• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Ternary Europium Chalcogenides Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, Experimental and Theoretical Investigations①

    2018-09-08 03:41:56SUNZongDongGUOShengPing
    結(jié)構(gòu)化學(xué) 2018年8期

    SUN Zong-Dong GUO Sheng-Ping

    ?

    Two Ternary Europium Chalcogenides Eu1-xGa2Te4(≈ 0.19) and EuY2Se4, Experimental and Theoretical Investigations①

    SUN Zong-Dong GUO Sheng-Ping②

    (225002)

    Two ternary europium chalcogenides, Eu1-xGa2Te4(≈ 0.19) (1) and EuY2Se4(2), have been synthesized by a facile solid-state route using boron as the reducing reagent. Eu1-xGa2Te4crystallizes in the tetragonal space group4/with= 8.2880(9),= 6.7439(12) ?,= 463.24(13) ?3, and= 2. EuY2Se4crystallizes in the orthorhombic space groupwith= 12.4726(16),= 4.1204(6),= 14.849(2) ?,= 763.11(19) ?3, and= 4. Eu1-xGa2Te4belongs to the TlSe-type 3closed structure, while EuY2Se4adopts the CaFe2O4-type 3channel structure. The optical band gap of Eu1-xGa2Te4is determined to be 0.48 eV. Electronic structures of 1 and 2 are calculated using TB-LMTO software.

    europium chalcogenide, solid-state reaction, crystal structure, band gap;

    1 INTRODUCTION

    Europium chalcogenides have been investigated extensively recently because of their diverse crystal structures and rich physical properties[1, 2]. As divalent rare-earth metal Eu2+and Yb2+ions have similar coordination and bonding habits with diva- lent alkali-earth metal ions (Mg2+, Ca2+, Sr2+, and Ba2+), novel europium chalcogenides can be derived from the corresponding alkali-earth chalcogenides. Since multinary barium-based chalcogenides are recently explored as second-order nonlinear optical (NLO) materials in the infrared (IR) region[3], it is interesting to plan to design several potential Eu-based chalcogenides as NLO materials. Based on this consideration, many efforts are made to synthesize novel multinary Eu chalcogenides by us in recent years. In this work, two ternary Eu chalcogenides, Eu1-xGa2Te4(≈ 0.19) (1) and EuY2Se4(2), were obtained. The former is a new polymorph of EuGa2Te4, and the latter is structure re-determination of EuY2Se4. Here, their syntheses, crystal structures, electronic structures, and optical properties are presented.

    2 EXPERIMENTAL

    2. 1 Syntheses and analyses

    All starting materials were used as received without further purification. Single crystals of the title compound were obtained by solid-state reaction with KI (99 %) as flux[4-8]. The starting materials are Eu2O3(99.9%), Eu2O3(99.9%), Ga2O3(99.9%), Se (99.999%), Te (99.999%), and boron powder (99%). Each sample has a total mass of 500 mg and 400 mg KI (99%) additional, and the molar ratios of Eu:Ga:Te:B or Eu:Y:Se:B are 1:2:4:6. The mixture of starting materials was ground into fine powder in an agate mortar and pressed into one pellet, followed by being loaded into quartz tubes. The tubes were evacuated to be 1′10–4torr and flame-sealed. The samples were placed into a muffle furnace, heated from room temperature to 1223 K for several intermediate holding zones, then kept for 5 days, finally cooled down to 573 K with the speed of 5 K/h, and powered off. Black crystals of 1 and 2 stable in air and water were obtained. The exact compositions were established from X-ray structure determination. The purity of powder sample of 1 was confirmed by powder X-ray diffraction (PXRD) study. The PXRD pattern was collected with a PANalytical X'Pert Pro diffractometer at 40 kV and 40 mA for Cu-radiation (= 1.5406 ?) with a scan speed of 5°/min at room temperature. The simulated pattern was produced using the Mercury v2.3 program provided by the Cambridge Crys- tallographic Data Center (CCDC) and single-crystal reflection data. The PXRD pattern of 1 (Fig. 1) matches well with the simulated one, indicating the picked out sample is pure, which was subsequently sent to measure its optical property.

    Fig. 1. Powder X-ray diffraction pattern of 1

    2. 2 Structure determination

    Theintensity data sets were collected on a Bruker D8 QUEST diffractometer with graphite-monochro- mated Mo-radiation (= 0.71073 ?). The structures of 1 and 2 were solved by direct methods and refined by full-matrix least-squares techniques on2with anisotropic thermal parameters for all atoms. All the calculations were performed using Shelxtl-2014[9]through the Olex2[10]interface. The final refinements included anisotropic displacement parameters for all atoms and a secondary extinction correction. Compound 1 crystallizes in the tetragonal space group4/with= 2,= 8.2880(9),= 6.7439(12) ?, and= 463.24(13) ?3.The finalandvalues for all data are 0.0327 and 0.0708, respectively. Compound 2 crystallizes in the orthorhombic space groupwith= 4,= 12.4726(16),= 4.1204(6),= 14.849(2) ? and= 763.11(19) ?3.The finalandvalues for all data are 0.0277 and 0.0410, respectively. The bond lengths of both crystals are listed in Table 1.

    2. 3 Optical property

    The diffuse reflectance spectrum of 1 was recor- ded at room temperature on a computer-controlled Varian Cary 5000 UV-Vis-NIR spectrometer equip- ped with an integrating sphere. As the yield of 2 is too low, its diffuse reflectance spectrum was not measured. The measurement wavelength was set in the range of 300~1700 nm. A BaSO4plate was used as a reference, on which the finely ground powdery sample was coated. The absorption spec- trum was calculated from reflection spectrum by the Kubelka-Munk function[11, 12].

    2. 4 Theory calculation

    The calculation models were built directly from the single-crystal structure data of 1 and 2. Their band structures and densities of state were calculated by tight-binding linear muffin-tin orbital (TB-LMTO) software, using the LMTO47 program[13]. Employing this program, the electronic structures of several earlier compounds obtained by us have been successfully calculated[14-17]. This package uses the atomic sphere approximation (ASA) method, in which space is filled with overlapping Wigner-Seitz (WS) atomic spheres[18].The symmetry of the potential is considered spherical inside each WS sphere, and a combined correction is used to take into account the overlapping part[19]. The radii of WS spheres were obtained by requiring that the overlapping potential be the best possible approxi- mation to the full potential and were determined by an automatic procedure. Exchange and correlation were treated by the local density approximation[20]. The WS radii are as follows: Eu = 3.72 ?, Ga = 2.75 ?, Te = 3.12 ? for 1, and Eu = 3.93 ?, Y = 3.23~3.26 ?, Se = 2.93 ? for 2. The-space integrations were conducted by the tetrahedron method, and the self-consistent charge densities were obtained using4 × 4 × 4points for 1 and 2 × 6 × 2points for 2 in the Brillouin zones. The Eu 6, Ga 3, Te 5, Se 4, and Y 5orbitals were treated using the Lo?wdin downfolding technique.

    Table 1. Bond Lengths (?) for 1 and 2

    3 RESULTS AND DISCUSSION

    Compounds 1 and 2 crystallize in the tetragonal space group4/and orthorhombic space group, respectively. The structure of 1 belongs to the TlSe-type 3closed structure, while the structure of 2 adopts the CaFe2O4-type 3channel structure. When checking known related compounds with 1, there is no RE–M2–Q4(RE = rare earth; M = trivalent metal; Q = S, Se, Te) compounds adopting the tetragonal4/structure, and only several tellurides in AE–M2–Q4(AE = Mg, Ca, Sr, Ba; M = Al, Ga, In; Q = S, Se, Te) compounds with this structure are reported. Most of the RE–M2–Q4or AE–M2–Q4compounds crystallize in the space group,, or. EuGa2Te4was firstly reported as early as in 1980[21], which crystallizes in the orthorhombic space group. The tetragonal phase of EuGa2Te4is firstly investigated here. While for 2, which is firstly determined by Souleau in 1968 using powder X-ray diffraction data[22]. Here, single-crystal X-ray diffraction data are obtained and used to determine the exact structure of 2 and further calculation.

    There are one Eu, one Ga, and one Te atoms in the crystallographically independent unit in the structure of 1. Eu and Ga atoms are coordinated with eight or four Te atoms to constitute a EuTe8decahedron and a GaTe4tetrahedron, respectively. There are one Eu, two Y, and four Se atoms in the crystallographically independent unit in the structure of 2. Eu and Y atoms connect with eight or six Se atoms to build a EuSe8bicapped trigonal prism () and a YSe6octahedron, respectively (Fig. 2).

    Fig. 2. Coordination geometries of 1 (a) and 2 (b)

    The 3crystal structure of 1 is shown in Fig. 3. EuTe8decahedra connect with each other to con- struct the 3framework, in which Ga atoms occupy the tetrahedral cavities. Each EuTe8decahedron shares corners (one Te atoms), edges (two Te atoms), and faces (four Te atoms) with eight, four, and two neighboring EuTe8decahedra, respectively. Each GaTe4tetrahedron shares edges with two neighboring GaTe4tetrahedra to build a [(GaTe4)5–]chain along the-axis. Different from the EuTe8decahedron in 1, the EuSe8unit in 2 forms a-type coordination geometry. According to Fig. 4, EuSe8link together to form starfish-like chains by sharing corners along the-axis. YSe6octahedra connect with each other to build chains along the-axis. The structure motif constructed by Y–Se bonds can be described to Y3Se4-type pseudo-cubane lacking one corner, a similar motif with that in-EuZrS3[1]- and3S3BO3[23, 24]. Due to two different crystallographic Y atoms, there are four types of Y3Se4pseudo-cubanes, as highlighted with black lines in Fig. 4. All the pseudo-cubanes are comprised of three Y and four Se atoms.

    Fig. 3. Crystal structure of 1. (a) 3-D view of the structure along theaxis; (b) Connection between each EuTe8octahedron and its neighboring GaTe4tetrahedra viewed along theaxis; (c) [(GaTe4)5–]chain built by GaTe4tetrahedra via sharing edges along theaxis

    Fig. 4. Crystal structure of 2. (a) Connection between EuSe8viewed along theaxis;

    (b) Pseudo-cubane units constructed by three Y and four Se atoms viewed along theaxis

    The selected bond distances for 1 and 2 are listed in Table 1. The Eu–Te and Ga–Te bond distances in 1 are 3.4996(5) and 2.6354(11) ?, similar with 3.490(1)~3.595(1) and 2.622(1)~2.766(1) ? discovered in AE–Ga2–Te4compounds, respectively. Eu–Se and Y–Se bond distances are 3.1793(3)~3.4053(8) and 2.7907(6)~2.8759(6) ?. Similar with isostructural compounds EuLn2Se4(Ln = Tb–Lu)[25], the Eu–Se and Y–Se bond lengths in 2 are in the ranges of 3.1469(7)~3.4382(2) and 2.7473(6)~2.8955(9) ?, respectively.

    The band structure and density of states (DOS) of 1 and 2 are obtained by TB-LMTO-ASA electronic structure calculations. The calculated band structure along high symmetry points of the first Brillouin zone are shown in Fig. 5. It can be seen that the band gaps of 1 and 2 arecalculatedto be 0.46 and 1.33 eV, respectively, with the former close to its experi- mental value obtained from the ultraviolet diffuse reflection spectrum at room temperture (Fig. 6). The lowest conduction band (CB) and the highest valence band (VB) of 1 are located at Z and G points, respectively, while for 2, both of them are located at the G points, inidcating that the band gaps of 1 and 2 are indirect and direct, respectively.

    Fig. 5. Calculated band structures and DOS of 1 and 2. The Fermi level is chosen as the energy reference at 0 eV

    Fig. 6. UV-Vis-NIR spectroscopy measurement for 1 with an extracted optical band gap of ~0.48 eV at room temperature

    The total and partial DOS (TDOS and PDOS) of 1 and 2 are drawn in Fig. 5. As for 1, the highest valence band (HOMO) is mainly constituted by Te-5orbitals, and the lowest conducation band (LUMO) is primarily constituted by Ga-3orbitals. For 2, the HOMO and LUMO are mainly consituted by Se-4and Y-3orbitals, respectively. The vanlence bands of 1 between –8 and –2 eV are caused mainly formed by Te-5, Eu-4, and Ga-4orbitals, and the conduction bands between –1 to 8 eV are mianly created by Eu-4, Te-5, and Ga-4orbitals. For 2, the vanlence bands between –5 to 0 eV are mainly caused by Se-4, Y-4, and Eu-4orbitals, and the conduction bands in the range of 2~8 eV are consitituted by Y-4, Eu-4, and Se-4orbitals. Therefore, it is clear the optical absorptions of 1 and 2 are caused by the charge transfer from Te-5to Ga-3and from Se-4to Y-3, respectively.

    Here, two ternary europium chalcogenides are reported with their solid-state syntheses, crystal and electronic structures, together with the optical property. It is obvious that more Eu-based chalco- genides can be designed from the corresponding alkali-earth chalcogenides. It is supposed that more such compounds can be studied with rich structural chemistry and physical performance.

    (1) Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of-EuZrS3.2016, 40, 10219–10226.

    (2) Chi, Y.; Guo, S. P.; Xue, H. G.Band gap tuning from indirect EuGa2S4to direct EuZnGeS4semiconductor: syntheses, crystal and electronic structures, and optical properties.2017, 7, 5039–5045.

    (3) Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials.. 2017, 335, 44–57.

    (4) Sun, Y. L.; Chi, Y.;Guo, S. P.Synthesis and crystal structure of a new quaternary sulfide FeSm6Si2S14.2016, 35, 1369–1375.

    (5) Chi, Y.;Sun, J.; Guo, S. P.Synthesis, crystal structure and magnetic property of ternary neodymium zirconium sulfide, Nd2ZrS5.2016, 35, 713–717.

    (6) Chi, Y.;Guo, S. P. Syntheses, crystal structures and optical properties of two AlRE3(Si1-yAl)S7(= Sm and Gd) compounds.2016, 35, 341–347.

    (7) Guo, S. P.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Crystal structure and magnetic property of quaternary sulfide, Al0.36Sm3Ge0.98S7.2009, 28, 1448–1452.

    (8) Guo, S. P.; Zeng, H. Y.; Guo, G. C.; Zou, J. P.; Xu, G.; Huang, J. S. Syntheses, structures and band gaps of KLnSiS4(Ln = Sm, Yb).2008, 27, 1543–1548.

    (9) Sheldrick, G. M. Crystal structure refinement with SHELXL.2008, 64, 112–122.

    (10) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program.2009, 42, 339–341.

    (11) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy. Interscience Publishers: New York 1966.

    (12) Kortüm, G.Springer: New York 1969.

    (13) Jepsen, O.; Burkhardt, A.; Andersen, O. K. The TB-LMTO-ASA program,. Max-Planck-Institut fu?r Festko?rperforschung: Stuttgart, Germany 1999.

    (14) Guo, S. P.; You, T. S.; Bobev, S. Closely related rare-earth metal germanides2Li2Ge3and3Li4Ge4(= La–Nd, Sm): synthesis, crystal chemistry and magnetic properties.2012, 51, 3119–3129.

    (15) Guo, S. P.; You, T. S.; Jung, Y. H.; Bobev, S. Synthesis, crystal chemistry, and magnetic properties of7Li8Ge10and11Li12Ge16(= La–Nd, Sm): new members of the [Ge2][Li2Ge]homologous series.2012, 51, 6821–6829.

    (16) Guo, S. P.; Meyers, J. J.; Tobash, P. H.; Bobev, S. Eleven new compounds in the-Cd-Ge systems (= Y, Pr, Nd, Sm, Gd–Yb): crystal chemistry of the2CdGe2series.2012, 192, 16–22.

    (17) Guo, S. P.; Wang, G. E.; Wu, M. F.; Liu, G. N.; Jiang, X. M.; Guo, G. C.; Huang, J. S. Novel single-crystal’s voltage dependent effect and magnetic order of2ZrQ5(= La, Sm and Gd; Q = S and Se).2013, 42, 2679–2682.

    (18) Andersen, O. A.; Jepsen, O.; Glo?tzel, D. in Highlights of Condensed Matter Theory, edited by Bassani, F.; Fumi, F.; Tosi Eds. M. North-Holland: New York 1985.

    (19) Jepsen, O.; Anderson, O. K. Calculated electronic structure of the sandwich1metals LaI2and CeI2: application of new LMTO techniques.1995, 97, 35?47.

    (20) Anderson, O. K.; Jepsen, O. Explicit, first-principles tight-binding theory.... 1984, 53, 2571?2574.

    (21) Aliev, O. M. Some general features of reactions between chalcogenides of elements of subgroups IIIa and IIIb.. 1981, 16, 1027–1031.

    (22) Souleau, M. C.; Guittard, M. Sur les systemes formes entre les seleniures L2Se3des elements des terres rares et le seleniure EuSe d'europium. Bulletin de la Societe Chimique de France 1968, 9, 3632–3635.

    (23) Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds.2015, 54, 11052–11054.

    (24) Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates3S3BO3(= Sm, Gd).2016, 40, 6720–6727.

    (25) Jin, G. B.; Choi, E. S.; Guertin, R. P. Albrecht-Schmitta, T. E. An investigation of structural parameters and magnetic and optical properties of Eu24(= Tb–Lu,= S, Se).2008, 181, 14–19.

    13 December 2017;

    13 March 2018 (ICSD 433862 for 1 and 433861 for 2)

    ① This research was supported by NNSFC (21771159), NSF of Yangzhou (YZ2016122), and State Key Lab of Structural Chemistry Fund (20150009)

    . Tel: +86-514-87975244, E-mail: spguo@yzu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1924

    成人亚洲欧美一区二区av| 18禁动态无遮挡网站| 搡老乐熟女国产| 亚洲真实伦在线观看| 欧美激情国产日韩精品一区| 国产91av在线免费观看| 久久午夜福利片| 精品午夜福利在线看| 黄片无遮挡物在线观看| 国产一区二区三区综合在线观看 | 国产成人精品久久久久久| 欧美一级a爱片免费观看看| 中文字幕免费在线视频6| 综合色丁香网| 少妇被粗大猛烈的视频| 欧美潮喷喷水| 国产日韩欧美在线精品| 午夜精品一区二区三区免费看| 免费少妇av软件| 国产淫语在线视频| 在线免费十八禁| 亚洲国产精品成人综合色| 一二三四中文在线观看免费高清| 午夜福利视频1000在线观看| 男插女下体视频免费在线播放| 国产黄a三级三级三级人| 成人美女网站在线观看视频| 午夜爱爱视频在线播放| 日韩成人av中文字幕在线观看| 搡老乐熟女国产| 中国国产av一级| 日韩大片免费观看网站| 青春草视频在线免费观看| 国产淫片久久久久久久久| 国产高清国产精品国产三级 | 特大巨黑吊av在线直播| 久久久久久久大尺度免费视频| 一区二区三区四区激情视频| 中国国产av一级| 国产免费视频播放在线视频 | 亚洲美女搞黄在线观看| 欧美xxxx性猛交bbbb| 国产人妻一区二区三区在| 久久精品国产亚洲网站| 嘟嘟电影网在线观看| 欧美日韩亚洲高清精品| 欧美激情在线99| 高清av免费在线| 亚洲av日韩在线播放| 中国美白少妇内射xxxbb| a级一级毛片免费在线观看| 赤兔流量卡办理| 97超碰精品成人国产| 国产淫片久久久久久久久| 啦啦啦中文免费视频观看日本| 少妇的逼好多水| 美女国产视频在线观看| 国产午夜精品久久久久久一区二区三区| 欧美xxⅹ黑人| 黄色日韩在线| 午夜视频国产福利| 成人美女网站在线观看视频| 夜夜爽夜夜爽视频| 男女视频在线观看网站免费| 天堂√8在线中文| 3wmmmm亚洲av在线观看| 大话2 男鬼变身卡| 国产精品一区二区三区四区免费观看| 青春草视频在线免费观看| 狠狠精品人妻久久久久久综合| 51国产日韩欧美| 欧美日韩视频高清一区二区三区二| 七月丁香在线播放| 亚洲怡红院男人天堂| 国产一区亚洲一区在线观看| 国产乱人视频| 国产探花在线观看一区二区| 最近的中文字幕免费完整| 秋霞在线观看毛片| 国产精品国产三级国产专区5o| 晚上一个人看的免费电影| 最近手机中文字幕大全| 91久久精品国产一区二区三区| 成人漫画全彩无遮挡| 午夜福利视频精品| 国产人妻一区二区三区在| 国产精品伦人一区二区| 狂野欧美白嫩少妇大欣赏| 激情 狠狠 欧美| 国产免费一级a男人的天堂| 波野结衣二区三区在线| 亚洲精品aⅴ在线观看| 亚洲乱码一区二区免费版| 国内揄拍国产精品人妻在线| 蜜臀久久99精品久久宅男| 亚洲国产日韩欧美精品在线观看| 国产久久久一区二区三区| 国产一级毛片在线| 内地一区二区视频在线| 内地一区二区视频在线| av专区在线播放| 一个人看视频在线观看www免费| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久久成人| 欧美日本视频| 少妇的逼水好多| 日韩视频在线欧美| 亚洲av中文字字幕乱码综合| 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 久久韩国三级中文字幕| 精品久久久久久久末码| 精品欧美国产一区二区三| 一夜夜www| 日本猛色少妇xxxxx猛交久久| 亚洲av.av天堂| 日韩制服骚丝袜av| 热99在线观看视频| 亚洲av成人精品一二三区| 男人舔女人下体高潮全视频| 亚洲国产精品sss在线观看| 日本与韩国留学比较| 国产成人精品久久久久久| 国产一级毛片七仙女欲春2| 不卡视频在线观看欧美| 精品国内亚洲2022精品成人| 老师上课跳d突然被开到最大视频| 亚洲久久久久久中文字幕| 成人鲁丝片一二三区免费| 非洲黑人性xxxx精品又粗又长| 男人爽女人下面视频在线观看| 春色校园在线视频观看| 精品欧美国产一区二区三| 欧美zozozo另类| 久久久久久国产a免费观看| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 美女cb高潮喷水在线观看| 最近中文字幕高清免费大全6| 97超视频在线观看视频| 亚洲精品日韩av片在线观看| 又大又黄又爽视频免费| 99久久中文字幕三级久久日本| 国国产精品蜜臀av免费| 成人无遮挡网站| 国产69精品久久久久777片| 高清在线视频一区二区三区| 中文字幕免费在线视频6| 一级av片app| 精品一区二区三卡| 岛国毛片在线播放| 男人舔奶头视频| 少妇丰满av| 2022亚洲国产成人精品| 国产高清不卡午夜福利| 看免费成人av毛片| 搞女人的毛片| av.在线天堂| 看非洲黑人一级黄片| 久久久国产一区二区| 九色成人免费人妻av| 国产女主播在线喷水免费视频网站 | 97超碰精品成人国产| 亚洲欧美成人精品一区二区| 免费无遮挡裸体视频| 亚洲精品久久久久久婷婷小说| 亚洲av男天堂| 久久97久久精品| 丰满少妇做爰视频| av国产久精品久网站免费入址| 欧美xxxx黑人xx丫x性爽| 大香蕉97超碰在线| 99久久精品国产国产毛片| 日韩 亚洲 欧美在线| 别揉我奶头 嗯啊视频| 欧美+日韩+精品| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 97人妻精品一区二区三区麻豆| 日本-黄色视频高清免费观看| 一级毛片黄色毛片免费观看视频| 久久精品人妻少妇| 五月伊人婷婷丁香| 男女国产视频网站| 国产黄a三级三级三级人| 国产av不卡久久| 嫩草影院精品99| 成人午夜高清在线视频| 97热精品久久久久久| 久久久色成人| 国产伦精品一区二区三区四那| 国产 一区 欧美 日韩| 午夜久久久久精精品| 国产又色又爽无遮挡免| 大话2 男鬼变身卡| 美女大奶头视频| 日韩欧美 国产精品| 国产女主播在线喷水免费视频网站 | 成年版毛片免费区| 插逼视频在线观看| 人妻夜夜爽99麻豆av| 日日啪夜夜撸| 黄片wwwwww| 国产精品国产三级国产av玫瑰| 欧美精品国产亚洲| 国产精品爽爽va在线观看网站| 日本爱情动作片www.在线观看| 国产精品久久视频播放| 99久国产av精品国产电影| 久久精品夜色国产| 啦啦啦韩国在线观看视频| 99久久精品一区二区三区| 国产午夜精品一二区理论片| 国产高清不卡午夜福利| 成人国产麻豆网| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 乱系列少妇在线播放| 久久精品国产亚洲网站| 日本三级黄在线观看| 国产成人一区二区在线| 神马国产精品三级电影在线观看| 国产黄a三级三级三级人| 丰满少妇做爰视频| 又爽又黄无遮挡网站| 国产 一区 欧美 日韩| 十八禁国产超污无遮挡网站| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 高清毛片免费看| 黄色欧美视频在线观看| 免费少妇av软件| 高清视频免费观看一区二区 | 一级a做视频免费观看| 五月天丁香电影| 大又大粗又爽又黄少妇毛片口| 男人舔奶头视频| 久久久精品94久久精品| 亚洲精品国产av成人精品| 99久国产av精品国产电影| 亚洲人与动物交配视频| 中文字幕免费在线视频6| 高清日韩中文字幕在线| 狠狠精品人妻久久久久久综合| 赤兔流量卡办理| 特大巨黑吊av在线直播| 青春草国产在线视频| 在现免费观看毛片| 观看美女的网站| 免费看日本二区| 成人亚洲精品一区在线观看 | 看非洲黑人一级黄片| 一个人观看的视频www高清免费观看| 国产成人精品一,二区| 中文字幕av成人在线电影| 免费观看性生交大片5| 成人美女网站在线观看视频| 婷婷六月久久综合丁香| 啦啦啦啦在线视频资源| 全区人妻精品视频| 最近中文字幕高清免费大全6| 天堂影院成人在线观看| av天堂中文字幕网| 噜噜噜噜噜久久久久久91| 直男gayav资源| freevideosex欧美| 五月天丁香电影| 日本熟妇午夜| 综合色av麻豆| 中文字幕久久专区| 久久久久久久久大av| 亚洲av免费高清在线观看| 亚洲最大成人中文| 中国国产av一级| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看| 国国产精品蜜臀av免费| 老女人水多毛片| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 永久网站在线| 好男人视频免费观看在线| 91精品一卡2卡3卡4卡| 高清日韩中文字幕在线| 欧美成人午夜免费资源| 日本色播在线视频| 韩国av在线不卡| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 麻豆成人av视频| 国产精品一区二区三区四区久久| 亚洲人成网站在线播| 久久精品人妻少妇| 中文乱码字字幕精品一区二区三区 | 国产一区二区三区综合在线观看 | 亚洲综合色惰| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 身体一侧抽搐| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 嫩草影院精品99| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 99热这里只有精品一区| 久久国产乱子免费精品| 欧美3d第一页| 2022亚洲国产成人精品| 水蜜桃什么品种好| 国内精品美女久久久久久| 在线观看免费高清a一片| 国产在线男女| 日韩av免费高清视频| 国产乱人偷精品视频| 久久国产乱子免费精品| 免费看av在线观看网站| 日日啪夜夜撸| 亚洲人与动物交配视频| 永久免费av网站大全| 美女内射精品一级片tv| 亚洲精品第二区| 精品一区二区三区人妻视频| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 色综合站精品国产| av专区在线播放| 国产 亚洲一区二区三区 | 麻豆av噜噜一区二区三区| 国产免费福利视频在线观看| 99久国产av精品国产电影| 黄色配什么色好看| 天美传媒精品一区二区| 色5月婷婷丁香| 色哟哟·www| 国产一区有黄有色的免费视频 | 美女高潮的动态| 91久久精品电影网| 国产精品久久久久久精品电影小说 | 中文字幕亚洲精品专区| 91aial.com中文字幕在线观看| 成人性生交大片免费视频hd| 两个人的视频大全免费| 午夜精品在线福利| 精品熟女少妇av免费看| 一本一本综合久久| 国产免费福利视频在线观看| 老司机影院成人| 欧美区成人在线视频| 免费观看无遮挡的男女| 九草在线视频观看| 久久97久久精品| 麻豆成人av视频| 久久久精品欧美日韩精品| 青春草视频在线免费观看| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 特大巨黑吊av在线直播| 男人舔女人下体高潮全视频| 九九爱精品视频在线观看| 美女主播在线视频| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 午夜精品国产一区二区电影 | 我的女老师完整版在线观看| 国产乱人偷精品视频| 草草在线视频免费看| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 久热久热在线精品观看| 亚洲成人中文字幕在线播放| 欧美日韩亚洲高清精品| 国产探花极品一区二区| 欧美激情久久久久久爽电影| 亚洲在久久综合| 欧美日本视频| 成年女人在线观看亚洲视频 | 亚洲成色77777| 成年版毛片免费区| 亚洲精品自拍成人| 久久久久久伊人网av| 午夜激情久久久久久久| 在线观看免费高清a一片| 久久人人爽人人片av| 高清在线视频一区二区三区| 国产伦在线观看视频一区| 永久免费av网站大全| 免费电影在线观看免费观看| 少妇裸体淫交视频免费看高清| 欧美日韩国产mv在线观看视频 | 直男gayav资源| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 国产精品久久久久久精品电影| 亚洲精品一区蜜桃| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 精品一区二区三卡| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| 一级a做视频免费观看| av专区在线播放| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 伦理电影大哥的女人| 色播亚洲综合网| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 中文乱码字字幕精品一区二区三区 | 69av精品久久久久久| 国产精品.久久久| 久久午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 视频中文字幕在线观看| 女人久久www免费人成看片| 欧美成人a在线观看| 最近中文字幕2019免费版| 男人和女人高潮做爰伦理| 91久久精品电影网| 国产69精品久久久久777片| 少妇人妻一区二区三区视频| 久久精品国产亚洲av天美| 97超视频在线观看视频| av专区在线播放| 听说在线观看完整版免费高清| 特级一级黄色大片| 天天躁日日操中文字幕| 亚洲欧美一区二区三区黑人 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲不卡免费看| 亚洲av成人精品一二三区| 国产乱人偷精品视频| 777米奇影视久久| av专区在线播放| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| av卡一久久| 你懂的网址亚洲精品在线观看| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 亚洲精品中文字幕在线视频 | 国产一级毛片在线| 青春草亚洲视频在线观看| 免费av观看视频| 日日干狠狠操夜夜爽| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 欧美高清性xxxxhd video| av免费在线看不卡| av专区在线播放| 亚洲av一区综合| 99久久九九国产精品国产免费| 丰满少妇做爰视频| 国产爱豆传媒在线观看| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 成人美女网站在线观看视频| or卡值多少钱| 亚洲经典国产精华液单| 国产淫片久久久久久久久| 亚洲真实伦在线观看| 熟妇人妻不卡中文字幕| 天堂√8在线中文| 免费看不卡的av| 国产av国产精品国产| 欧美日韩综合久久久久久| 成人av在线播放网站| av播播在线观看一区| 色尼玛亚洲综合影院| 亚洲av成人av| 亚洲在久久综合| 性色avwww在线观看| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 日韩制服骚丝袜av| 亚洲av中文字字幕乱码综合| 一二三四中文在线观看免费高清| 欧美三级亚洲精品| 99热全是精品| 日韩不卡一区二区三区视频在线| 成人美女网站在线观看视频| 亚洲av一区综合| 精品不卡国产一区二区三区| 水蜜桃什么品种好| 26uuu在线亚洲综合色| 老女人水多毛片| 国产高清国产精品国产三级 | 中文资源天堂在线| 18禁在线无遮挡免费观看视频| 麻豆久久精品国产亚洲av| 久久精品国产亚洲网站| 精品一区二区免费观看| 看黄色毛片网站| 欧美激情在线99| 免费观看av网站的网址| 久久精品国产亚洲网站| 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| 国产免费视频播放在线视频 | 免费看日本二区| 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 少妇猛男粗大的猛烈进出视频 | 有码 亚洲区| 一个人看视频在线观看www免费| 性色avwww在线观看| freevideosex欧美| 精品久久久久久久久久久久久| 亚洲国产欧美人成| 黄色一级大片看看| 午夜爱爱视频在线播放| 少妇丰满av| 夜夜爽夜夜爽视频| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 亚洲精品中文字幕在线视频 | 色尼玛亚洲综合影院| 亚洲国产欧美人成| 人人妻人人澡人人爽人人夜夜 | www.av在线官网国产| 日日干狠狠操夜夜爽| 伊人久久精品亚洲午夜| 国产精品一区二区三区四区久久| 嫩草影院新地址| 97超碰精品成人国产| 中文精品一卡2卡3卡4更新| 亚洲人成网站高清观看| 国产精品不卡视频一区二区| 热99在线观看视频| 免费看av在线观看网站| 日韩av不卡免费在线播放| 成年人午夜在线观看视频 | 亚洲精品成人久久久久久| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 如何舔出高潮| 五月伊人婷婷丁香| 91精品国产九色| 婷婷色综合大香蕉| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| 中文字幕制服av| 久久久成人免费电影| 伊人久久国产一区二区| 日韩大片免费观看网站| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 久久久久久久亚洲中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久电影网| 欧美日本视频| 亚洲四区av| 91av网一区二区| 午夜精品一区二区三区免费看| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 亚洲精品国产av蜜桃| 男女边吃奶边做爰视频| 亚洲经典国产精华液单| 国产视频内射| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一区久久| av在线播放精品| 午夜福利高清视频| 国产在线一区二区三区精| 欧美性猛交╳xxx乱大交人| 国产午夜福利久久久久久| 蜜桃亚洲精品一区二区三区| 久久久国产一区二区| 亚洲av二区三区四区| 久久精品国产亚洲网站| 五月玫瑰六月丁香| 久久久久国产网址| 亚洲成人久久爱视频| 久久99热这里只有精品18| 免费av观看视频| 亚洲最大成人手机在线| 国产一区二区在线观看日韩| 看黄色毛片网站| 日本一二三区视频观看| 亚洲精品日韩av片在线观看| 国产激情偷乱视频一区二区| 97热精品久久久久久| 2021天堂中文幕一二区在线观| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 免费看a级黄色片| 国产精品麻豆人妻色哟哟久久 | 国产成人精品久久久久久| 欧美日韩亚洲高清精品| 狂野欧美激情性xxxx在线观看| 黄色一级大片看看| 久久人人爽人人片av| 精品午夜福利在线看| h日本视频在线播放| 国产乱来视频区| 午夜激情久久久久久久| 国产男女超爽视频在线观看| 成年免费大片在线观看| 一级片'在线观看视频| 三级经典国产精品| 国产乱来视频区| 日韩av免费高清视频| 九九在线视频观看精品| 如何舔出高潮|