• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Investigation of Structures, Bonding and Electronic Properties for the Complexes of 6?Mercaptopurine and Ag8 Clusters①

    2018-09-08 03:40:22RENHongJiangZHUGangLIXiaoJunHEYaPing
    結構化學 2018年8期

    REN Hong-Jiang ZHU Gang LI Xiao-Jun HE Ya-Ping

    ?

    Theoretical Investigation of Structures, Bonding and Electronic Properties for the Complexes of 6?Mercaptopurine and Ag8Clusters①

    REN Hong-Jiang②ZHU Gang LI Xiao-Jun HE Ya-Ping

    (710065)

    The Ag clusters have been investigated widely theoretically and experimentally. In particular, it has recently shown that the neutralAg8clusters embedded in an argon matrix have a strong fluorescence signal. As we can know, the metal clusters may have important effects on the structures and properties of biomolecules. More and more attention is paid to the interaction between nanomaterials and biomolecules. In this work, the B3LYP method in density functional theory was used on the complexes between the 6-mercaptopurine (6MP) and Ag8clusters combined with 6-311++G** as well as LANL2DZ base sets. The geometries of all the complexes were optimized with full degree of freedom and the structures, chemical bonds, orbital properties as well as Mulliken charges for ten possible complexes were analyzed based on the same theory level. In addition, the influence of temperature and pressure on the stabilities of the four complexes was further explored using standard statistical thermodynamic methods ranging from 50 to 500 K and at 100 kPa or 100 bar. The results show that the complex Ag8-6MP-7-5 can be the most stable one among the investigated complexes, in which the Ag(11) atom interacts with the S(10) atom forming the strong chemical bond. The Mulliken charges also show that the Ag–S chemical bond is formed and the related charge has transferred. Additionally, the temperature and pressure can significantly influence the stability of the four stable complexes.

    6-mercaptopurine, Ag8cluster, density functional theory, bonding properties;

    1 INTRODUCTION

    Nowadays, the nanotechnology is swiftly disten- sible in some fields such as catalysts, synthesis, chemluminescence, separation and sensing[1, 2]. Based on the unique chemical and physical properties such as large surface area, sensitivity and activity, these nanomaterials and products are needed for some chemical reactions like catalysts, enhancers, energy acceptors, absorbing materials and CL resonance energy transfer platforms and so on[3, 4]. Silver nanoparticles (AgNPs) are prone to be composed from inexpensive forerunners, which have displayed many optical characteristics and possess excellent chemical stability, dramatic catalytic and electrocatalytic properties. It has also been found that silver nanoparticles can sufficiently improve the anticancer drug activity and intensely enhance the drug curative effect[5-9]. So far, most of the first- principles studies have been limited to the Agclusters with n≤13, and many candidate structures were considered[10, 11]. Huda.[10]investigated the electronic and geometric structures of neutral, cationic, and anionic Ag(n = 5~9) clusters using the second-order many-body perturbation theory (MP2). They found that the Ag8cluster is a magic- number cluster with the highest binding energy, a relative higher adiabatic and vertical ionization potential, and a lower electron affinity among all the clusters studied. Fernandez.[11]systematically studied the electronic properties and geometric structures of neutral, cationic and anionic metal cluster M(M = Cu, Ag or Au, n = 2~13). In par- ticular, it is recently shown that neutralAg8clusters embedded in an argon matrix have a strong fluore- scence signal[12].

    6-Mercaptopurine (6MP) has been used for many years as one of the chemotherapy drugs, which is extensively utilized as an effective medicine in the treatment of a variety of diseases, including rheuma- tologic disorder, lymphoblastic leukaemia, inflame- matory bowel disease, and the prevention of rejec- tion following organ transplantation[13-22]. The adsorption of 6MP on nanomentals has received a great deal of attention because of the potential of linking the drug’s coordination to its chemothera- peutic activity[23-25].Vivoni.[24]have reported the interaction between 6MP and a silver electrode using surface-enhanced Raman spectroscopy (SERS) experimentally as well as Urey-Bradley force field and semiempirical calculations with the PM3 method, and it was concluded that 6MP attaches head-on through the N1 atom when the molecule is adsorbed onto a silver electrode surface. Chu.[25]have investigated self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on a silver electrode in acid and alkaline media by a combination protocol of the SERS technique with Raman mapping. It was found that the adsorption mode of 6MP SAMs changed with the pH value of the environment. The coordination of 6MP to the metals has been studied to produce 6MP-metal complexes acting as slow release drugs of 6MP[26]and to exploit this reaction for heavy-metal determination[27]. Even though there are many reports on the coordination of 6MP to Ag nanoparticles forming AgNPs[10, 11, 23-27], they are only limited to the investigation of experimental Raman spectroscopy, nanomaterials scale and lower level theoretical prediction. And what are the structures and bonding properties after adsorption? How the temperature and pressure affect the adsorption of 6MP onto the Ag clusters? These problems have been unknown to nowadays. In this work, we provide the answers to these problems by carrying out the detailed density functional theory calculations using B3LYP method.

    In this study, the stabilities of ten complexes between 6MP and Ag8clusters were investigated in detail. The structures, bonding properties, and orbital and Mulliken charges analyses were carried out to understand the interactions between 6MP and the Ag8clusters.

    2 COMPUTATIONAL DETAILS

    All theoretical calculations were performed using the Gaussian 09 program suite[28]. The geometries of all complexes were optimized with the DFT-B3LYP methodcombined with 6-311++G** basis sets for non-metal atoms (C, H, N, S) and an effective pseudo potential basis set LANL2DZ only for Ag atoms. Harmonic vibrational frequencies were analyzed to verify the stationary points at the same theoretical level. Zero-point vibrational energies (ZPVE) and thermal corrections were evaluated under standard state conditions (298.15 K and 100 kPa)frequency analysis. The thermochemistry energy parameters were calculated at the B3LYP functional level of theory. The binding energies between the Ag8clusters and 6MP molecule were denoted by Δb, which were given for each complex:

    Δb= ?[(Ag8-6MP-7-n) –(Ag8) –(6MP-7)]. (1)

    Here is an example for 6MP-7, in which n represents the labeled number. The same calculated method is also used for another tautomer 6MP-9.

    The standard statistical thermodynamic methods for the Gibbs free energies were utilized for different temperature from 50 to 500 K at 100 kPa and 100 bar. The bonding properties and bond strength variations were analyzed based on the NBO calcula- tions using the NBO package version 3.1, which were conducted at the DFT-B3LYP/6-311++G**//LANL2DZtheoretical level, implemented in the Gaussian 09 program. The analysis can provide a comprehensive insight for the complexes of 6MP on the Ag8clusters.

    3 RESULTS AND DISCUSSION

    3. 1 Structures and energies

    Based on the reports of references 29 and 30, the 6MP molecule can exist in eight possible configura- tion tautomers, of which 6MP-7 and 6MP-9 can be predominant with the maximal quantity in the gas and aqueous phases. Other six tautomers can exist in a minimal quantity. Hence, in this work, only 6MP-7 and 6MP-9 are chosen for further consideration, and their geometries with atomic numbering scheme are shown in Fig. 1. It can be seen from Fig. 1 that when considering possible coordination atoms, three potential positions of N(3), N(7) and S(10) for 6MP-7 or N(3), N(9) and S(10) for 6MP-9 can be attacked by the mental Ag atom, mainly because of the lone pair electrons for the N and S atoms being extremely important for promoter action. Therefore, when considering the adsorption process, the orientation of adsorbed 6MP is critical in its action as a mediator of electron transfer. According to the reports by Huda et al.[10], the Ag8cluster is a magic-number cluster among the investigated clusters and it has two representative superiority structures. And two potential configurations were considered in this work based on the reported structures[10]. Six possible complexes geometries of 6MP-7 adsorbed on the Ag8clusters surface were found and depicted in Fig. 2. Four geometries of the complexes on 6MP-9 with the Ag8clusterswere also found and given in Fig. 3.The zero point virational energies, total energies, standard Gibbs free energies and enthalpies of all the complexes at 298.15 K at the B3LYP/6-311++G**//LANL2DZ level are obtained and listed inTable S1. The relative energy information is also shown in Table 1.

    Fig. 1. Geometries and atomic number of two tautomers for 6-mercaptopurine (6MP)

    Fig. 2. Six geometries of the formed complexes on 6MP-7 with the Ag8clusters (Bond lengths in ?

    Fig. 3. Four geometries of the formed complexes on 6-MP-9 with the Ag8clusters (Bond lengths in ?) level for all the complexes

    Table 1. Relative Standard Gibbs Free Energy (Gθ, kJ/mol) at 298.15 K Obtained at the B3LYP/6-311++G**//LANL2DZ

    As can be seen from Figs. 2 and 3, the structures of Ag8cluster in complexes Ag8-6MP-7-1, Ag8-6MP-7-2, Ag8-6MP-7-3, Ag8-6MP-9-1 and Ag8-6MP-9-2 are dramatically different from those of Ag8-6MP-7-4, Ag8-6MP-7-5, Ag8-6MP-7-6, Ag8-6MP-9-3 and Ag8-6MP-9-4. As seen from Table 1, the configuration with the lowest Gibbs free energy is Ag8-6MP-7-5 and we take this energy as a zero so as to calculate the relative energies of other nine complexes. And the secondary one is Ag8-6MP-7-2 with a relative energy of 1.77 kJ/mol. The third and fourth ones are Ag8-6MP-7-3 and Ag8-6MP-9-2 with the relative energies to be 7.17 and 9.46 kJ/mol, respectively. The relative Gibbs free energies of other complexes Ag8-6MP-7-1, Ag8-6MP-7-4, Ag8-6MP-7-6, Ag8-6MP-9-1, Ag8-6MP-9-3 and Ag8-6MP-9-4 are 10.41, 11.73, 15.08, 27.69, 26.09 and 12.11 kJ/mol, respectively. These data imply that the complex Ag8-6MP-7-5 can be the most stable one of all configurations and Ag8-6MP-7-2 is also possibly the predominant one. Complexes Ag8-6MP-7-3 and Ag8-6MP-9-2 maybe exist in some quantity because of lower relative energies. Other complexes have slightly higher energies and the stabilities are slightly lower than that of the former four complexes.

    In the complex Ag8-6MP-7-5, the Ag(11)–S(10) bond is formed with a distance of 2.692 ? which is slightly longer than the experimental value of 2.48 ?[18], implying the existence of classical chemical bond between the Ag(11) and S(10) atoms. The chemical bond S(10)–C(6) has been lengthened to 1.694 ? from 1.670 ? by 0.024 ? and the N(1)–H has also been lengthened from 1.013 to 1.025 ? by 0.012 ?. In Ag8-6MP-7-2, the chemical bond S(10)–C(6) is 1.688 ?, and in Ag8-6MP-7-1, Ag8-6MP-7-3, Ag8-6MP-7-4 and Ag8-6MP-7-6, the N(3)(or N(9))–Ag(10) chemical bonds are 2.449, 2.407, 2.645 and 2.419 ?, respectively, suggesting that the Ag–S or Ag–N chemical bonds are formed in the end. In these six complexes, the different positions can be attacked by Ag atom of the Ag8clusters. In Ag8-6MP-9 complexes,we try to find all the configurations but only four possible complexes were found. All the structures are shown in Fig. 2. In these four complexes, the Ag atom also formed chemical bonds with the N or S atoms, and it can seen that in Ag8-6MP-9-2 and Ag8-6MP-9-4, the N and S atoms simultaneously formed chemical bonds with one Ag atom. In Ag8-6MP-9-2, the N(7)–Ag(11) and S(10)–Ag(11) bond lengths are 2.578 and 2.936 ?, respectively. And in Ag8-6MP-9-4, the N(7)– Ag(11) and S(10)–Ag(11) bond lengths are 2.570 and 3.017?, respectively. However, in Ag8-6MP-9-1 and Ag8-6MP-9-3, only the single N(3)–Ag(11) bond is formed with the distances of 2.438 and 2.460 ?, respectively. These data show that there are strong chemical bonds between the 6MP and Ag8clusters.

    3. 2 Binding energies

    The binding energies of all the complexes were also calculated and listed in Table 2, in which ΔErepresents the uncorrected interaction energies without basis set superposition error (BSSE) and ΔE(BSSE)is the corrected interaction energies inclu- ding BSSE corrections[31]. It can be seen from Table 2 that BSSE values are within the range of 5.27~6.95 kJ/mol, which occupied 10.46~17.06% of the uncorrected interaction energies, implying that the basis set effects must be considered in this work, and in the next discussions the corrected energies are employed. As seen from Table 2, the calculated binding energy of Ag8-6MP-9-2 is 50.63 kJ/mol and that of Ag8-6MP-7-2 is 48.70 kJ/mol, with their binding energy difference being 1.93 kJ/mol. Thecalculated binding energy of Ag8-6MP-7-5 is 46.61 kJ/mol and that of Ag8-6MP-9-4 is 44.02 kJ/mol. The binding energies of other complexes are more than about 28 kJ/mol. These data show that the interaction effects between the molecule 6MP and metal Ag8clusters are much larger and the corresponding chemical bonding may be formed. It can be also seen from Table 2 that the binding energies of those complexes having lower relative Gibbs free energies are much larger, such as complexes Ag8-6MP-7-2,Ag8-6MP-7-5andAg8-6MP-9-2. However, to our surprise, Ag8-6MP- 7-3 has lower binding energy than Ag8-6MP-9-2, which may be attributed to the different interaction strength. As we can see from Fig. 3, in Ag8- 6MP-9-2 there are two kinds of chemical bonds, N(7)–Ag(11) and S(10)–Ag(11), and this interaction effect must be much stronger than that of single bond interaction effect in Ag8-6MP-7-3 or Ag8-6MP-7-5, which can explain why the complex Ag8-6MP-9-2 has the greatest binding energy. For further insight into the bonding properties between the 6MP molecule and the Ag8cluster, the following orbital analyses are carried out for illustrating the corresponding problems.

    Table 2. Binding Energy (ΔEb) and Corrected Binding Energy (ΔEb) including BSSE of All the Complexes (kJ/mol)

    3. 3 Orbital analysis

    The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) distributions for the four relative stable complexes Ag8-6MP-7-2, Ag8-6MP-7-3, Ag8-6MP- 7-5 and Ag8-6MP-9-2 are shown in Fig. 4. As can be seen, the HOMO orbital electrons of Ag8-6MP-7-5 are mainly delocalized in the Ag8clusters and they are far from the 6MP molecule. No contributions could be seen from the purine ring atoms, indicating that the HOMO contribution does not mainly come from the purine ring. However, the LUMO electrons are delocalized in the purine ring and S atomdelocalizedbond, and these contributions are mainly due to covalent bond from the purine ring. The HOMO and LUMO distributions show that Ag8-6MP-7-5 has the largest energy gaps. The electronic clouds of the HOMO orbitals in Ag8-6MP-7-2, Ag8-6MP-7-3 and Ag8-6MP-9-2 complexes are not much larger thanthat of Ag8-6MP-7-5 due to the less overlapping field of Agelectrons, while the LUMO electronic clouds are attributed to the anti-bonding orbitals of purine ring, indicating that these complexes have smaller gaps. At the same time, the energy gaps of four complexes Ag8-6MP-7-2, Ag8-6MP-7-3, Ag8-6MP-7-5 and Ag8-6MP-9-2 were calculated to be 198.83, 159.50, 221.75 and 146.03 kJ/mol, implying that in these complexes, Ag8-6MP-7-5 has the highest energy gap. And hence, the stability for Ag8-6MP-7-5 is also the largest among the four complexes. This result is almost the same with the predicted stability from energy information. For further revealing the bonding properties, the NBO analysis obtained at the B3LYP/6-311++G**//LANL2DZ level of theory is listed in Table 3. As can be seen from Table 3, the second order perturbation interaction energy LP[S(10)] → LP*[Ag(1)] of Ag8-6MP-7-5 is 101.25 kJ/mol and the LP[S(10)] → LP*[Ag(1)] interaction of Ag8-6MP-7-2 is 92.76 kJ/mol, implying that there exist strong chemical bonds and the interaction energies of Ag8-6MP-7-2 and Ag8-6MP-9-2are57.66 and 50.38 kJ/mol, respectively. As we can know, the second order perturbation interaction energy can show the strength of formed chemical bonds.

    Table 3. NBO Analysis at the B3LYP /6-311++G** Level of Theory

    Fig. 4. Frontier molecular orbitals (HOMO and LUMO) of the considered four complexes Ag-6MP-7-5, Ag-6MP-7-2, Ag-6MP-7-3 and Ag-6MP-9-2

    3. 4 Mulliken charges analysis

    The Mulliken charges of the four stable com- plexes Ag8-6MP-7-2, Ag8-6MP-7-3, Ag8-6MP-7-5 and Ag8-6MP-9-2 adsorbed on Ag8clusters are listed in Table 4. It can be seen from Table 4 that the charges of atoms C(4), C(5), C(6), C(8), N(1), N(3) and S(10) in purine ring have changed dramatically. In Ag8-6MP-7-5, the charges of C(5) and C(6) atoms are 0.2029 and 0.2221 e, which are different from those of the isolated 6MP-7. This can mainly result from forming strong chemical bond between Ag(11) and S(10). The C(5) atom in the pyrimidine ring of Ag8-6MP-7-5 obtained much more electrons and the C(6) atom lost some electrons, and the S(10) atom obtained the electrons from –0.6295 to –0.6804e. In N(1) atom, the change is much greater by the value of 0.1381 e than other nitrogen atoms of both pyrimidine and imidazol rings. And the Ag(11) atom has changed from –0.0988 to –0.1154 e, showing the obvious electron transferring effect. In Ag8-6MP-7-2, the changes of C(5) and C(6) atoms are much greater with the –0.2561 and 0.2866 e, and the third one is the C(4) atom with a change of –0.2097 e. In four N atoms, only the N(1) has changed much by 0.1308 and other atoms almost keep the same. The Ag(11) atom becomes more negative from –0.1592 to –0.3163 e, implying that the electrons transfer greatly and the chemical bonding is formed. However, in Ag8-6MP-7-3, the electron C(8) atom changes the greatest with a transfer of –0.3219 e, which also results from the chemical bond forming between N(9) and Ag(11). And the N(9) atom lost the electrons and transferred to the C(8) atom. In this molecule, the most obvious change is for the C(5) atomtransferring electrons of 0.2719 e. The Ag(11) atom has changed from –0.1592 to 0.2732 e, showing that the chemical bond is also formed. And other atoms do not change greatly. In Ag8-6MP-9-2, the charges of all carbon atoms have changed dramatically, and especially for C(4) atom, it has changed from –0.4303 to 0.7516 e, followed by the C(2) atom with a change of –0.7192 e. The atoms C(5), C(6) and S(10) changed with –0.4831, 0.3691 and –0.2735 e, which deposes the formation of Ag–N chemical bond and the charge transfer.

    Table 4. Mulliken Charges of Partial Atoms on the Considered Complexes Ag8-6MP-7-5, Ag8-6MP-7-2, Ag8-6MP-7-3 and Ag8-6MP-9-2

    3. 5 Temperature and pressure effects

    For exploring the temperature and pressureinfluence on the complexes nanomaterials, the different temperature and pressureare considered in this work. The temperature changed from 50 to 500 K and the pressure was given at 100 kPa and 100 bar.The Gibbs free energies calculated using the standard statistical thermodynamic method ranging from 50 to 500 K are employed in the next discussion. The relations between the Gibbs free energies and temperature for complexes Ag8- 6MP-7-5, Ag8-6MP-7-2, Ag8-6MP-7-3 and Ag8-6MP-9-2 at 100 kPa and 100 bar are illustrated in Fig. 5(a) and (b), respectively, in which the Gibbs free energies dramatically decrease with increasing the temperature from 50 to 500 K, implying that the temperature can affect their stabilities. In Fig. 5, the Gibbs free energy differences of the four complexes are very slight regardless of at 100 kPa or 100 bar, implying that the temperature can almost have the same effect on the stabilities of the four complexes. It can be seen from Fig. 5 the Gibbs free energy of Ag8-6MP-9-2 is the highest between 50 and 300 K either at 100 kPa or 100 bar. The stabilities of Ag8-6MP-7-5 and Ag8-6MP-7-2 are also the same within the investigated pressure and temperature ranges. The results also show that in different temperature these complexes have different stabi- lities, which can be attributed to the different chemical bonds formed. The Ag8-6MP-7-5 and Ag8-6MP-7-2 have obviously lower stabilities than other complexes.

    Fig. 5. Gibbs free energies of the considered complexes Ag8-6MP-7-5, Ag8-6MP-7-2, Ag8-6MP-7-3 and Ag8-6MP-9-2 with the temperature increasing from 50 to 500 K at 100 KPa for (a) and 100 bar for (b)

    4 CONCLUSION

    Theoretical investigations have been performed using the density functional method B3LYP with 6-311++G**//LANL2DZ base set on the complexes between 6-mercaptopurine and Ag8cluster. And the complexes geometries were optimized with full freedom. The structure characters, bonding proper- ties and Mulliken charges of four stable complexes were analyzed in detail. Additionally, the influences of temperature and pressure on the stabilities of the four complexes were also explored using standard statistical thermodynamic methods. The result shows that the complex Ag8-6MP-7-5 can be the most stable among the investigated complexes, in which the Ag(11) atom interacts with the S(10) atom forming the strong chemical bond. The Mulliken charges also show that the Ag–S chemical bond is formed and has inspired the charge transfer. The temperature and pressure maybe significantly influence the stability of the four stable complexes.

    (1) Brechignac, C.; Houdy, P.; Lahmani, M.. Springer-Verlag, Berlin, Heidelberg 2007.

    (2) Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for simultaneous determination of cysteamine, nicotin amide adenine dinucleotide and folic acid.2013, 48, 270–275.

    (3) Su, Y. X.; Hou, X.; Lv, Y. Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence.. 2014, 49, 201–223.

    (4) Biparva, P.; Abedirad, S. M.; Kazemi, S. Y. ZnO nanoparticles as an oxidase mimic-mediated flow-injection chemiluminescence system for sensitive determination of carvedilol.2014, 130, 116–121.

    (5) Bagatur’yants, A. A.; Safonov, A. A.; Stoll, H.; Werner, H. J.relativistic pseudopotential study of small silver and gold sulfide clusters (M2S)n,= 1 and 2. 1998, 109, 3096–3107.

    (6) Eachus, R. S.; Marchetti, A. P.; Muenter, A. A. The photophysics of silver halide imaging Materials.. 1999, 50, 117–144.

    (7) Koretsky, G. M.; Knickelbein, M. B. The reactions of silver clusters with ethylene and ethylene oxide: infrared and photoionization studies of Agn(C2H4)m, Agn(C2H4O)mand their deuterated analogs.. 1997, 107, 10555–10566.

    (8) Tani, T. Physics of the photographic latent image.1989, 42, 36–41.

    (9) Sieber, C.; Buttet, J.; Harbich, W.; Felix, C. Isomer-specific spectroscopy of metal clusters trapped in a matrix Ag9.2004, 70, 041201–041205.

    (10) Huda, M. N.; Ray, A. K. Electronic structures and magic numbers of small silver clusters: a many-body perturbation-theoretic study.2003, 67, 013201–013213.

    (11) Fernandez, E. M.; Soler, J. M.; Garzon, I. L.; Balbas, L. C. Trends in the structure and bonding of noble metal clusters.2004, 70, 165403–165414.

    (12) Félix, C.; Sieber, C.; Harbich, W.; Buttet, J.; Rabin, I.; Schulze, W.; Ertl, G. Ag8fluorescence in argon.. 2001, 86, 2992–2995.

    (13) Bouhnik, Y.; Le mann, M.; Mary, J. Y.; Scemama, G.; Ta?, R.; Matuchansky, C.; Madiliani, R.; Rambaud, J. C. Long-up of patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine.. 1996, 374, 215–219.

    (14) Estlin, E. J. Continuing therapy for childhood acute lymphoblastic leukaemia: clinical and cellular pharmacology of methotrexate, 6-mercaptopurine and 6-thioguanine.. 2001, 27, 351–363.

    (15) Rajapakse, R. O.; Korelitz, B. I.; Zlatanic, J.; Baiocco, P. J.; Gleim, G. W. Outcome of pregnancies when fathers are treated with 6-mercaptopurine for inflammatory bowel disease... 2000, 95, 684–688.

    (16) Mutinga, M.; Castells, M.; Horan, R.; Farraye, F. A. Successfuldesensitization to 6-mercaptopurine in a patient with Crohn's disease.2000, 95, 1383–1384.

    (17) Chuan, D.; Ding, L. H.; Wei, Y. X.; Li, J. F.; Wei, Y. L. Spectroscopy behavior of 6-mercaptopurine, azathiopurine, and 8-azaguanine.2003, 59, 3131–3137.

    (18) Chen, Z. G.; Zhang, G. M.; Chen, X.; Chen, J. H.; Liu, J. B.; Yuan, H. Q. A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule.. 2013, 41, 844–847.

    (19) Hawwa, A. F.; Millership, J. S.; Collier, P. S.; McElnay, J. C. Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells.. 2009, 49, 401–409.

    (20) Keyvanfard, M.; Khosravi, V.; Karimi-Maleh, H.; Alizad, K.; Rezaei, B. Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator.. 2013, 177, 182–189.

    (21) Sun, H.; Wang, T.; Liu, X.; Chen. P. A sensitive inhibition chemiluminescence method for the determination of 6-mercaptopurine in tablet and biological fluid using the reaction of luminol-Ag(III) complex in alkaline medium.. 2013, 134, 154–159.

    (22) Wang, L.; Ling, B.; Chen, H.; Liang, A.; Qian, B.; Fu, J. Flow injection chemiluminescence determination of 6-mercaptopurine based on a new system of potassium permanganate thioacetamide sodium hexametaphosphate.2010,25, 431–435.

    (23) Fischer, B.; Dubler, E.; Meienberger, M.; Hegetschweiler, K. Molybdenum complexes of the anticancer drug 6-mercaptopurine.1998, 279, 136–143.

    (24) Vivoni, A.; Chen, S. P.; Ejeh, D.; Hosten, C. M. Determination of the orientation of 6-mercaptopurine adsorbed on a silver electrode by surface-enhanced raman spectroscopy and normal mode calculations.2000,16, 3310–3316.

    (25) Chu, H.; Yang, H. F.; Huan, S. Y.; Shen, G. L.; Yu, R. Q. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS.2006, 110, 5490–5497.

    (26) Mondal, B. C.; Das, D.; Das, A. K. Application of a new resin functionalised with 6-mercaptopurine for mercury and silver determination in environmental samples by atomic absorption spectrometry.2001, 450, 223–230.

    (27) San, B.; Dela Riva, V.; Costa-Fernandez, J. M.; Pereiro, R.; Medel, A. S. Fluorimetric method for the determination of trace levels of mercury in sea water using 6-mercaptopurine.2000, 419, 33–40.

    (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.., Petersson, G. A. 2009,,.

    (29) Civcir, P. U. A theoretical study of tautomerism of 6-thiopurine in the gas and aqueous phases using AM1 and PM3.. () 2001, 535, 121–129.

    (30) Li, B. Z. DFT calculations of 6-thiopurine tautomers.. 2004, 62, 1075–1079.

    (31) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors.. 1970, 19, 553–566.

    5 March 2018;

    30 May 2018

    ①This project was supported by the National Natural Science Foundation of China (No. 21643014) and the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City Government (No. 2016CXWL02 and SGH17H249)

    . Ren Hong-Jiang. E-mail: hjren@xawl.edu.cn

    10.14102/j.cnki.0254-5861.2011-1997

    日本黄色视频三级网站网址| 三级毛片av免费| 51午夜福利影视在线观看| 国产高清视频在线观看网站| 色噜噜av男人的天堂激情| 亚洲 欧美 日韩 在线 免费| 国产伦在线观看视频一区| 看免费av毛片| 国产av一区在线观看免费| 午夜激情欧美在线| 亚洲欧美日韩高清专用| 精品免费久久久久久久清纯| 国产黄a三级三级三级人| 国产精品,欧美在线| 亚洲精品一区av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人看人人澡| 午夜成年电影在线免费观看| 99久国产av精品| 精品久久蜜臀av无| 桃色一区二区三区在线观看| 麻豆国产av国片精品| 一级作爱视频免费观看| 十八禁人妻一区二区| 观看美女的网站| a级毛片a级免费在线| 国产精品一区二区三区四区久久| 中文字幕人成人乱码亚洲影| 巨乳人妻的诱惑在线观看| 亚洲国产精品sss在线观看| 亚洲人成网站在线播放欧美日韩| 日本成人三级电影网站| 亚洲国产日韩欧美精品在线观看 | 国产成人av教育| 黄色片一级片一级黄色片| 别揉我奶头~嗯~啊~动态视频| 成年人黄色毛片网站| 亚洲七黄色美女视频| 香蕉丝袜av| 国内毛片毛片毛片毛片毛片| 天堂√8在线中文| www.999成人在线观看| 久久婷婷人人爽人人干人人爱| 五月伊人婷婷丁香| av中文乱码字幕在线| 欧美+亚洲+日韩+国产| 国产激情久久老熟女| 国产精品久久久久久人妻精品电影| 露出奶头的视频| 91麻豆精品激情在线观看国产| 久久精品国产清高在天天线| 黄片小视频在线播放| 免费电影在线观看免费观看| 国内揄拍国产精品人妻在线| 久久99热这里只有精品18| 1024香蕉在线观看| 久久婷婷人人爽人人干人人爱| 国产亚洲av高清不卡| 亚洲最大成人中文| 免费看日本二区| 97超级碰碰碰精品色视频在线观看| 国产麻豆成人av免费视频| 精品熟女少妇八av免费久了| 成年人黄色毛片网站| 桃红色精品国产亚洲av| 亚洲成av人片免费观看| 久9热在线精品视频| 欧美色视频一区免费| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色| 欧美黄色淫秽网站| 老司机午夜福利在线观看视频| 性欧美人与动物交配| 欧美中文日本在线观看视频| 婷婷丁香在线五月| 国产激情久久老熟女| 高清在线国产一区| 久久草成人影院| 久久久久国产一级毛片高清牌| 亚洲精品456在线播放app | 成年人黄色毛片网站| 国产精华一区二区三区| 亚洲精品久久国产高清桃花| 淫秽高清视频在线观看| 在线观看美女被高潮喷水网站 | 国产激情久久老熟女| 一本精品99久久精品77| 夜夜躁狠狠躁天天躁| 国产综合懂色| 日韩欧美在线乱码| 国产精品亚洲美女久久久| 国产熟女xx| 曰老女人黄片| 日本成人三级电影网站| 免费在线观看影片大全网站| 精品人妻1区二区| 最新中文字幕久久久久 | 久久精品影院6| 日韩三级视频一区二区三区| 国产精品精品国产色婷婷| 亚洲av电影在线进入| 午夜亚洲福利在线播放| 午夜福利在线观看吧| 熟女人妻精品中文字幕| 成人性生交大片免费视频hd| 久久久久性生活片| 中文在线观看免费www的网站| 精品久久久久久久久久免费视频| 国产aⅴ精品一区二区三区波| 91老司机精品| 午夜日韩欧美国产| 免费看光身美女| 久久国产精品影院| 国产视频一区二区在线看| ponron亚洲| av欧美777| 亚洲av成人av| 少妇裸体淫交视频免费看高清| 色播亚洲综合网| 亚洲五月婷婷丁香| 亚洲成av人片免费观看| 色视频www国产| svipshipincom国产片| 日本一本二区三区精品| 日日摸夜夜添夜夜添小说| 一本综合久久免费| 亚洲专区国产一区二区| 1000部很黄的大片| 色在线成人网| 99热只有精品国产| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区蜜桃av| 午夜精品在线福利| 亚洲一区高清亚洲精品| 免费看日本二区| 一级毛片女人18水好多| 成人国产综合亚洲| 午夜福利在线观看免费完整高清在 | 男人和女人高潮做爰伦理| 首页视频小说图片口味搜索| 亚洲天堂国产精品一区在线| 免费人成视频x8x8入口观看| 日本a在线网址| 高清毛片免费观看视频网站| aaaaa片日本免费| 观看免费一级毛片| 免费一级毛片在线播放高清视频| 国产精品99久久99久久久不卡| av在线蜜桃| 18禁黄网站禁片免费观看直播| 久久香蕉国产精品| 欧美成人性av电影在线观看| 成人无遮挡网站| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 伦理电影免费视频| 搡老熟女国产l中国老女人| 免费av不卡在线播放| 亚洲 国产 在线| 国产免费av片在线观看野外av| 长腿黑丝高跟| 久久天躁狠狠躁夜夜2o2o| 操出白浆在线播放| 99久国产av精品| 级片在线观看| 91在线观看av| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 欧美又色又爽又黄视频| 中文字幕人成人乱码亚洲影| 麻豆国产97在线/欧美| 免费人成视频x8x8入口观看| 亚洲成av人片免费观看| 久久这里只有精品19| 性欧美人与动物交配| 久久久精品大字幕| 国产成+人综合+亚洲专区| 久久精品91蜜桃| 亚洲乱码一区二区免费版| 国产av不卡久久| 母亲3免费完整高清在线观看| 真人一进一出gif抽搐免费| 久久久国产成人精品二区| 黄色丝袜av网址大全| 99久久99久久久精品蜜桃| 女同久久另类99精品国产91| 人人妻人人澡欧美一区二区| 黄片小视频在线播放| or卡值多少钱| 亚洲五月婷婷丁香| 女人被狂操c到高潮| 窝窝影院91人妻| 九九在线视频观看精品| 亚洲国产精品999在线| 哪里可以看免费的av片| 亚洲无线在线观看| 国产精品 国内视频| 久久久国产成人精品二区| 亚洲 欧美一区二区三区| 国语自产精品视频在线第100页| 男女午夜视频在线观看| 一进一出好大好爽视频| 国产伦人伦偷精品视频| 国产亚洲av嫩草精品影院| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添小说| 在线观看免费视频日本深夜| 国产精品久久久av美女十八| 亚洲熟妇熟女久久| 啪啪无遮挡十八禁网站| 最新在线观看一区二区三区| 国产成人av激情在线播放| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 深夜精品福利| 亚洲五月婷婷丁香| 又爽又黄无遮挡网站| 国产成人av激情在线播放| 手机成人av网站| 久久久国产欧美日韩av| 欧美黄色片欧美黄色片| 国产精品av久久久久免费| 欧美成狂野欧美在线观看| 亚洲国产精品久久男人天堂| netflix在线观看网站| 亚洲午夜精品一区,二区,三区| 大型黄色视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久久精品欧美日韩精品| 久久久国产成人免费| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 成人国产一区最新在线观看| 国产精品一及| 国产成人精品久久二区二区91| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看| 亚洲一区二区三区不卡视频| 成人国产一区最新在线观看| 免费电影在线观看免费观看| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 国产伦在线观看视频一区| 国产精品影院久久| 国产精品日韩av在线免费观看| 又大又爽又粗| 精品99又大又爽又粗少妇毛片 | 国产精品野战在线观看| av天堂中文字幕网| av欧美777| 国产成人精品无人区| 非洲黑人性xxxx精品又粗又长| 欧美最黄视频在线播放免费| 国产极品精品免费视频能看的| 久久婷婷人人爽人人干人人爱| 免费观看人在逋| 岛国在线免费视频观看| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 亚洲最大成人中文| 国产三级在线视频| 久久香蕉国产精品| 欧美日韩一级在线毛片| 久久午夜综合久久蜜桃| 日韩精品中文字幕看吧| 午夜福利18| 视频区欧美日本亚洲| 午夜免费激情av| 色av中文字幕| 搞女人的毛片| 日韩人妻高清精品专区| 天堂√8在线中文| 真人一进一出gif抽搐免费| 男女那种视频在线观看| 麻豆成人av在线观看| 国产伦精品一区二区三区视频9 | 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 久久天躁狠狠躁夜夜2o2o| 少妇的丰满在线观看| 搞女人的毛片| 美女午夜性视频免费| 久久久精品欧美日韩精品| 99久久国产精品久久久| 亚洲av中文字字幕乱码综合| 18禁观看日本| 欧美性猛交黑人性爽| 热99re8久久精品国产| 亚洲 欧美一区二区三区| 此物有八面人人有两片| 久久香蕉国产精品| 国产麻豆成人av免费视频| 中文字幕高清在线视频| 午夜福利在线在线| 久久精品影院6| 午夜精品在线福利| 一级毛片女人18水好多| 999精品在线视频| 亚洲av成人av| 99在线视频只有这里精品首页| 一级毛片女人18水好多| 免费在线观看影片大全网站| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 国产成人精品久久二区二区免费| 精品国产超薄肉色丝袜足j| 欧美日本亚洲视频在线播放| 伊人久久大香线蕉亚洲五| 一级毛片高清免费大全| 免费看a级黄色片| 高清毛片免费观看视频网站| 草草在线视频免费看| 午夜福利18| 免费看美女性在线毛片视频| 少妇的丰满在线观看| 久久久久国产精品人妻aⅴ院| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 国产精品永久免费网站| 全区人妻精品视频| 日本精品一区二区三区蜜桃| 午夜免费激情av| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 久久香蕉精品热| 国产欧美日韩精品亚洲av| av女优亚洲男人天堂 | 久久中文看片网| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 91av网一区二区| 麻豆av在线久日| av黄色大香蕉| 国产乱人伦免费视频| 国产私拍福利视频在线观看| 欧美成狂野欧美在线观看| 99热这里只有是精品50| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 国产成人精品久久二区二区91| 中文字幕最新亚洲高清| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 特级一级黄色大片| 欧美在线黄色| 成人无遮挡网站| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观| 国产伦人伦偷精品视频| 精品久久蜜臀av无| 三级男女做爰猛烈吃奶摸视频| 亚洲av美国av| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| 看黄色毛片网站| 91av网一区二区| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| 亚洲av成人不卡在线观看播放网| 成人午夜高清在线视频| 伦理电影免费视频| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 两人在一起打扑克的视频| 成人国产综合亚洲| 长腿黑丝高跟| e午夜精品久久久久久久| 免费无遮挡裸体视频| 国产精品一及| 亚洲成人久久爱视频| 激情在线观看视频在线高清| 欧美午夜高清在线| 欧美色视频一区免费| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 女警被强在线播放| 老熟妇乱子伦视频在线观看| 岛国在线观看网站| 久久这里只有精品中国| 在线免费观看不下载黄p国产 | 国产精品一区二区三区四区免费观看 | 在线观看午夜福利视频| 国产探花在线观看一区二区| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| netflix在线观看网站| 久久亚洲精品不卡| av女优亚洲男人天堂 | 国产精品99久久99久久久不卡| 国产一区在线观看成人免费| 精品久久久久久久毛片微露脸| 国产v大片淫在线免费观看| 免费av不卡在线播放| 欧美一区二区国产精品久久精品| 很黄的视频免费| 日本熟妇午夜| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 久久香蕉精品热| 免费看美女性在线毛片视频| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 91久久精品国产一区二区成人 | 99久久国产精品久久久| 成人国产综合亚洲| АⅤ资源中文在线天堂| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 噜噜噜噜噜久久久久久91| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 99国产精品99久久久久| 国产高清激情床上av| 精品一区二区三区视频在线 | 国产精品一区二区三区四区免费观看 | 在线看三级毛片| 免费av不卡在线播放| 久久精品综合一区二区三区| 国产精品 欧美亚洲| 91字幕亚洲| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久| 老司机福利观看| 999久久久国产精品视频| 欧美xxxx黑人xx丫x性爽| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 欧美3d第一页| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 免费观看精品视频网站| 国产一区二区在线观看日韩 | 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 男人舔奶头视频| 国产亚洲精品久久久com| 超碰成人久久| 舔av片在线| 久久久久九九精品影院| 亚洲欧美日韩高清专用| 搡老熟女国产l中国老女人| 深夜精品福利| 亚洲第一欧美日韩一区二区三区| 久久久久久人人人人人| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 久久这里只有精品19| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看 | 国产av不卡久久| 亚洲第一欧美日韩一区二区三区| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 99国产精品99久久久久| 国产高清激情床上av| 久久这里只有精品19| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 人妻丰满熟妇av一区二区三区| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 久久精品亚洲精品国产色婷小说| 久久精品影院6| av黄色大香蕉| 欧美在线黄色| 免费在线观看亚洲国产| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 日日夜夜操网爽| 免费电影在线观看免费观看| www.精华液| 午夜影院日韩av| av女优亚洲男人天堂 | 国产伦人伦偷精品视频| 国产激情欧美一区二区| 色噜噜av男人的天堂激情| av片东京热男人的天堂| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 免费av毛片视频| 色综合欧美亚洲国产小说| av天堂在线播放| 国产精品美女特级片免费视频播放器 | 神马国产精品三级电影在线观看| 欧美乱妇无乱码| 女同久久另类99精品国产91| 成人午夜高清在线视频| 老司机午夜十八禁免费视频| 亚洲 欧美 日韩 在线 免费| 99久久无色码亚洲精品果冻| 又黄又粗又硬又大视频| or卡值多少钱| 丁香六月欧美| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 午夜福利欧美成人| 性欧美人与动物交配| 亚洲av成人不卡在线观看播放网| 亚洲国产色片| av在线蜜桃| 久久性视频一级片| 国语自产精品视频在线第100页| 黄频高清免费视频| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 99热精品在线国产| 国产av不卡久久| 国产精品一区二区免费欧美| 色吧在线观看| 伦理电影免费视频| 久久天堂一区二区三区四区| 国产高清videossex| 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 91av网一区二区| 久久精品国产99精品国产亚洲性色| 99国产极品粉嫩在线观看| 无人区码免费观看不卡| 精品电影一区二区在线| 麻豆国产av国片精品| 国产高清视频在线播放一区| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 1024手机看黄色片| 国内少妇人妻偷人精品xxx网站 | 亚洲电影在线观看av| 桃红色精品国产亚洲av| 成年女人看的毛片在线观看| 黄片大片在线免费观看| 免费无遮挡裸体视频| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频| 超碰成人久久| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 欧美高清成人免费视频www| 最近视频中文字幕2019在线8| 9191精品国产免费久久| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 国产精品亚洲美女久久久| 亚洲精品中文字幕一二三四区| 成人高潮视频无遮挡免费网站| 最近最新中文字幕大全免费视频| 国产精品乱码一区二三区的特点| 制服丝袜大香蕉在线| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久精品吃奶| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华精| 国产亚洲av高清不卡| 一本久久中文字幕| 12—13女人毛片做爰片一| 国产成人av教育| 村上凉子中文字幕在线| 色av中文字幕| 久久精品国产清高在天天线| 久久人妻av系列| 九色成人免费人妻av| netflix在线观看网站| 免费观看人在逋| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 午夜福利在线观看免费完整高清在 | 国产欧美日韩一区二区精品| 国产乱人视频| av片东京热男人的天堂| 一级a爱片免费观看的视频| 欧美国产日韩亚洲一区| 88av欧美| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 国产免费男女视频| 日本 欧美在线| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 国产av一区在线观看免费| 在线免费观看的www视频| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 超碰成人久久| 日韩高清综合在线| 国产爱豆传媒在线观看| 国内精品久久久久久久电影| 国产一区在线观看成人免费| 级片在线观看| 亚洲精品粉嫩美女一区| 国产精品亚洲美女久久久| 精品久久久久久久末码| 日本黄大片高清| 美女 人体艺术 gogo|