(gòu)建了化學(xué)成分基因調(diào)控網(wǎng)絡(luò),蛋白質(zhì)相互作用網(wǎng)絡(luò),及基因疾病網(wǎng)絡(luò),以揭示中藥復(fù)方的多種有效成分的協(xié)同作用機(jī)制。本文的研究方法將為其他單味藥的抗腫瘤機(jī)制研究提供借鑒,通過研究發(fā)現(xiàn)的多靶點(diǎn)活性化學(xué)成分,將對(duì)于抗腫瘤新藥研發(fā)提供重要信息依據(jù),同時(shí)也為中藥抗腫瘤的臨床應(yīng)用提供參考。
參考文獻(xiàn)
[1]Chen W,Zheng R,Baade PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115132.
[2]Chen W,Zheng R,Zhang S,et al.Report of cancer incidence and mortality in China,2010[J].China Cancer,2014,2:61.
[3]Ling CQ,Yue XQ,Ling C.Three advantages of using traditional Chinese medicine to prevent and treat tumor[J].Journal of Integrative Medicine,2014,12(4):331335.
[4]X Liu,X Zhou,J Wang,et al.Research progress in antitumor mechanism of traditional Chinese medicine[J].China Pharm,2016,19:11581162.
[5]Liu LL,Chen J,Shi YP.Advances in studies on antitumor of Chinese materia medica with heatclearing and toxinresolving functions[J].Chinese Traditional & Herbal Drugs,2012,43(6):12031212.
[6]Guo YP,Chen ZJ,JinYun MA.Research status on quality of life in the patients with cancer[J].China Cancer,2008(7):600602.
[7]LI Jie,LIN Hongsheng,HOU Wei.Idea and Strategy of Traditional Chinese Medicine Treatment for Cancer[J].China Cancer,2010,19(11):735738.
[8]Westerhoff HV.Networkbased pharmacology through systems biology[J].Drug Discov Today:Technol,2015,15:1516.
[9]Hopkins A L.Network pharmacology[J].Nat Biotechnol,2007,25(10):1101111.
[10]Hopkins AL.Network pharmacology:the next paradigmin drug discovery[J].Nat Chem Biol,2008,4(11):682690.
[11]Xie T,Song S,Li S,et al.Review of natural product databases[J].Cell Proliferation,2015,48(4):398404.
[12]Xue R,F(xiàn)ang Z,Zhang M,et al.TCMID:Traditional Chinese Medicine integrative database for herb molecular mechanism analysis[J].Nucleic Acids Research,2013,41(Database issue):D10891095.
[13]Mattingly CJ,Colby GT,F(xiàn)orrest JN,et al.The Comparative Toxicogenomics Database(CTD)[J].Environ Health Perspect,2003,111(6):793795.
[14]Pang X,Wang L,Kang,et al.Effects of PGlycoprotein on the Transport of DL0410,a Potential Multifunctional AntiAlzheimer Agent[J].Molecules,2017,22(8):1246.
[15]Rui Yang,Liqiang Wang,et al.Antitumor Activities of Widelyused Chinese Herb Licorice[J].Chinese Herbal Medicines,2014,6(4):274281.
[16]Khan R,Khan AQ,Lateef A,et al.Glycyrrhizic acid suppresses the development of precancerous lesions via regulating the hyperproliferation,inflammation,angiogenesis and apoptosis in the colon of Wistar rats[J].PLoS One,2013,8(2):e56020.
[17]Hsu YL,Wu LY,Hou MF,et al.Glabridin,an isoflavan from licorice root,inhibits migration,invasion and angiogenesis of MDAMB231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway[J].Mol Nutr Food Res,2011,55(2):318327.
[18]Lee E,Son JE,Byun S,et al.CDK2 and mTOR are direct molecular targets of isoangustone A in the suppression of human prostate cancer cell growth[J].Toxicol Appl Pharmacol,2013,272(1):1220.
[19]Lin D,Zhong W,Li J,et al.Involvement of BID translocation in glycyrrhetinic acid and 11deoxy glycyrrhetinic acidinduced attenuation of gastric cancer growth[J].Nutrition & Cancer,2014,66(3):463473.
[20]Tsai JP,Hsiao PC,Yang SF,et al.Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NFκB mediated urokinase plasminogen activator expression[J].PLoS One,2014,9(1):e86537.
[21]Yuan X,Li T,Xiao E,et al.Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis[J].Food Chem Toxicol,2014,65:242251.
[22]Tsai YM,Yang CJ,Hsu YL,et al.Glabridin inhibits migration,invasion,and angiogenesis of human nonsmall cell lung cancer A549 cells by inhibiting the FAK/rho signaling pathway[J].Integrative Cancer Therapies,2011,10(4):341349.
[23]Deng X,Li QS,Chen Z,et al.Advances in antitumor mechanisms of radix astragali[J].Tradit Chin Drug Res Clin Pharmacol,2016,27(2):307312.
[24]Li Chao,Qian Xinhua,Qian Xinlai,et al.Inhibitory effect of astragalus polysaccharide on the proliferation of human erythroleukemia K562 cells and itsmechanisms[J].Chin J Appl clin Pediatr,2014,29(12):936939.
[25]Wang T,Xuan X,Li M,et al.Retraction Note:Astragalus saponins affect proliferation,invasion and apoptosis of gastric cancer BGC823 cells[J].Diagn Pathol,2017,12(1):67.
[26]Cheng XD,Gu JF,Zhang MH,et al.Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKCαERK1/2NFκB pathway[J].International Immunopharmacology,2014,23(1):304313.
[27]Yin G,Tang D,Dai J,et al.Combination Efficacy of Astragalus membranaceus and Curcuma wenyujin at Different Stages of Tumor Progression in an Imageable Orthotopic Nude Mouse Model of Metastatic Human Ovarian Cancer Expressing Red Fluorescent Protein[J].Anticancer Res,2015,35(6):3193207.
[28]Chen CY,Zu YG,F(xiàn)u YJ,et al.Preparation and antioxidant activity of Radix Astragali residues extracts rich in calycosin and formononetin[J].Biochem Eng J,2011,56:8493.
[29]Li J,Han L,Ma Y F,et al.Inhibiting effects of three components of Astragalus membranaceus on oxidative stress in Chang Liver cells[J].China journal of Chinese materia medica,2015,40(2):318323.
[30]Pu X,F(xiàn)an W,Yu S,et al.Polysaccharides from Angelica and Astragalus exert hepatoprotective effects against carbontetrachlorideinduced intoxication in mice[J].Canadian Journal of Physiology & Pharmacology,2015,93(1):3943.
[31]Zhang A,Zheng Y,Que Z,et al.Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO[J].Journal of Cancer Research & Clinical Oncology,2014,140(11):18831890.
[32]Luo LM,Shi YN,Jiang YN,et al.Advance in components with antitumor effect of Panax ginseng and their mechanisms[J].Chin Tradit Herbal Drugs,2017,48:582596.
[33]He BC,Gao JL,Luo X,et al.Ginsenoside Rg3 inhibits colorectal tumor growth through the downregulation of Wnt/βcatenin signaling[J].Int J Oncol,2011,38(2):437445.
[34]Lee SY,Kim GT,Roh SH,et al.Proteomic analysis of the anticancer effect of 20Sginsenoside Rg3 in human colon cancer cell lines[J].Biosci Biotechnol Biochem,2009,73(4):811816.
[35]Lee SY,Kim GT,Roh SH,et al.Proteome changes related to the anticancer activity of HT29 cells by the treatment of ginsenoside Rd[J].Pharmazie,2009,64(4):242247.
[36]Kim JY,Lee KW,Kim SH,et al.Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol[J].Planta Med,2002,68(2):119122.
[37]Wang Y,Zhu HT,Huang WS,et al.Role of panaxynol on inhibiting metastasis of human pancreatic carcinoma cell line SW1990 in vitro[J].Chin J Cancer Prev Treat,2015,22(21):16621666.
[38]Park EH,Kim YJ,Yamabe N,et al.Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heatprocessed American ginseng on human gastric cancer cell[J].J Ginseng Res,2014,38(1):2227.
[39]Kim SJ,Kim AK.Antibreast cancer activity of fine black ginseng(Panax ginseng Meyer.)and ginsenoside Rg5[J].J Ginseng Res,2015,39(2):125134.
[40]Zhang Z,Du GJ,Wang CZ,et al.Compound K,a Ginsenoside Metabolite,Inhibits Colon Cancer Growth via Multiple Pathways Including p53p21 Interactions[J].Int J Mol Sci,2013,14(2):29802995.
[41]Wang W,Rayburn ER,Hao M,et al.Experimental therapy of prostate cancer with novel natural product anticancer ginsenosides[J].Prostate,2008,68(8):809819.
[42]Cheng CC,Yang SM,Huang CY,et al.Molecular mechanisms of ginsenoside Rh2mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells[J].Cancer Chemother Pharmacol,2005,55(6):531540.
[43]Kim JS,bJoo EJ,Chun J,et al.Induction of apoptosis by ginsenoside Rk1 in SKMEL2human melanoma[J].Arch Pharm Res,2012,35(4):717722.
[44]Zuo G,Guan T,Chen D,et al.Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor[J].Am J Chin Med,2009,37(4):747757.
[45]Fujimoto J,Sakaguchi H,Aoki I,et al.Inhibitory effect of ginsenosideRb2 on invasiveness of uterine endometrial cancer cells to the basement membrane[J].European Journal of Gynaecological Oncology,2001,22(5):339341.
[46]Li L,Wang Y,Qi B,et al.Suppression of PMAinduced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NFκBdependent MMP9 expression[J].Oncol Rep,2014,32(5):17791786.
[47]Lee SG,Kang YJ,Nam JO.AntiMetastasis Effects of Ginsenoside Rg3 in B16F10 Cells[J].J Microbiol Biotechnol,2015,25(12):19972006.
[48]Guo JQ,Zheng QH,Chen H,et al.Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE adherin/EphA2/MMP9/MMP2 expression[J].International Journal of Oncology,2014,45(3):1065.
[49]Jung JS,Ahn JH,Le TK,et al.Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells[J].Neurochem Int,2013,63(2):8086.
[50]Kim SY,Kim DH,Han SJ,et al.Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells[J].Biochem Pharmacol,2007,74(11):16421651.
[51]Yoon JH,Choi YJ,Cha SW,et al.Antimetastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation[J].Phytomedicine,2012,19(3/4):284292.
[52]Kim H,Roh HS,Kim JE,et al.Compound K attenuates stromal cellderived growth factor 1(SDF1)induced migration of C6 glioma cells[J].Nutr Res Pract,2016,10(3):259264.
[53]Huynh DL,Sharma N,Kumar SA,et al.Antitumor activity of wogonin,an extract from Scutellaria baicalensis,through regulating different signaling pathways[J].Chinese Journal of Natural Medicines,2017,15(1):1540.
[54]Chen YC,Shen SC,Lee WR,et al.Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SKHEP1[J].Archives of Toxicology,2002,76(56):351359.
[55]Wang J,Yu Y,Hashimoto F,et al.Baicalein induces apoptosis through ROSmediated mitochondrial dysfunction pathway in HL60 cells[J].International Journal of Molecular Medicine,2004,14(4):62732.
[56]Chang WH,Chen CH,Lu FJ.Different effects of baicalein,baicalin and wogonin on mitochondrial function,glutathione content and cell cycle progression in human hepatoma cell lines[J].Planta Medica,2002,68(2):128132.
[57]Murashima T,Katayama H,Shojiro K,et al.Possible mechanism of growth inhibition by Scutellaria baicalensis in an estrogenresponsive mouse tumor cell line[J].Oncology Reports,2011,25(5):14311438.
[58]Park KI,Park HS,Kang SR,et al.Korean Scutellaria baicalensis water extract inhibits cell cycle G1/S transition by suppressing cyclin D1 expression and matrixmetalloproteinase2 activity in human lung cancer cells[J].J Ethnopharmacol,2011,133(2):634641.
[59]Huang ST,Wang CY,Yang RC,et al.Wogonin,an active compound in Scutellaria baicalensis,induces apoptosis and reduces telomerase activity in the HL60 leukemia cells[J].Phytomedicine International Journal of Phytotherapy & Phytopharmacology,2010,17(1):4754.
[60]Zhang DY,Wu J,Ye F,et al.Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis[J].Cancer Research,2003,63(14):40374043.
[61]Lu Z,Lu N,Li C,et al.Oroxylin A inhibits matrix metalloproteinase2/9 expression and activation by upregulating tissue inhibitor of metalloproteinase2 and suppressing the ERK1/2 signaling pathway[J].Toxicology Letters,2012,209(3):211220.
[62]Honda H,Nagai Y,Matsunaga T,et al.Glycyrrhizin and isoliquiritigenin suppress the LPS sensor tolllike receptor 4/MD2 complex signaling in a different manner[J].J Leukoc Biol,2012,91(6):967976.
[63]Yu J,Lou Y.Influence of αglycyrrhizic Acid on Metabolism of Steroid Hormone in Kidney[J].Chinese Journal of Traditional Medical Science and Technology,2006,13(4):246247.
[64]Nakamura S,Watanabe T,Tanigawa T,et al.Isoliquiritigenin Ameliorates IndomethacinInduced Small Intestinal Damage by Inhibiting NODLike Receptor Family,Pyrin DomainContaining 3 Inflammasome Activation[J].Pharmacology,2018,101(56):236245.
[65]Choi JE,Park DM,Chun E,et al.Control of stressinduced depressive disorders by Soochimtanggamibang,a Korean herbal medicine[J].J Ethnopharmacol,2017,196:141150.
[66]Qiao X,Ji S,Yu SW,et al.Identification of key licorice constituents which interact with cytochrome P450:evaluation by LC/MS/MS cocktail assay and metabolic profiling[J].AAPS Journal,2014,16(1):101113.
[67]He YX,Du M,Shi HL,et al.Astragalosides from Radix Astragali benefits experimental autoimmune encephalomyelitis in C57BL/6 mice at multiple levels[J].BMC Complement Altern Med,2014,14(1):313.
[68]Tang D,He B,Zheng ZG,et al.Inhibitory effects of two major isoflavonoids in Radix Astragali on high glucoseinduced mesangial cells proliferation and AGEsinduced endothelial cells apoptosis[J].Planta Medica,2011,77(7):729732.
[69]Xu A,Wang H,Hoo RL,et al.Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice[J].Endocrinology,2009,150(2):625633.
[70]YANG Changchun,WEN Jinkun,HAN Mei.Effect of Astragalus membranaceus and Angelica sinensis on Focal Adhesion Kinase expression and apoptosis of cultured vascular smooth muscle cells[J].Chinese Journal of Integrated Traditional and Western Medicine,2003,23(3):201203.
[71]Fei ZW,Zhang XP,Zhang J,et al.Protective effects of Radix Astragali injection on multiple organs of rats with obstructive jaundice[J].Chinese Journal of Integrative Medicine,2016,22(9):674684.
[72]Yeo CR,Yang C,Wong TY,et al.A quantified ginseng(Panax ginseng C.A.Meyer)extract influences lipid acquisition and increases adiponectin expression in 3T3L1 cells[J].Molecules,2011,16(1):477492.
[73]Nakaya TA,Kita M,Kuriyama H,et al.Panax ginseng induces production of proinflammatory cytokines via tolllike receptor[J].J Interferon Cytokine Res,2004,24(2):93100.
[74]Yoon SJ,Park JY,Choi S,et al.Ginsenoside Rg3 regulates Snitrosylation of the NLRP3 inflammasome via suppression of iNOS[J].Biochem Biophys Res Commun,2015,463(4):11841189.
[75]Yanbin L,Yu L,Guangshu Y,et al.2.Chin J Tradit Med Traumatol Orthop,2017,25(5):58.
[76]Lu ZF,Shen YX,Zhang P,et al.Ginsenoside Rg1 promotes proliferation and neurotrophin expression of olfactory ensheathing cells[J].Journal of Asian Natural Products Research,2010,12(4):265272.
[77]Wang Y,Cao HJ,Sun SJ,et al.Total flavonoid aglycones extract in Radix Scutellariae,inhibites lung carcinoma and lung metastasis by affecting cell cycle and DNA synthesis[J].Journal of Ethnopharmacology,2016,194:269279.
[78]Choi BB,Choi JH,Park SR,et al.Scutellariae radix induces apoptosis in chemoresistant SCC25 human tongue squamous carcinoma cells[J].American Journal of Chinese Medicine,2015,43(1):16781.
[79]Cheng P,Wang T,Li W,et al.Baicalin Alleviates LipopolysaccharideInduced Liver Inflammation in Chicken by Suppressing TLR4Mediated NFκB Pathway[J].Frontiers in Pharmacology,2017,8:547.
[80]Liu X,Liu C.Baicalin ameliorates chronic unpredictable mild stressinduced depressive behavior:Involving the inhibition of NLRP3 inflammasome activation in rat prefrontal cortex[J].International Immunopharmacology,2017,48:3034.
[81]LiPing Z,Jin G,ChangFa H,et al.Inhibitory effect of 8 Chinese herbal decoctions on expression of CerbB1 in psorlatic keratinocytes[J].Chin J Integr Tradit West Med,2003(S1):195197.
[82]Zhang Q,Sun LJ,Yang ZG,et al.Influence of adipocytokines in periprostatic adipose tissue on prostate cancer aggressiveness[J].Cytokine,2016,85:148156.
[83]Liang X,Li H,Li S.A novel network pharmacology approach to analyse traditional herbal formulae:the LiuWeiDiHuang pill as a case study[J].Molecular Biosystems,2014,10(5):10141022.
[84]Qi Q,Li R,Li HY,et al.Identification of the antitumor activity and mechanisms of nuciferine through a network pharmacology approach[J].Acta Pharmacol Sin,2016,37(7):963972.
(2017-11-29收稿責(zé)任編輯:王明)