• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low Spin State Dinuclear FeIII,NiII and CuII Complexes Supported by 1-Amino-2-indanol Schiff Base Derivatives①

    2018-09-08 03:54:20CUIYnFengXUMengSUNHoYANGHuZHANGJinLIHongLIUWeiDONGPing
    結(jié)構(gòu)化學(xué) 2018年8期

    CUI Yn-Feng XU Y-Meng SUN Ho YANG Hu ZHANG Jin LI Y-Hong LIU Wei DONG Y-Ping

    ?

    Low Spin State Dinuclear FeIII,NiIIand CuIIComplexes Supported by 1-Amino-2-indanol Schiff Base Derivatives①

    CUI Yan-Fenga②XU Ya-Menga②SUN HaoaYANG HuabZHANG JinaLI Ya-Honga③LIU Weia③DONG Ya-Pingc

    a(215123)b(716000)c(810008)

    Four complexes of compositions [Fe2(L1)2] (1), [Ni2(L1)2] (2), [Ni2(L2)2] (3) and [Cu2(L2)2] (4) (H2L1= 1-(((2-hydroxy-2,3-dihydro-1-inden-1-yl)imino)methyl)naphthalen-2-ol, H2L2= 4-((2-hydroxy-2,3-dihydro-1-inden-1-yl)imino)pentan-2-one) were synthesized under solvothermal conditions. The structures of 1~4 were characterized by X-ray single-crystal diffraction analysis. The magnetic properties of these four complexes are investigated. The dc magnetic measurements indicate that the metal ions of 1, 2 and 3 are in the low spin state, revealing the strong ligand field character of 1-amino-2-indanol. This work provides an effective approach to coordination complexes possessing low spin state metal centers.

    transition metal, low spin state, Schiff base, magnetic property;

    1 INTRODUCTION

    The past two decades have witnessed continuous interest in constructing coordination complexes of transition metals supported by Schiff-base ligands due to the wide range of applications and structural features of these compounds[1-11]. Intensive attention has been devoted to the complexes based on 1-amino-2-indanol Schiff base derivatives. The reason is that incorporation of the imine nitrogen with the hydroxyl group of 1-amino-2-indanol could facilitate the chelation and afford the coordination compounds with stable structures[12-22]. Recent advances in this area revealed that the complexes supported by 1-amino-2-indanol Schiff base deriva- tives are active catalysts for many organic reactions. It was found that the FeIII[12]and CrIII[13-15]com- pounds could catalyze the hetero-Diels Alder reactions, molybdenum(VI) dioxo-complexes are active catalysts for the epoxidation of olefins[16], and titanium(IV) compounds could promote both trimethylcyanation of carbonyl compound[17]and the ring-openingpolymerization reactions of lactide[18]. In this regard, complexes supported by 1-amino-2-indanol Schiff base derivatives are in high demand.

    We are interested in preparing the dinuclear transition metal complexes supported by 1-amino- 2-indanol Schiff base derivatives and investigating magnetic properties of the synthesized compounds. The driving forces for this interest are listed as follows: (i) The catalytic properties of coordination complexes supported by 1-amino-2-indanol Schiff base derivatives have been extensively studied, whereas the magnetic properties of these com- pounds have not been reported. It is found that most of the reported complexes exhibit four-coordinated square planar geometry, and they may display interesting magnetic properties[12-15]. (ii) The dinu- clear structure motifs are the simplest model for investigating the magnetic interactions between two metal centers. (iii) It is believed that a binuclear compound can be created in a controllable manner by dexterously tuning the structures of the ligands.

    With these considerations in mind, we chose 1-(((2-hydroxy-2,3-dihydro-1-inden-1-yl)imino) methyl)naph-thalen-2-ol (H2L1)[18]and 4-((2-hy- droxy-2,3-dihydro-1-inden-1-yl)imino)pentan-2-one (H2L2)[19](Scheme 1) as ligands and conducted their reactions with transition metals. Four com- plexes of compositions [Fe2(L1)2] (1), [Ni2(L1)2] (2), [Ni2(L2)2] (3) and [Cu2(L2)2] (4) have been prepared. The magnetic properties of 1~4 revealed that the metal ions of 1~3 are in low spin states. Herein, we report the syntheses, structures and magnetic properties of 1~4.

    Scheme 1. Structures of ligands H2L1(a) and H2L2(b)

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All manipulations were performed under aerobic and solvothermal conditions using reagents and solvents as received. The H2L1ligand (H2L1= 1- (((2-hydroxy-2,3-dihydro-1-inden-1-yl)imino)- methyl)naphthalen-2-ol) was prepared by condensa- tion reaction between 1-amino-2-indanol and 2-hy- droxy-1-naphthaldehyde[18].Similarly, the H2L2ligand (H2L2= 4-((2-hydroxy-2,3-dihydro-1- inden-1-yl)imino)pentan-2-one) was synthesized via condensation reactions.

    The C, H and N microanalyses were carried out with a Carlo-Erba EA1110 CHNO-S elemental analyser. FT-IR spectra were recorded from KBr pellets in the range of 400~4000 cm-1on a Nicolet MagNa-IR 500 spectrometer. Powder X-ray dif- fraction (PXRD) was recorded on a Rigaku D/Max- 2500 diffractometer at 40 kV and 100 Ma with a Cu-target tube and a graphite monochromator. Variable-temperature dc magnetic susceptibility data were collected using a Quantum Design MPMS-7 SQUID magnetometer.

    2. 2 Syntheses of complexes 1~4

    2. 2. 1 Synthesis of [Fe2(L1)2] (1)

    A mixture of H2L1(0.0242 g, 0.08 mmol), FeCl3·6H2O (0.0216 g, 0.08 mmol) in MeOH (0.4 mL) solution, CH3COONH4(0.0062 g, 0.08 mmol) in MeOH (0.4 mL) solution, and MeOH (2 mL) was sealed in a Pyrex-tube (8 mL). The tube was heated at 110 °C for 3 days under autogenous pressure. Cooling of the resultant solution to room tem- perature gave black rod-like crystals. The crystals were collected by filtration, washed with MeOH (2 mL) and dried in air. Yield: 0.0223 g (58% based on the ligand). Anal. Calcd. (%) for C80H60Cl4Fe4N4O8: C, 61.68; H, 3.85; N, 3.57. Found (%): C, 60.94; H, 3.62; N, 3.46. Selected IR data for 1 (KBr, cm?1): 2900 (w), 1616 (s), 1474 (s), 1246 (s), 1182 (w), 1091 (m), 777 (s), 741 (s).

    2. 2. 2 Synthesis of [Ni2(L1)2] (2)

    A mixture of H2L1(0.0227 g, 0.075 mmol), Ni(CH3COO)2·2H2O (0.0159 g, 0.075 mmol), and MeOH (2 mL) was sealed in a Pyrex-tube (8 mL). The tube was heated at 110 °C for 2 days under autogenous pressure. Cooling of the resultant solu- tion to room temperature gave brown crystals. The crystals were collected by filtration, washed with MeOH (2 mL) and dried in air. Yield: 0.0357 g (86% based on the ligand). Anal. Calcd. (%) forC40H30N2Ni2O4: C, 66.72; H, 4.20; N, 3.89. Found (%): C, 66.13; H, 3.92; N, 3.57. Selected IR data for 2 (KBr, cm?1): 3019 (w), 2909 (w), 1610 (s), 1535 (s), 1213 (s), 1121 (w), 998 (m), 825 (s), 740 (s).

    2. 2. 3 Synthesis of [Ni2(L2)2] (3)

    A mixture of H2L2(0.0231 g, 0.1 mmol), Ni(CH3COO)2·2H2O (0.0212 g, 0.1 mmol), EtOH (1 mL) and CH3CN (0.5 mL) was sealed in a Pyrex-tube (8 mL). The tube was heated at 100 °C for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave brown rod-like crystals. The crystals were collected by filtration, washed with EtOH (2 mL) and dried in air. Yield: 0.0196 g (34% based on the ligand). Anal. Calcd. (%) for C28H30N2O4Ni2: C, 58.39; H, 5.25; N, 4.86. Found (%): C, 57.95; H, 5.10; N, 4.56. Selected IR data for 3 (KBr, cm?1): 2925 (s), 1584 (m), 1514 (s), 1408 (s), 1368 (s), 1310 (s), 1264 (w), 1170 (m), 997 (m), 896 (m), 748 (s).

    2.2.4 Synthesis of [Cu2(L2)2] (4)

    A mixture of H2L2(0.0231 g, 0.1 mmol), Cu(CH3COO)2·H2O (0.0199 g, 0.1 mmol), and EtOH (2 mL) was sealed in a Pyrex-tube (8 mL). The tube was heated at 100 °C for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave dark blue stripe crystals. The crystals were collected by filtration, washed with EtOH (2 mL) and dried in air. Yield: 0.0263 g (45% based on the ligand). Anal. Calcd. (%) forC28H30N2O4Cu2: C, 57.42; H, 5.16; N, 4.78. Found (%): C, 57.10; H, 5.10; N, 4.46. Selected IR data for 4 (KBr, cm?1): 2907 (m), 1587 (s), 1504 (s), 1402 (s), 1121 (w), 1049 (m), 780 (s).

    2. 3 Structure determination

    The data collections for 1~4 were carried out on a Bruker Smart ApexII diffractometer equipped with a graphite-monochromator utilizing Moradiation (= 0.71073) with an-2scan mode. The structures were solved by direct methods using SHELXS-97 and refined on2using full-matrix least-squares with SHELXL-97[23]. All non-hydro- gen atoms were refined anisotropically. The collec- ted crystal data for the four structures are shown in Table 1. Selected bond lengths and bond angles of complexes 1~4 are listed in Table 2.

    Table 1. Crystallographic Data and Structure Refinement Information for 1~4

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for 1~4

    3 RESULTS AND DISCUSSION

    3. 1 Structural description

    3. 1. 1 Structure of 1

    Single-crystal X-ray diffraction analysis indicates that complex 1 crystallizes in the monoclinic space group21. Bond valence calculations (Table S1)show that two Fe ions of 1 are in 3+ valence states[24-27]. This structure contains two identical but independent molecular units (Fig. 1). As Shown in Fig. 2, each FeIIIatom is coordinated by two bridging deprotonated hydroxyl oxygen atoms originated from the indanol moiety of two H2L1ligands (Fig. 2), one imino nitrogen atom, one hydroxyl oxygen atom from the naphthalen moiety of H2L1ligand and one terminal Cl-ion. Thus, both two FeIIIions display NO2Cl surrounded square- pyramidal geometry. The bridging oxygen atoms do not bind symmetrically to the two FeIIIions (, Fe(1)–O(4) 1.950(12) ?, Fe(1)–O(2) 1.994(10) ?, Fe(2)–O(4) 1.964(11) ?, Fe(2)–O(2) 1.985(11) ?), demonstrating the nonflexibility nature of the H2L1ligand.

    As calculated with the PLATON program, there are weak hydrogen bonds between the carbon atom of H2L1ligand and Cl-atoms (C(3)–H(3)×××Cl(2) 3.36(2) ?, C(46)–H(46)×××Cl(3) 3.67(2) ?, C(62)– H(62)×××Cl(2) 3.657(16) ?, C(72)–H(72)×××Cl(3)3.694(16) ?; Table 3). The adjacent units are further joined together through hydrogen bonding interaction of C–H×××Cl to generate a layer structure. The layers are further linked together by the other hydrogen bonds to create a 3-D framework (Fig. 3).

    Fig. 1. ORTEP view with 30% probability level of 1.The H atoms were omitted and the gray C atoms were not labeled for clarity

    Fig. 2. View of the binuclear structure and the coordination environment of FeIIIions in 1

    Fig. 3. 3-D network structure of 1 created by hydrogen bonding interactions

    Table 3. Hydrogen Bond Lengths (?) and Bond Angles (°) for 1

    Symmetry codes: (a) –, 1/2+, –; (b) –1+,,; (c) 1+, 1+,; (d) 2–, 1/2+, 1–

    3. 1. 2 Structure of 2

    Single-crystal X-ray diffraction reveals that com- plex 2 crystallizes in the monoclinic space group21(Fig. 4). The dinuclear complex 2 is assembled by two doubly deprotonated ligands and two NiIIions. Each ligand chelates to two NiIIions in a2:1:2:1mode. Two NiIIions are bridged by two alkoxo oxygen atoms originated from two ligand sets. Similarly, the bridging oxygen atoms do not bind symmetrically to the two NiIIions (, Ni(1)–O(3) 1.882(3) ?, Ni(1)–O(2) 1.843(3) ?; Ni(2)–O(3) 1.852(3) ?, Ni(2)–O(2) 1.874(3) ?). The four-coordinated NiIIcenter adopts a distorted square plane geometry. The 2,3-dihydro-1-indene rings of the two doubly-deprotonated ligands display ageometry with respect to the Ni2O2ring.

    Fig. 4. View of the binuclear structure and the coordination environment of NiIIions in 2. The H atoms are omitted for clarity

    No typical hydrogen bonds were determined in complex 2, whilethe six-membered ring of H2L1becomes an electron-poorsystem, which is easy to form C–H···stacking interactions. Weak C–H···interactions (the distances are 2.8448(7) and 3.2751(5) ?, respectively, as shown in Fig. 5) in theaxis occurred. Running along the direction of,athree-dimensional structure of 2 is formed by the mode of AAA stacking (Fig. 6).

    Fig. 5. C–H…interactions of complex 2

    Fig. 6. 3-D network structure of 2 created by C–H…interactions (Partial bonds are omitted for clarity)

    3. 1. 3 Structures of 3 and 4

    Single-crystal X-ray diffraction reveals that com- plexes 3 and 4 are isomorphous and crystallize in the monoclinic space group21. Therefore, as a representative, only the structure of 3 is discussed in detail (Fig. 7). Compound 3 is dinuclear and two NiIIions are bridged by two alkoxo oxygen atoms. The alkoxo oxygen atom of the doubly deproto- nated ligand coordinatesto the ketone oxygen atom andto the imine nitrogen atom of its own ligand set. The coordination geometry of NiIIion is well described as a distorted square. The distance between two NiIIions is 2.890 ?. The bond lengths of Ni(1)–O(1), Ni(1)–O(2), Ni(1)–N(1) and Ni(1)–O(3) are 1.814(3), 1.871(3), 1.830(3) and 1.847(3) ?, respectively. The bond angles of O(3)–Ni(1)–O(2) and O(2)–Ni(2)–O(3) are 94.3(5) and 79.84(12)°, respectively. The variation of bond lengths and bond angles reveals that the rigidity of the ligand influences the structure of 3.

    The weak C–H···interactions between the molecules (the distance is 3.580~3.807 ?) are found (Fig. 8). Running the direction of, a three-dimensional structure of 3 is formed by the mode of AAA stacking (Fig. 9).

    Fig. 7. Molecular structure of 3 with H atomsomitted for clarity

    Fig. 8. C–H…interactions of complex 3

    Fig. 9. Packing diagram of compound 3 shown by C–H…π interactions

    Complexes 1~4 join a very small family of coor- dination compounds supported by 1-amino-2- indanol Schiff base derivatives[12-22, 28]. It is worth to mention that complex 1 is the second reported FeIIIcompound supported by 1-amino-2-indanol Schiff base derivatives[12].

    3. 2 Magnetic properties of 1~4

    Variable-temperature dc magnetic susceptibility data were recorded for 1~4 at the magnetic field of 1000 Oe in the temperature range of 2~300 K. TheχT value of 1 at 300 K is 1.57 cm3·mol-1K (Fig. 10), which is much smaller than the spin-only value of 8.75 cm3·mol-1K expected for two= 5/2 uncoupled spins, and also larger than the value of 0.75 for two= 1/2 uncoupled spins.However, this value is close to the summed data of magnetically isolated one= 1/2 FeIIIcenter and another= 3/2 FeIIIion. This value demonstrated that the two FeIIIions are in the low spin state. As the temperature is lowered, theχT value decreases gradually to a minimum value of 0.015 cm3·mol-1·K at 2 K. This behavior is indicative of the presence of antiferro- magnetic exchange interactions between the metal ions.

    Fig. 10. Temperature dependence of magnetic susceptibilities in the form of χT.for 1 at 1 kOe

    We tried to fit the magnetic data by assuming that the two FeIIIions are= 1/2,= 3/2 and= 5/2, respectively. Unfortunately, no satisfactory fit result was obtained. As theχT value of 1 is much smaller than that of two= 5/2 uncoupled spins, we conclued that the H2L1ligand possesses strong ligand field character.

    Materials presenting a stable and reversible switch of physical properties have attracted intense atten- tion due to their potential industrial applica- tions[29-31]. Therefore the design of metal complexes showing rare spin states, which may undergo crossover from one spin state to another and lead to a major change of magnetic and optical properties, is of fundamental interest. The low spin state nature of 1 demonstrates its potential applications in the wide range of area. This work also provides an efficient approach towards low spin state FeIIIcomplexes.

    TheχT value of 2 at 300 K is 0.24 cm3·mol-1·K (Fig. S11), which is much smaller than the spin-only value of 2.00 cm3·mol-1·K expected for two= 1 uncoupled spins. With the increase of temperature,χT values increase linearly with the temperature, indicating that complex 2 is diamagnetic. Thus, the NiIIions in 2 are in low spin state.

    It is reported that the spin state of8nickel(II) ion is coordination number dependent. When the coordination geometry is square planar, it is in low spin state; whereas the octahedron configuration often results in high spin. Our results are consistent with those of the literature report compounds[32-35].

    The magnetic property of 3 is quite similar with that of 2 (Fig. S10), which demonstrates that complex 3 is a low spin state compound.

    TheχT value of 4 at 300 K is 0.79 cm3·mol-1·K (Fig. 12), which is close to the spin-only value of 0.75 cm3·mol-1·K expected for two= 1/2 uncoupled spins. As the temperature is lowered, theχT value increases gradually to a maximum value of 1.10 cm3·mol-1·K at 6 K. This behavior is indicative of the presence of ferromagnetic exchange interactions between the metal ions.

    The two CuIIions are equivalent and the magnetic data were fit to the 1model of H = –2J??. A good fit was obtained (20~220 K) and the parameters of= 2.05 and= 25.08 cm-1were generated. The positivevalue proves the ferro- magnetic exchange interactions.

    Fig. 11. Temperature dependence of magnetic susceptibilities in the form of χTfor 4 at 1 kOe. The red solid line corresponds to the best fit of the magnetic data

    4 CONCLUSION

    Four complexes supported by 1-amino-2-indanol Schiff base derivatives (H2L1and H2L2) were synthesized. The dc magnetic property measure- ments indicate that the metal centers in 1~3 are in low spin state, revealing the strong ligand field character of 1-amino-2-indanol. This work also provides an efficient strategy to prepare coor- dination complexes with low spin state.

    (1) Dasgupta, S.; Adhikary, J.; Giri, S.; Bauza, A.; Frontera, A.; Das, D. Unveiling the effects of the in situ generated arene anion radical and imine radical on catecholase like activity: a DFT supported experimental investigation.. 2017, 46, 5888–5900.

    (2) Ohno, K.; Nagasawa, A.; Fujihara, T. Dinuclear nickel(II) complexes with 2,5-diamino-1,4-benzoquinonediimine ligands as precatalysts for the polymerization of styrene: electronic and steric substituent effects.2015, 44, 368–376.

    (3) Dunn, T. J.; Chiang, L.; Ramogida, C. F.; Hazin, K.; Webb, M. I.; Katz, M. J.; Storr, T. Class III delocalization and exciton coupling in a bimetallic bis-ligand radical complex.2013, 19, 9606–9618.

    (4) Kato, S.; Kanai, M.; Matsunaga, S. Catalytic asymmetric synthesis of spirooxindoles via addition of isothiocyanato oxindoles to aldehydes under dinuclear nickel Schiff base catalysis.2013, 8, 1768–1771.

    (5) Chen, Z. H.; Yakura, K.; Matsunaga, S.; Shibasaki, M. Direct catalytic asymmetric Mannich-type reaction of-keto phosphonate using a dinuclear Ni2-Schiff base complex.. 2008, 10, 3239–3242.

    (6) Hagiwara, H.; Tanaka, T.; Hora, S. Synthesis, structure, and spin crossover above room temperature of a mononuclear and related dinuclear double helicate iron(II) complexes.. 2016, 45, 17132–17140.

    (7) Liu, G. L.; He, S. F.; Zhang, S. W.; Li, H. In situ ligand and complex transformation of an iron(III) Schiff base complex: structural evidence and theoretical calculations.. 2012, 41, 6256–6262.

    (8) Majumder, I.; Chakraborty, P.; Das, S.; Kara, H.; Chattopadhyay, S. K.; Zangrando, E.; Das, D. Solvent dependent ligand transformation in a dinuclear copper(II) complex of a compartmental Mannich-base ligand: synthesis, characterization, bio-relevant catalytic promiscuity and magnetic study.. 2015, 5, 51290–51301.

    (9) Boiocchi, M.; Brega, V.; Ciarrocchi, C.; Fabbrizzi, L.; Pallavicini, P. Dicopper double-strand helicates held together by additionalinteractions.2013, 52, 10643–10652.

    (10) Guo, F. F.; Chang, D. L.; Lai, G. Y.; Zhu, T.; Xiong, S. S.; Wang, S. J.; Wang, Z. Y. Enantioselective and regioselective Friedel-Crafts alkylation of pyrroles with nitroalkenes catalyzed by a tridentate Schiff base-copper complex.. 2011, 17, 11127–11130.

    (11) Cameron, S. A.; Brooker, S. Metal-free and dicopper(II) complexes of Schiff base [2+2] macrocycles derived from 2,2?-iminobisbenzaldehyde: syntheses, structures, and electrochemistry.. 2011, 50, 3697–3706.

    (12) Howard, J. A.; Ilyashenko, K. G.; Sparkes, H. A.; Whiting, A. Development of new transition metal catalysts for the oxidation of a hydroxamic acid with in situ Diels-Alder trapping of the acyl nitroso derivative.2007, 2108–2111.

    (13) Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. Highly enantio and regioselective quinone Diels-Alder reactions catalyzed by a tridentate [(Schiff base)CrIII] complex.. 2005, 44, 6043–6046.

    (14) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Highly enantioselective inverse-electron-demand Hetero-Diels-Alder reactions of-unsaturated aldehydes.2002, 41, 3059–3061.

    (15) Ruck, R. T.; Jacobsen, E. N. Asymmetric catalysis of hetero-ene reactions with tridentate Schiff base chromium(III) complexes.. 2002, 124, 2882–2883.

    (16) Pandhare, S. L.; Jadhao, R. R.; Puranik, V. G.; Joshi, P. V.; Capet, F.; Dongare, M. K.; Umbarkar, S. B.; Michon, C. Molybdenum(VI) dioxo complexes for the epoxidation of allylic alcohols and olefins.. 2014, 773, 271–279.

    (17) Flores-Lopez, L. Z.; Parra-Hake, M.; Somanathan, R.; Walsh, P. J. Structure/enantioselectivity study of the asymmetric addition of trimethylsilylcyanide to benzaldehyde catalyzed by Ti(IV)-Schiff base complexes.2000, 19, 2153–2160.

    (18) Lee, J.; Kim, Y.; Do, Y. Novel chlorotitanium complexes containing chiral tridentate schiff base ligands for ring-opening polymerization of lactide.2007, 46, 7701–7703.

    (19) Park, K. H.; Go, M. J.; Lee, H. H.; Kim, S.; Lee, J.4-{[(1S, 2R)-2-Hydroxyindan-1-yl] amino} pent-3-en-2-one.2012, 68, o2455.

    (20) Hartung, J.; Drees, S.; Greb, M.; Schmidt, P.; Svoboda, I.; Fuess, H.; Murso, A.; Stalke, D. (Schiff-base)vanadium(V) complex-catalyzed oxidations of substituted bis(homoallylic) alcohols ? stereoselective synthesis of functionalized tetrahydrofurans.. 2003, 2388–2408.

    (21) Iglesias, A. L.; Aguirre, G.; Somanathan, R.; Parra-Hake, M. New chiral Schiff base-Cu(II) complexes as cyclopropanation catalysts.2004, 23, 3051–3062.

    (22) Bereau, V. M.; Khan, S. I.; Abu-Omar, M. M. Synthesis of enantiopure oxorhenium(V) and arylimidorhenium(V) “3+2” Schiff Base complexes. X-ray diffraction, cyclic voltammetry, Uv-Vis, and circular dichroism characterizations.. 2001, 40, 6767–6773.

    (23) Sheldrick, G. M.. University of Gottingen, Gottingen, Germany 1997.

    (24) Miao, Y. L.; Liu, J. L.; Lin, Z. J.; Ou, Y. C.; Leng, J. D.; Tong, M. L. Synthesis, structures, adsorption behaviour and magnetic properties of a new family of polynuclear iron clusters.2010, 39, 4893–4902.

    (25) Ross, S.; Weyhermuller, T.; Bill, E.; Wieghardt, K.; Chaudhuri, P. Tris(pyridinealdoximato)metal complexes as ligands for the synthesis of asymmetric heterodinuclear CrIIIM species (M = Zn(II), Cu(II), Ni(II), Fe(II), Mn(II), Cr(II), Co(III)):? a magneto-structural study.2001, 40, 6656–6665.

    (26) Stamatatos, T. C.; Boudalis, A. K.; Sanakis, Y.; Raptopoulou, C. P. Reactivity and structural and physical studies of tetranuclear iron(III) clusters containing the [Fe4(3-O)2]8+“butterfly” core:? an FeIII4cluster with an= 1 ground state.. 2006, 45, 7372?7381.

    (27) Oliver, J. D.; Mullica, D. F. B.; Hutchinson, B.; Milligan, W. O. Iron-nitrogen bond lengths in low-spin and high-spin iron(II) complexes with poly (pyrazolyl) borate ligands.. 1980, 19, 165–169.

    (28) Wu, J.; Chen, Y.; Chen, Z.; Liu, W.; Li, Y. H.; Pei, H.; Liu, Y. L.; Gao, Q.; Li, W. Synthesis, structures and DFT studies of imido-bridged and (bis) ligand-coordinated titanium complexes.2013, 639, 1876–1883.

    (29) Létard, J. F.; Guionneau, P.; Nguyen, O.; Costa, J. S.; Marcén, S.; Chastanet, G.; Marchivie, M.; Goux-Capes, L. A guideline to the design of molecular-based materials with long-lived photomagnetic lifetimes.2005, 11, 4582–4589.

    (30) Timm, C. Collective effects in spin-crossover chains with exchange interaction.2006, B 73, 014423.

    (31) Nasser, J. A.; Topcu, S. Chassagne, L.; Wakim, M.; Bennali, B.; Linares, J.; Alayli, Y. Two-dimensional atom-phonon coupling model for spin conversion: role of metastable states.2011, 83, 115–132.

    (32) Meng, Q. H.; Clegg, J. K.; Jolliffe, K. A.; Lindoy, L. F.; Lan, M.; Wei, G. A new nickel(II) coordination polymer derived from [Ni(N,N-ethylenebis(1,1,1-trifluoroacetylacetoneiminato)] and 1,4-diazabicyclo[2,2,2]octane.. 2010, 13, 558–562.

    (33) Angulo, I. M.; Bouwman, E.; Lok, S. M.; Lutz, M.; Mul, W. P.; Spek, A. L. The first low-spin nickel complex with two coordinated water molecules, [Ni(-MeO-dppp)(H2O)2](PF6)2? synthesis and structural characterization.2001, 1465–1473.

    (34) Wilson, R. K.; Brooker, S. Oxidative dehydrogenation of a new tetra-amine N4-donor macrocycle tunes the nickel(II) spin state from high spin to low spin.2013, 42, 12075–12078.

    (35) Nihei, M.; Tahira, H.; Takahashi, N.; Otake, Y.; Yamamura, Y.; Saito, K.; Oshio, H. Multiple bistability and tristability with dual spin-state conversions in [Fe(dpp)2][Ni(mnt)2]2·MeNO2.2010, 132, 3553–3560.

    13 November 2017;

    13 June 2018 (CCDC 1572437 for 1, 1572438 for 2, 1572439 for 3 and 1572440 for 4)

    the National Natural Science Foundation of China (21272167), Natural Science Foundation of Jiangsu Province (BK20171213), the Innovation of Graduate Student Training Project of Jiangsu Province (KYLX16_0109),and the Priority Academic Program Development of Jiangsu Higher Education Institution

    ② These two authors contribute equally to this work

    Born in 1968, professor, majoring in organometallic chemistry. E-mail: liyahong@suda.edu.cn and weiliu@suda.edu.cn

    10.14102/j.cnki.0254-5861.2011-1889

    精品午夜福利视频在线观看一区| 狂野欧美激情性xxxx在线观看| 久久久久久久久久黄片| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 成人亚洲精品av一区二区| 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久 | 日本一本二区三区精品| 久久午夜亚洲精品久久| 久久久精品欧美日韩精品| 国内揄拍国产精品人妻在线| 在线天堂最新版资源| 免费看光身美女| 大型黄色视频在线免费观看| 少妇的逼好多水| 亚洲va在线va天堂va国产| 国产精品伦人一区二区| 亚洲第一电影网av| 久久久国产成人免费| 琪琪午夜伦伦电影理论片6080| 永久网站在线| 国产精品亚洲一级av第二区| 欧美精品啪啪一区二区三区| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 色综合亚洲欧美另类图片| 欧美激情在线99| 欧美3d第一页| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 亚洲七黄色美女视频| 99riav亚洲国产免费| 日韩欧美精品免费久久| 69av精品久久久久久| 亚洲自拍偷在线| 动漫黄色视频在线观看| 国产黄片美女视频| 一夜夜www| 亚洲国产欧洲综合997久久,| 久久久色成人| 精品国内亚洲2022精品成人| 日韩精品青青久久久久久| 有码 亚洲区| 亚洲四区av| 亚洲av不卡在线观看| 又爽又黄a免费视频| 非洲黑人性xxxx精品又粗又长| 少妇丰满av| 伦精品一区二区三区| 精品久久久久久久久久免费视频| 中文字幕人妻熟人妻熟丝袜美| 国产综合懂色| 国产综合懂色| 真人做人爱边吃奶动态| 亚洲自拍偷在线| 日韩欧美免费精品| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 中文字幕精品亚洲无线码一区| 99riav亚洲国产免费| 91久久精品国产一区二区三区| 一进一出好大好爽视频| 色综合站精品国产| 淫秽高清视频在线观看| 午夜亚洲福利在线播放| 性色avwww在线观看| 午夜久久久久精精品| 一个人看视频在线观看www免费| 人人妻人人澡欧美一区二区| 久久中文看片网| 亚洲内射少妇av| www日本黄色视频网| 一区二区三区激情视频| 欧美高清成人免费视频www| av在线亚洲专区| 国产黄片美女视频| 国产午夜福利久久久久久| 欧美黑人欧美精品刺激| 男人和女人高潮做爰伦理| 级片在线观看| 色5月婷婷丁香| 内射极品少妇av片p| 成人精品一区二区免费| 真实男女啪啪啪动态图| 欧美色欧美亚洲另类二区| 亚洲avbb在线观看| 直男gayav资源| 看片在线看免费视频| 国产免费一级a男人的天堂| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 国产精品亚洲一级av第二区| 亚洲精品国产成人久久av| 一级黄片播放器| 成人精品一区二区免费| 99视频精品全部免费 在线| 日本成人三级电影网站| 不卡视频在线观看欧美| 看黄色毛片网站| 波多野结衣巨乳人妻| 亚洲国产精品合色在线| 少妇高潮的动态图| 三级国产精品欧美在线观看| 变态另类丝袜制服| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 久久99热这里只有精品18| 国产一区二区亚洲精品在线观看| 国内精品宾馆在线| 在线看三级毛片| 日本黄色片子视频| 精品久久久久久久久久久久久| 99久国产av精品| 少妇人妻精品综合一区二区 | 毛片一级片免费看久久久久 | 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 毛片一级片免费看久久久久 | 2021天堂中文幕一二区在线观| 国产精品日韩av在线免费观看| 日本 欧美在线| 久久国内精品自在自线图片| 亚洲黑人精品在线| 亚洲精品久久国产高清桃花| 超碰av人人做人人爽久久| 嫁个100分男人电影在线观看| 成人性生交大片免费视频hd| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲美女黄片视频| 国产精品久久久久久av不卡| 日本一本二区三区精品| 亚洲专区中文字幕在线| 男女视频在线观看网站免费| 麻豆一二三区av精品| 日韩人妻高清精品专区| 国产高清视频在线观看网站| 中文字幕熟女人妻在线| 久久久久久久久久黄片| 久久人人爽人人爽人人片va| 我的女老师完整版在线观看| 国产一区二区激情短视频| 中国美女看黄片| 久久草成人影院| 国产精品一区二区三区四区免费观看 | 国产精品伦人一区二区| 日韩中文字幕欧美一区二区| 色综合站精品国产| 极品教师在线视频| 波野结衣二区三区在线| 亚洲av中文av极速乱 | 亚洲人成网站在线播| 亚洲在线自拍视频| 成人综合一区亚洲| 中文字幕高清在线视频| 欧美激情国产日韩精品一区| 成人国产一区最新在线观看| 美女大奶头视频| 日本与韩国留学比较| 亚洲内射少妇av| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 国产成人av教育| av在线老鸭窝| 成年女人看的毛片在线观看| 在线免费观看的www视频| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清专用| 韩国av在线不卡| 熟女人妻精品中文字幕| 国产精品美女特级片免费视频播放器| 久久草成人影院| 国产精品一区二区免费欧美| 亚洲av五月六月丁香网| 国产男人的电影天堂91| 韩国av在线不卡| 国产乱人伦免费视频| 十八禁网站免费在线| 女人被狂操c到高潮| 日韩,欧美,国产一区二区三区 | 久久午夜亚洲精品久久| 草草在线视频免费看| 免费在线观看影片大全网站| 日本与韩国留学比较| 欧美又色又爽又黄视频| 亚洲欧美日韩无卡精品| 99在线人妻在线中文字幕| 亚洲精品影视一区二区三区av| 麻豆成人午夜福利视频| 欧美3d第一页| 窝窝影院91人妻| 亚洲av二区三区四区| 99久久精品热视频| 1024手机看黄色片| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 1000部很黄的大片| 亚洲成人精品中文字幕电影| 黄色女人牲交| 欧美黑人欧美精品刺激| 欧美在线一区亚洲| 韩国av在线不卡| 国产久久久一区二区三区| 欧美绝顶高潮抽搐喷水| 国产 一区精品| 丝袜美腿在线中文| 国产精品野战在线观看| 国产av在哪里看| 色哟哟·www| av女优亚洲男人天堂| 级片在线观看| 啦啦啦韩国在线观看视频| 91狼人影院| 99久久九九国产精品国产免费| 国产真实伦视频高清在线观看 | 亚洲精品久久国产高清桃花| 国产精品久久久久久久久免| 老司机深夜福利视频在线观看| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 动漫黄色视频在线观看| 变态另类丝袜制服| 国产美女午夜福利| 91精品国产九色| 91在线观看av| 国产乱人伦免费视频| 97碰自拍视频| 18禁黄网站禁片免费观看直播| 国产一区二区在线av高清观看| 嫩草影院新地址| 成人二区视频| 熟女电影av网| 啪啪无遮挡十八禁网站| 特级一级黄色大片| 国产高清视频在线观看网站| av黄色大香蕉| 五月伊人婷婷丁香| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 午夜精品一区二区三区免费看| 日本色播在线视频| 午夜激情福利司机影院| 日韩欧美 国产精品| 丝袜美腿在线中文| 久久精品国产亚洲av涩爱 | 国产高清三级在线| 国产黄片美女视频| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 99热网站在线观看| 观看美女的网站| 欧美色视频一区免费| 老女人水多毛片| 亚洲av中文av极速乱 | 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 国产亚洲精品av在线| 亚洲综合色惰| 麻豆成人午夜福利视频| 成人精品一区二区免费| 九九在线视频观看精品| 亚洲欧美日韩无卡精品| 欧美一区二区国产精品久久精品| 日韩高清综合在线| 精品99又大又爽又粗少妇毛片 | 少妇人妻一区二区三区视频| 亚洲av第一区精品v没综合| 成人一区二区视频在线观看| 亚洲av免费在线观看| 中出人妻视频一区二区| 日韩欧美 国产精品| 97热精品久久久久久| 91在线观看av| eeuss影院久久| 免费搜索国产男女视频| 一级黄片播放器| 特大巨黑吊av在线直播| 亚洲三级黄色毛片| 色综合色国产| 久久国产乱子免费精品| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| 久久热精品热| 精品欧美国产一区二区三| 欧美日本视频| 国产三级在线视频| 嫩草影院精品99| 简卡轻食公司| 一本精品99久久精品77| 国产伦在线观看视频一区| 欧美日韩黄片免| 国产av不卡久久| 麻豆成人午夜福利视频| 成人美女网站在线观看视频| 日本-黄色视频高清免费观看| 国产精品自产拍在线观看55亚洲| 亚洲美女搞黄在线观看 | 变态另类丝袜制服| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 欧美色视频一区免费| 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| avwww免费| 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 性欧美人与动物交配| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片 | 91狼人影院| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 国产在线精品亚洲第一网站| 尾随美女入室| 亚洲经典国产精华液单| 人人妻,人人澡人人爽秒播| 亚洲熟妇熟女久久| 成人av在线播放网站| 麻豆一二三区av精品| 日韩欧美国产一区二区入口| 亚洲最大成人av| 欧美另类亚洲清纯唯美| 国产一区二区三区av在线 | 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 午夜福利18| 国产av不卡久久| 日本欧美国产在线视频| 精品久久久久久成人av| 一个人看的www免费观看视频| 久久久久久久久大av| 日本 欧美在线| 久久久久久久亚洲中文字幕| 午夜福利在线在线| 国产成人aa在线观看| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 亚洲国产高清在线一区二区三| 亚洲五月天丁香| 99热这里只有是精品50| 此物有八面人人有两片| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 国产久久久一区二区三区| 精品久久久久久久人妻蜜臀av| av福利片在线观看| 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 国产色爽女视频免费观看| 久久这里只有精品中国| 欧美色欧美亚洲另类二区| 在线a可以看的网站| 色哟哟·www| 国产人妻一区二区三区在| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区 | 99久久久亚洲精品蜜臀av| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 22中文网久久字幕| 日韩 亚洲 欧美在线| 久久热精品热| 在线看三级毛片| 亚洲真实伦在线观看| 国产成人aa在线观看| .国产精品久久| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 内射极品少妇av片p| 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 亚洲四区av| 免费av观看视频| 男女啪啪激烈高潮av片| 亚洲av第一区精品v没综合| av在线亚洲专区| 国产黄a三级三级三级人| 校园春色视频在线观看| 国产精品亚洲一级av第二区| 男女做爰动态图高潮gif福利片| 超碰av人人做人人爽久久| 中出人妻视频一区二区| 亚洲av二区三区四区| 色综合亚洲欧美另类图片| 18禁黄网站禁片午夜丰满| 日韩,欧美,国产一区二区三区 | 观看美女的网站| 国产成人一区二区在线| а√天堂www在线а√下载| 黄色配什么色好看| 欧美zozozo另类| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 尤物成人国产欧美一区二区三区| 亚洲中文字幕日韩| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 又黄又爽又刺激的免费视频.| 麻豆成人av在线观看| 色综合站精品国产| 人妻久久中文字幕网| 在线a可以看的网站| 欧美一区二区亚洲| 国产精品野战在线观看| 久久亚洲精品不卡| 日本一二三区视频观看| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| 久久久精品大字幕| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 最新中文字幕久久久久| 色av中文字幕| 自拍偷自拍亚洲精品老妇| 能在线免费观看的黄片| 欧美不卡视频在线免费观看| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 99久久中文字幕三级久久日本| 久久久国产成人精品二区| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 国产免费一级a男人的天堂| 成年人黄色毛片网站| 欧美黑人巨大hd| 18+在线观看网站| 久久久久久大精品| 欧美潮喷喷水| 哪里可以看免费的av片| 男女那种视频在线观看| 国产精品一及| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 亚洲欧美日韩高清专用| 1000部很黄的大片| 1024手机看黄色片| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件 | 搡女人真爽免费视频火全软件 | 中国美女看黄片| 国产毛片a区久久久久| 国产精品女同一区二区软件 | 国产精品三级大全| 老女人水多毛片| 成人国产麻豆网| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 久久国内精品自在自线图片| 久久香蕉精品热| 一边摸一边抽搐一进一小说| 亚洲经典国产精华液单| 日本a在线网址| 成人永久免费在线观看视频| 床上黄色一级片| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品无大码| 美女xxoo啪啪120秒动态图| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 直男gayav资源| 久久婷婷人人爽人人干人人爱| 欧美中文日本在线观看视频| 国产 一区精品| 性欧美人与动物交配| 国产av在哪里看| 国产日本99.免费观看| 嫩草影视91久久| 久久久国产成人免费| 免费在线观看影片大全网站| 真人一进一出gif抽搐免费| 国产精品一区二区性色av| 禁无遮挡网站| 在线观看免费视频日本深夜| 少妇猛男粗大的猛烈进出视频 | 国产精品av视频在线免费观看| 老司机福利观看| 少妇被粗大猛烈的视频| 亚洲av电影不卡..在线观看| www日本黄色视频网| 午夜福利成人在线免费观看| 午夜福利欧美成人| 婷婷丁香在线五月| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 麻豆av噜噜一区二区三区| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 99九九线精品视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 久99久视频精品免费| 91av网一区二区| 十八禁国产超污无遮挡网站| 99九九线精品视频在线观看视频| 欧美区成人在线视频| 国产成人av教育| 午夜a级毛片| 99热精品在线国产| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 搡老岳熟女国产| 极品教师在线视频| 一区福利在线观看| 一本精品99久久精品77| 最近视频中文字幕2019在线8| 黄色日韩在线| 可以在线观看的亚洲视频| 一级a爱片免费观看的视频| 国产精品一区二区免费欧美| 日韩欧美免费精品| 欧美三级亚洲精品| 国产69精品久久久久777片| 我的女老师完整版在线观看| 免费人成在线观看视频色| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 亚洲成a人片在线一区二区| 九九久久精品国产亚洲av麻豆| 麻豆一二三区av精品| 久久亚洲真实| 22中文网久久字幕| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 亚洲av五月六月丁香网| 国产麻豆成人av免费视频| 少妇被粗大猛烈的视频| av专区在线播放| 成人午夜高清在线视频| 久久久久久九九精品二区国产| 国产亚洲欧美98| 精品乱码久久久久久99久播| 欧美激情国产日韩精品一区| 午夜精品在线福利| 日韩中字成人| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久 | 国产亚洲精品久久久com| 精品久久久久久,| 亚洲人成网站高清观看| 亚洲七黄色美女视频| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| 国产一区二区在线av高清观看| 国产白丝娇喘喷水9色精品| 51国产日韩欧美| 久久这里只有精品中国| 亚洲精华国产精华液的使用体验 | 国产高清有码在线观看视频| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 在线观看66精品国产| 久久99热6这里只有精品| 亚洲av美国av| 搞女人的毛片| 成人av在线播放网站| 国产精品av视频在线免费观看| 午夜日韩欧美国产| 亚洲欧美清纯卡通| 精品久久久久久,| 国产探花在线观看一区二区| 夜夜爽天天搞| 精品人妻1区二区| 又黄又爽又刺激的免费视频.| 嫩草影院新地址| 一进一出抽搐gif免费好疼| 日本三级黄在线观看| 最近视频中文字幕2019在线8| 国产精品久久久久久久电影| 成人二区视频| 麻豆国产97在线/欧美| av天堂中文字幕网| 成人鲁丝片一二三区免费| 亚洲熟妇中文字幕五十中出| 精品福利观看| 久久99热6这里只有精品| 国产男人的电影天堂91| 免费无遮挡裸体视频| 国产日本99.免费观看| 国产高清视频在线观看网站| 白带黄色成豆腐渣| 在线看三级毛片| 国产精品一区二区三区四区久久| 白带黄色成豆腐渣| xxxwww97欧美| 长腿黑丝高跟| 婷婷精品国产亚洲av| 免费在线观看成人毛片| 五月玫瑰六月丁香| 国产乱人伦免费视频| 成年免费大片在线观看| 亚洲国产欧洲综合997久久,| 亚洲经典国产精华液单| 日本黄色片子视频| 九色成人免费人妻av| 变态另类成人亚洲欧美熟女| 成人二区视频| 琪琪午夜伦伦电影理论片6080| 亚洲中文字幕日韩| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区色噜噜| 日本在线视频免费播放|