• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density Functional Theory Studies on the Mechanism of Activation Formic Acid Catalyzed by Transition Metal Oxide MoO①

    2018-09-08 03:20:38GUANJunXiaLIANGYanYANGJingYANGXiaoChunJIAJingXian
    結(jié)構(gòu)化學(xué) 2018年8期

    GUAN Jun-Xia LIANG Yan YANG Jing YANG Xiao-Chun JIA Jing-Xian

    ?

    Density Functional Theory Studies on the Mechanism of Activation Formic Acid Catalyzed by Transition Metal Oxide MoO①

    GUAN Jun-Xia LIANG Yan YANG Jing②YANG Xiao-Chun JIA Jing-Xian

    (063000)

    This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, II and III were found through studying the reaction mechanism of transition metal oxide MoOcatalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds (Routes I and II) and metallic compound MoOH2(Route III). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I andII are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route III, metal compounds MoOH2and CO2are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route III is more likely to occur than the others. By comparing the results of previous studies on the reaction of MO?+ ROH (M = Mo, W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containingorganic compound catalyzed by MO.

    reaction mechanism, formic acid activation, transition metal oxide MoO, hydrogenabstraction reaction, addition reaction;

    1 INTRODUCTION

    Transition metal oxides (TMOs) play an important role in industrial catalysis, such as oxidation, ammoxidation and dehydrogenation[1]. The research on TMOs catalyzed organic compounds still has great prospects because TMOs have different reaction mechanisms for different reactants, and there are multiple pathways for the same reactants. The active sites such as oxygen vacancies and interstitials are present in the defect sites, which not only explains the transport properties of ionic solids but also plays an important role in determining the surface properties[2]. In recent decades, many research groups have begun to study small molecule TMO because it has great scientific research and practical value[3-5]. One of their research interests is to study the reactivity of transition metal oxide clus- ters with inorganic or organic small molecules[6, 7]. For example, molybdenum oxide has been used to catalyze the oxidation of methane to produce methanol[8]. In particular, the reaction with H2O is significant because it could produce hydrogen from water[9-12]. Since hydrogen has a wide range of uses, such as substitutes for fuels, the reaction of TMO cluster with water is of great value.

    A large number of catalysts containing molyb- denum oxides and tungsten oxides have been used for industrial production[13]. Many studies on the reaction of molybdenum oxides with ROH have been more thorough and comprehensive[14, 15], in which the optimization of molybdenum oxide struc- tures is critical. Molybdenum and tungsten are in the same group (VI) so that a structurally similar oxide can be formed, or it can be combined with each other to form an oxide[16, 17], both of which exhibit a variety of unique chemical and electronic properties in their oxides[18].

    Researchers have used the density functional theory (DFT) methods to study the MO?+ ROH (M = Mo, W; R = Me, Et) reaction, and the results show that there are four mechanisms: oxidation, addition, abstraction of OR and OH. The products are MO?+1+ RH, MO+1RH?, MO+1R?+ H?, and MO+1H?+ R?, respectively. According to the study, MO?+ ROH rate coefficients are higher than analogous WO?clusters, so we decided to choose MoO as the object of this experiment[19]. In order to develop a more comprehensive transition metal catalyst, it is necessary to expand its reaction object and continue to study the reaction with hydroxyl- containing organic compounds, which are important for improving the overall mechanisms. We also reviewed some related literatures, with its research content as follows: the thermal decomposition of formic acid was investigated in the temperature range of 1000~2000 K and in the density range of (0.5~2.5)×10?5mol/cm3. In the absence of a catalyst for the same gas conditions, two reactions occur with formic acid, and the products of which are CO + H2O and CO2+ H2. Besides, the result shows that the main reaction is HCOOH → CO + H2O[20]. However, so far, TMOs + RCOOH reaction does not have clear mechanisms, so we begin to study the mechanism of MoO + HCOOH reaction to determine whether this reaction is consistent with the above mechanisms. In this paper, we use the DFT methods to study the three reaction mecha- nisms of MoO activates formic acid, and explored the new mechanism. This experiment fills the gaps in the mechanisms of TMOs + RCOOH reaction and lays the foundation for the future tests.

    2 METHOD OF CALCULATION

    The density functional theory (DFT) methods have been applied to our calculations to account for the electron correlation effect[21], which gives good performance in calculating, particularly for organic molecules and metal-nonmetallic compounds[22-31]. DFT methods can reliably simulate the actual solid-phase catalytic reaction and predict the reactivities of TMOs in the gas-phase[32,33]. All calculations of stationary points and transition states in this study use the "Becke-3-LYP" method and are performed with the Gaussian 09 suit of programs[34-36].

    By comparing a variety of optimization methods, we decided to use the B3LYP/gen method to optimize, because it can provide a more precise structure[37, 38]. “Gen” is a general basis set obtained using SDD (Stuttgart-Dresden ECP plus DZ) for Mo and Double-plus polarization (DZP) basis sets for C, H and O[39]. The DZP basis sets used for carbon and oxygen add one set of pure spherical harmonicfunctions with orbital exponentsα(C) = 0.75 andα(O) = 0.85 to the standard Huzinaga-Dunning contracted DZ sets and are designated (951/421)[40, 41]. For hydrogen, a set ofpolarization functionsα(H) = 0.75 are added to the Huzinaga-Dunning DZ set. The B3LYP method with general basis sets (SDD for Mo and DZP for C, H and O) not only reduces the time required for the calculation but also does not have a lot of deviation. Eventually, we use single-point calculations at the B3LYP/gen level of theory to determine the energy parameters of the molecule[42].

    Geometric structures, energies, and harmonic frequencies have been obtained at the Hartree-Fock (HF) levels theory[43]. Moreover, intrinsic reaction coordinate (IRC) analysis identified that each tran- sition state connects the reactant and product minima[9, 44]. The most stable species were analyzed by vibrational frequency calculations[45]. Vibra- tional frequency calculations verified all frequen- cies of stationary points are positive, while transi- tion states had a single imaginary frequency, and zero-point energy corrections were taken from these frequency calculations[46-49].

    3 RESULTS AND DISCUSSION

    Scheme 1 shows the overall reaction pathway and indicates the molecular formula and its number for all compounds. By studying the reaction of MoO with formic acid, we found three different mecha- nisms: addition reactions and hydrogen abstraction reaction. By observing Scheme 1 we can see in the stationary point 1, there is a three-membered ring structure consisting of carbon, oxygen and molybdenum atoms. The reason for the formation is that the free orbital in the molybdenum atom can accept electrons from the carbon and oxygen atoms. Then, from the stationary point 1, Route I is separa- ted from the other two routes. In addition, RoutesII andIII are separated at stationary point 11. Of all the compounds in this study, stationary points 1 and 11 were the two most critical species, because the different rotation angle of hydroxyl will lead todifferent reaction mechanisms. The final products 9 and 22 are the products of addition reactions (Routes I and II) and 29 and 30 are the products of the extraction reaction (Route III). In addition, the products obtained in Routes I (9) and II (22) are enantiomeric. The geometries of all compounds are optimized by the B3LYP method with gen basis sets.

    Scheme 1. An overview of various mechanisms and illustration of the nomenclature used to designate molecules

    3. 1 Reaction mechanism of Route I

    We first study the mechanism of the addition reactions. We can use the B3LYP method in con- junction with the gen basis set to determine the position of the three-membered ring compound 1. The C and O(2) atoms of the carbonyl group in the formic acid can be coordinated with the Mo atom because the half-full 4and 5orbitals of the molybdenum atom can accept electrons from two atoms. As the first step of all paths, the formation of stationary point 1 is accompanied by an exotherm of 49.91 kcal/mol. Then, from the stationary point 1 to transition state 2 (TS2), the reaction is endothermic by 14.92 kcal/mol. All the energies of the com- pounds on the basis of the energy of the reactants are 0 kcal/mol. By observing the structural changes from 1 to TS2, we can see that the C–H(1) bond is increased from 1.097 to 1.272 ?, and the distance between the H and Mo atoms is reduced to 2.029 ? (see Fig. 1). The imaginary frequency of 390i cm?1also proves that the C–H(1) bond is stretched (Table S1). The change from TS2 to stationary point 3lies in the cleavage of C–H(1) bond and the formation ofH(1)–Mo bond. Besides, TS2 connects the stationary points 1 and 3 confirmed by the IRC calculation. The total heat released from 1 to 3 is 22.29 kcal/mol, and finally the Mo–H(1) bond was reduced to 1.96 ?.

    Fig. 1. Equilibriums geometries of 1~9 (see Scheme 1) calculated using B3LYP method along with the gen basis set (Bond lengths are given in angstrom and angles in degree)

    Fig. 2. Geometries of 10~22 (see Scheme 1 and caption to Fig. 1)

    Fig. 3. Geometries of 23~30 (see Scheme 1 and caption to Fig. 1)

    The configuration of the molecule continues to change through TS4 to another three-membered ring compound 5, with the barrier energy of this step to be 37.81 kcal/mol. There is an imaginary frequency of 1588cm?1for the stretching of O(3)–H(2) bond in TS4. It can be seen from Fig. 1 that the O(3)–H(2) bond increases from 0.973 to 1.297? in this step, and the bond angle centered on C and Mo atoms is also reduced to short the distance between the H(2) andO(1) atoms. The increase of the O(3)–H(2) bond length indicates that the H(2) atom is attracted by the O(1) atom. At the same time, Mo atom also attracts the O(2) atom,resulting in C=O(2) double bond breaking into a single bond. The bondlengths ofO(3)–C(2) andC=O(2) increase to 1.287 and 1.277?, respectively. The change from 5 to 9 is that the C–O(2) bond is cleaved and the H(1) atom separated from Mo connects to the O(2) atom to form a new hydroxyl group. In Fig. 4, the energy relationship of these steps has been described. IRC calculation has confirmed that TS6 and TS8 connected to the corresponding compounds. Take chiral chain pro-duct MoO3CH29 and reactants to compare, and the result is that the Mo atom inserted into the C–O(2) bond. And for two hydrogen atoms H(1) and H(2), they are separated from the C and O(3) atoms, respectively, and eventually bonded with the O(2) and Mo atoms. Figs. 1 and4 show the geometries and energy relationships of the compounds from 5 to 9.

    Fig. 4. Relative energies (including ZPE corrections) of the stationary points located on the potential energy surfaces. All energies are relative to the same zero value, MoO + HCOOH at infinite separation. The energy values are given in kilocalories per mole and are calculated using the B3LYP method with the gen basis set

    3. 2 Reaction mechanism of Route II

    As shown in Scheme 1, the stationary point 11 can be divided into two reaction routes: Routes II and III. Stationary point 11 is derived from sta- tionary point 1 by rotating hydroxyl, so the two structures are similar and connected by TS10. The barrier energies for TS2 are 14.92 kcal/mol in Route I and 0.11 kcal/mol for TS10, so it is obvious that the later requires less activation energy. From the molecular perspective, the migration of H1 atom requires more energy than the rotation of O(3)–H(2) bond. According to the above two reasons, we can conclude that the reaction from 1 to TS10is more favored. The hydroxyl group of compound 11 continues to rotate around the C–O(3) bond due to the attraction of O(2) atom. Finally, H(2) atom does not bond with O(2) and continues to rotate to the geometry shown in stationary point 15. The rotation of the hydroxyl group results in the change in the relative position of the atoms in the molecule.

    In Route II, each of the stationary point and transition states after 15 have an enantiomer in Route I, because the reaction mechanisms of these two routes (Routes I and II) are both addition. In addition, the high degree symmetry of the structure of 7 determines its very low energy. As a result, 7 is the same intermediate in Routes I and II. The final products 22 (Route II) and 9 (Route I) are enan- tiomers centered on Mo atoms. The two routes emit equal amounts of energy, and it is clear that Route II requires less energy and therefore is more likely to occur. According to the study of the above two paths, the mechanism of its addition reaction is the same as the previous research results, and it is consistent with the general formula: MO?+ ROH (M = Mo, W; R = Me, Et) = MO+1RH?.

    3. 3 Reaction mechanism of Route III

    In this section, we continue to describe the hydro- genabstraction mechanism of MoO catalyzing the formic acid. This mechanism is different from the previous studies, so we focus on the process of its occurrence and analyze the causes of its product formation. The geometries of the compounds and the energy relationships between them are shown in Figs. 3 and 4.

    As can be seen from Scheme 1, the three-mem- bered ring compound 11 is the dividing point of the two paths. Unlike TS12 in Route II, the hydroxyl is rotated in the opposite direction shown in TS23 in Fig. 3. At this point, the H(2) atom is attracted by Mo atoms and the O(3)–H(2) bond is increased to 1.206 ?. Then the H(2) atom is completely separated from the O(3) atom, and the O(3) and H(2) atoms are bonded to the Mo atom to form the double-ring compound 24. Comparing Routes II and III from the energy level, the barrier energy for 11 to TS12 is 31.64 kcal/mol in Route II and 21.81 kcal/mol in Route III. Thus, we can conclude that Route III is more likely to happen than Route II. Besides,regarding the stability of the molecular structure, compound 24 contains a double ring structure and therefore is more stable than the single ring compound 13, so it is easier to form. From 24 to 26, it is the process of opening the bicyclic ring. In this step, the C–Mo and O(2)–Mo bonds were broken. The C–O(3) bond is free to rotate so that the H(1) atom can be closer to the Mo atom. From interme- diate 26 to the transition state TS27, the distance between H(1) and Mo reduced to 2.224 ?. Eventually, the C atom bonded to Mo and the second hydrogen atom H(1) have migrated from the C atom to the Mo atom, leading to complex 5. TS28 is the last transition state on Route III, which connects products 29 and 30 and 5. From TS28 to the products, the O(3)–Mo and C–Mo bonds of the carbon dioxide as the leaving group have been stretched to 2.373 and 3.286 ?, respectively. The resulting products of Route IIIare MoOH229 and CO230. We can summarize the reaction of Route III into the following formula: MoO + RCOOH = MoOHR + CO2.

    4 SUMMARY

    In our paper, the reaction of MoO with formic acid has been studied at the DFT level, and the results are compared with the conclusion of MO?+ ROH (M = Mo, W; R = Me, Et) reaction. There are total three reaction paths. The mechanism of Routes I and II is the addition reaction, which is slightly different with the previous study. But we found a complete new reaction mechanism in Route III, and it's a top priority path compared to the others. The mechanism of Route III is the hydrogenabstraction reaction distinguished from the above mechanisms. We also discussed the reasons for the different reaction pathways and products, and also predicted the results of further reactions. The reaction begins with the coordination of C and O(2) atoms with the Mo atom, and then the stationary point 3 and three-membered ring compound 11 were obtained by overcoming the activation energies of 14.92 and 0.11 kcal/mol, respectively. The formation of compound 11 is easier than compound 3, which means RoutesII and III are more likely to occur than Route I. After compound 11, two kinds of distinguishable reaction paths have been found as follows: addition reaction (Route II) and hydrogen abstraction reaction (Route III). The barrier energy for 11 to TS12 is 31.64 kcal/mol in Route II, which is 21.81 kcal/mol higher than the barrier for the corresponding step 11 to TS23. So, Route III is preferred over the other two routes, which means the hydrogenabstraction reaction takes place first.For the autocatalytic reaction of formic acid in the gas phase, the barrier energies of its two routes (63.4 and 66.3 kcal/mol) are much higher than that of hydrogen abstraction reaction (0.11 kcal/mol) because MoO is a highly hydrogen-absorbing material whose participation reduces the activation energy of the reaction.

    There are three paths in the reaction because of the free rotation of the hydroxyl group. The rotation of the hydroxyl group in a different direction causes the hydrogen to be attracted by different atoms. In Route I, the hydroxyl group rotates to a position parallel to the O(1) atom and then is attracted, eventually H atom transfers to the Mo atom. In Route II, the rotation of the hydroxyl group leads to the generation of enantiomers, so Route II is also an addition reaction. Especially in Route III, the hydroxyl group rotates to the position near the Mo atom and then H atom migrates to it, because the H atom is directly attracted by Mo atom, thus forming different structures of molecules.

    Analysis of the hydrogen abstraction mechanism can be seen: MoO catalyst can absorb not only the hydrogen atoms on the hydroxyl, but also those bonded to carbon atom. By comparing the barrier energy of the two dehydrogenation steps, we found that the second step (12.08 kcal/mol) is lower than the first one (21.81 kcal/mol). In the reaction of formic acid catalyzed by transition metal oxide MoO, the hydrogen abstraction reaction is more likely to occur. The barrier energy of the first step (6.64 kacl/mol) is less than the barrier energy (0.11 kacl/mol) of methanol catalyzed by MoO. Therefore, the reaction of formic acid catalyzed by MoO prefers to the reaction of methanol catalyzed by MoO.

    (1) Mann, J. E.; Waller, S. E.; Rothgeb, D. W.; Jarrold, C. C. Study of Nb2O(=2~5) anion and neutral clusters using anion photoelectron spectroscopy and density functional theory calculations.. 2011, 135, 104317-12.

    (2) Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges.2007, 62, 219-270.

    (3) Wyrwas, R. B.; Yoder, B. L.; Maze, J. T.; Jarrold, C. C. Reactivity of smallMoO?clusters toward methane and ethane.2006, 110, 2157-2164.

    (4) Rothgeb, D. W.; Mann, J. E.; Waller, S. E.; Jarrold, C. C. Structures of trimetallic molybdenum and tungsten suboxide cluster anions.2011, 135, 104312-12.

    (5) Yoder, B. L.; Maze, J. T.; Raghavachari, K.; Jarrold, C. C. Structures of Mo2O?and Mo2O(=2, 3 and 4) studied by anion photoelectron spectroscopy and density functional theory calculations.. 2005, 122, 094313-9.

    (6) Wyrwas, R. B.; Robertson, E. M.; Jarrold, C. C. Reactions between CO and small molybdenum suboxide cluster anions.. 2007, 126, 214309-8.

    (7) Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2reduction by group 6 transition metal suboxide cluster anions.. 2010, 133, 024305-10.

    (8) Oyama, S. T.; Radhakrishnan, R.; Seman, M.; Kondo, J. N.; Domen, K.; Asakura, K. Control of reactivity in C-H bond breaking reactions on oxide catalysts: methanol oxidation on supported molybdenum oxide.2003, 107, 1845-1852.

    (9) Ray, M.; Waller, S. E.; Saha, A.; Raghavachari, K.; Jarrold, C. C. Comparative study of water reactivity with Mo2O?and W2O?clusters: a combined experimental and theoretical investigation.. 2014, 141, 104310-9.

    (10) Ramabhadran, R. O.; Mann, J. E.; Waller, S. E.; Rothgeb, D. W.; Jarrold, C. C.; Raghavachari, K. New insights on photocatalytic H2liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides.. 2013, 135, 17039-17051.

    (11) Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Jarrold, C. C.; Raghavachari, K. Water reactivity with tungsten oxides: H2production and kinetic traps.. 2009, 131, 144302-8.

    (12) Waller, S. E.; Jarrold, C. C. RH and H2production in reactions between ROH and small molybdenum oxide cluster anions.2014, 118, 8493-8504.

    (13) Rousseau, R.; Dixon, D. A.; Kay, B. D.; Dohna′lek, Z. Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3and (MoO3)3clusters.. 2014, 43, 7664-7680.

    (14) Li,Z. J.; Fang, Z. T.; Kelley, M. S.;Kay, B. D.; Rousseau, R.; Dohnalek, Z.; Dixon, D. A. Ethanol conversion on cyclic (MO3)3(M = Mo, W) clusters.2014, 118, 4869-4877.

    (15) Rothgeb, D. W.; Hossain, E.; Kuo, A. T.; Troyer, J. L.; Jarrold, C. C.; Mayhall, N. J.; Raghavachari, K. Unusual products observed in gas-phase WO?+ H2O and D2O reactions.. 2009, 130, 124314-8.

    (16) Rothgeb, D. W.; Hossain, E.; Mann, J. E.; Jarrold, C. C. Disparate product distributions observed in Mo(3?x)WO?(=0~3;=3~9) reactions with D2O and CO2.. 2010, 132, 064302-10.

    (17) Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Raghavachari, K.; Jarrold, C. C. Electronic structures of MoWO?and MoWOdetermined by anion photoelectron spectroscopy and DFT calculations.. 2009, 130, 124313-10.

    (18) Saha, A.; Raghavachari, K. Electronic structures and water reactivity of mixed metal sulfide cluster anions.. 2014, 141, 074305-9.

    (19) Ray, M.; Waller, S. E.; Jarrold, C. C. Effect of alkyl group on MO?+ ROH (M = Mo, W; R = Me, Et) reaction rates.2016, 120, 1508-1519.

    (20) Saito, K.; Shiose, T.; Takahashi, O.; Hidaka, Y.; Aiba, F.; Tabayashi, K. Unimolecular decomposition of formic acid in the gas phases on the ratio of the competing reaction channels.2005, 109, 5352-5357.

    (21) Zhao, Y.; Truhlar, D.G.Comparative assessment of density functional methods for 3transition-metal chemistry.. 2006, 124, 224105-224110.

    (22) Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones.2012, 57, 2442-2455.

    (23) Leskiw, B. D.; Castleman Jr., A. W.; Ashman, C.; Khanna, S. N. Reactivity and electronic structure of aluminum clusters: the aluminum-nitrogen system.. 2001, 114, 1165-1169.

    (24) Jones, N. O.; Reveles, J. U.; Khanna, S. N.; Bergeron, D. E.; Roach, P. J.; Castleman Jr., A. W. Structural, electronic, and chemical properties of multiply iodized aluminum clusters.. 2006, 124, 154311-8.

    (25) Li, S. D.; Guo, Q. L.; Zhao, X. F.; Wu, H. S.; Jin, Z. H. Structural and electronic properties of Genm-and KGe-Zintl anions (=3~10,=2~4) from density functional theory.. 2002, 117, 606-614.

    (26) Ko, Y. J.; Shakya, A.; Wang, H. P.; Grubisic, A.; Zheng, W. J.; G?tz, M.; Gantef?r,G.; Bowen, K. H.; Jena, P.;Kiran, B. Electronic structure and properties of isoelectronic magic clusters: Al13X (X = H, Au, Li, Na, K, Rb, Cs).. 2010, 133, 124308-6.

    (27) Tenorio, F. J.; Murray, I.; Mart??nez, A.; Klabunde, K. J.; Ortiz, J. V.Products of the addition of water molecules to Al3O3?clusters: structure, bonding, and electron binding energies in Al3O4H2?, Al3O5H4?, Al3O4H2, and Al3O5H4.. 2004, 120, 7955-7962.

    (28) Grubisic, A.; Li, X.; Gantefoer, G.; Bowen, K. H.; Schn?ckel, H.; Tenorio, F. J.; Martinez, A. Reactivity of aluminum cluster anions with ammonia: selective etching of Al11?and Al12?.. 2009, 131, 184305-7.

    (29) Armentrout, P. B.; Kretzschmar, I. Guided ion beam and theoretical studies of the reaction of Ag+with CS2: gas-phase thermochemistry of AgS+and AgCS+and insight into spin-forbidden reactions.. 2010, 132, 024306-10.

    (30) Saha, A.; Raghavachari, K. Hydrogen evolution from water through metal sulfide reactions.. 2013, 139, 204301-12.

    (31) Chen, Q.; Zhai, H. J.; Li, S. D.; Wang, L. S. On the structures and bonding in boron-gold alloy clusters: B6Au?and B6Au(= 1~3).. 2013, 138, 084306-8.

    (32) Wang, H. D.; Liu, H.; Li, C. C.; Wang, Z. Y.; Yang, G. Y. DFT calculation on PBPXs: their gas phase thermodynamic function and implication of Br substituted position.2009, 487, 49–53.

    (33) Santo, E. D.; Santos, M.; Michelini, M. C.; Marc-alo, J.; Russo, N.; Gibson, J. K. Gas-phase reactions of the bare Th2+and U2+ions with small alkanes, CH4,C2H6, and C3H8: experimental and theoretical study of elementary organoactinide chemistry.. 2011, 133, 1955-1970.

    (34) Becke, A. D. Density-functional thermochemistry. III, the role of exact exchange.. 1993, 98, 5648–5652.

    (35) Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density..1988, 37, 785-789.

    (36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani,G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian, Inc., Wallingford CT,2009.

    (37) Guevara-García, A.; Martínez, A.; Ortiz, J. V. Addition of water, methanol, and ammonia to Al3O3?clusters: reaction products, transition states, and electron detachment energies.. 2005, 122, 214309-7.

    (38) Qu, R. J.; Liu,J. Q.; Li, C. G.; Wang,L. S.; Wang, Z. Y.; Wu, J. C. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids.2016, 104, 34-43.

    (39) Kundu, S.; Mondal, D.; Bhattacharya, K.; Endo, A.; Sanna, D.; Garribba, E.; Chaudhury, M. Nonoxido vanadium(IV) compounds involving dithiocarbazate-based tridentate ONS ligands: synthesis, electronic and molecular structure, spectroscopic and redox properties.2015, 54, 6203-6215.

    (40) Dunning, T.H.Gaussian basis functions for use in molecular calculations. I. Contraction of (95) atomic basis sets for the first-row atoms.. 1970, 53, 2823-2833.

    (41) Huzinaga, S.J. Gaussian-type functions for polyatomic systems. I.. 1965, 42, 1293-1302.

    (42) Charkin, O.P.; Klimenko, N.M.; Nguyen, P.T.; Charkin, D.O.; Mebel, A.M.; Lin, S.H.; Wang, Y. S.; Wei, S. C.; Chang, H. C.Fragmentation of heme and hemin+with sequential loss of carboxymethyl groups: a DFT and mass-spectrometry study..2005, 415, 362-369.

    (43) Desai, S. R.; Wu, H. B.; Rohlfing, C. M.; Wang, L. S. A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlO?(= 1~2,= 1~5).. 1997, 106, 1309-1317.

    (44) Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D.G.; Ab initio reaction paths and direct dynamics calculations.. 1989, 93, 5107-5119.

    (45) Oliveira, J. A.; De Almeida, W. B.; Duarte, H. A. Density functional study of the MoOand MoO+(=1~3;=1~9) oxide clusters.. 2003, 372, 650-658.

    (46) Ramabhadran, R. O.; Mayhall, N. J.; Raghavachari, K. Proton hop paving the way for hydroxyl migration: theoretical elucidation of fluxionality in transition-metal oxide clusters.. 2010, 1, 3066-3071.

    (48) Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations.2015, 49, 4209-4217.

    (49) Zhai, Z. C.; Wang, Z. Y. Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory.2005, 724, 221-227.

    18 December 2017;

    9 April 2018

    ① This work was supported by the National Natural Science Foundation of China (No. 21373025), and the major projectof Tangshan Normal College(No. 2017B01)

    . Fax: +86-0315-3863291. E-mail: yjlzddove@gmail.com

    10.14102/j.cnki.0254-5861.2011-1859

    亚洲欧美中文字幕日韩二区| 99热这里只有是精品在线观看| 国产男人的电影天堂91| 婷婷色麻豆天堂久久| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区| 国产爱豆传媒在线观看| 在线观看一区二区三区激情| 99久久综合免费| 亚洲成人手机| 国产亚洲5aaaaa淫片| 亚洲av二区三区四区| 九草在线视频观看| 一本久久精品| 久久久亚洲精品成人影院| 在线亚洲精品国产二区图片欧美 | 国产高清三级在线| 97精品久久久久久久久久精品| 国产视频首页在线观看| 国产日韩欧美亚洲二区| 亚洲成人av在线免费| 日韩国内少妇激情av| 在线免费观看不下载黄p国产| 免费观看无遮挡的男女| 色吧在线观看| 身体一侧抽搐| 中文在线观看免费www的网站| 看免费成人av毛片| 久久久久久人妻| 黑人高潮一二区| 久久午夜福利片| 中文精品一卡2卡3卡4更新| 免费看光身美女| 嘟嘟电影网在线观看| 3wmmmm亚洲av在线观看| 久久久久久久久久成人| 国产在线一区二区三区精| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| 久久久久国产精品人妻一区二区| 嫩草影院新地址| 激情 狠狠 欧美| freevideosex欧美| 国内少妇人妻偷人精品xxx网站| 只有这里有精品99| 亚洲国产av新网站| 国产亚洲最大av| 亚洲综合精品二区| 久久99热6这里只有精品| 成人漫画全彩无遮挡| 免费观看a级毛片全部| 亚洲国产高清在线一区二区三| 欧美激情极品国产一区二区三区 | 久久人人爽av亚洲精品天堂 | 亚洲国产精品国产精品| 日本欧美国产在线视频| 亚洲四区av| 亚洲精品日韩在线中文字幕| 亚洲,欧美,日韩| 亚洲第一av免费看| 日韩 亚洲 欧美在线| 最近中文字幕高清免费大全6| 色视频在线一区二区三区| 欧美成人一区二区免费高清观看| 一级毛片久久久久久久久女| av在线播放精品| 久久精品久久精品一区二区三区| 久久热精品热| 成人午夜精彩视频在线观看| 蜜桃在线观看..| 国产又色又爽无遮挡免| 伦理电影大哥的女人| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 精品熟女少妇av免费看| 人人妻人人爽人人添夜夜欢视频 | 少妇丰满av| 2022亚洲国产成人精品| 青春草国产在线视频| 少妇裸体淫交视频免费看高清| 黄色怎么调成土黄色| 人人妻人人添人人爽欧美一区卜 | 高清毛片免费看| 成年免费大片在线观看| 一本—道久久a久久精品蜜桃钙片| 久久精品国产鲁丝片午夜精品| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 亚洲精品456在线播放app| 免费少妇av软件| 国产在线免费精品| 日韩成人伦理影院| av视频免费观看在线观看| 网址你懂的国产日韩在线| 国产精品一区二区三区四区免费观看| 亚洲精品456在线播放app| 中文字幕精品免费在线观看视频 | 99久国产av精品国产电影| 麻豆成人午夜福利视频| 久久久久性生活片| 久久6这里有精品| 青青草视频在线视频观看| 免费播放大片免费观看视频在线观看| 日韩欧美 国产精品| 网址你懂的国产日韩在线| 亚洲精品视频女| 一区在线观看完整版| 黑人高潮一二区| 91精品伊人久久大香线蕉| av卡一久久| 日韩成人av中文字幕在线观看| 午夜激情福利司机影院| 亚洲成人一二三区av| 亚洲人成网站高清观看| av专区在线播放| 边亲边吃奶的免费视频| 晚上一个人看的免费电影| 少妇 在线观看| 男人狂女人下面高潮的视频| 日日啪夜夜爽| 一级黄片播放器| 日本一二三区视频观看| 久久国产亚洲av麻豆专区| 偷拍熟女少妇极品色| 大片免费播放器 马上看| 久久6这里有精品| 亚洲欧美一区二区三区国产| 丰满少妇做爰视频| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 只有这里有精品99| 日本-黄色视频高清免费观看| 亚洲成色77777| 国产精品国产三级专区第一集| 久久久久久久久大av| 久久人人爽人人爽人人片va| 亚洲色图av天堂| 国产精品精品国产色婷婷| 国内揄拍国产精品人妻在线| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 汤姆久久久久久久影院中文字幕| 亚洲av国产av综合av卡| 汤姆久久久久久久影院中文字幕| 亚洲,欧美,日韩| 成人特级av手机在线观看| 午夜日本视频在线| 国产免费一级a男人的天堂| 亚洲国产精品专区欧美| 高清黄色对白视频在线免费看 | 黄色日韩在线| 免费人妻精品一区二区三区视频| 久久毛片免费看一区二区三区| 日本欧美视频一区| 少妇高潮的动态图| 久久国产精品大桥未久av | 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 啦啦啦在线观看免费高清www| 街头女战士在线观看网站| 肉色欧美久久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 大片电影免费在线观看免费| 热99国产精品久久久久久7| 精品一区二区三卡| 女性生殖器流出的白浆| 男女无遮挡免费网站观看| 国产精品一区二区性色av| 国产午夜精品久久久久久一区二区三区| av国产免费在线观看| 在线观看免费日韩欧美大片 | 国产高清国产精品国产三级 | 欧美精品亚洲一区二区| 中文字幕亚洲精品专区| 赤兔流量卡办理| 天堂中文最新版在线下载| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 日韩一区二区视频免费看| 欧美激情国产日韩精品一区| 成人高潮视频无遮挡免费网站| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看| 一级黄片播放器| 亚洲精品乱码久久久v下载方式| 国产淫语在线视频| 亚洲成人av在线免费| 日韩精品有码人妻一区| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频 | 亚洲国产色片| 少妇精品久久久久久久| 亚洲国产精品999| 高清午夜精品一区二区三区| 精品午夜福利在线看| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 欧美成人午夜免费资源| 亚洲av中文字字幕乱码综合| 亚州av有码| 成人18禁高潮啪啪吃奶动态图 | 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩另类电影网站 | 又爽又黄a免费视频| 午夜福利影视在线免费观看| 日本欧美国产在线视频| 大码成人一级视频| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| 十八禁网站网址无遮挡 | 全区人妻精品视频| 日本午夜av视频| 免费观看无遮挡的男女| av在线观看视频网站免费| av在线老鸭窝| 成人黄色视频免费在线看| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| 性色avwww在线观看| 亚洲国产精品国产精品| 午夜福利网站1000一区二区三区| 爱豆传媒免费全集在线观看| 校园人妻丝袜中文字幕| 在线观看免费高清a一片| 久久久久久久精品精品| 亚洲va在线va天堂va国产| 亚洲精品国产av蜜桃| 日本欧美视频一区| 免费看光身美女| 三级国产精品欧美在线观看| 两个人的视频大全免费| 亚洲经典国产精华液单| 一区在线观看完整版| av在线播放精品| 简卡轻食公司| 纯流量卡能插随身wifi吗| 久久韩国三级中文字幕| 少妇人妻精品综合一区二区| 亚洲欧美清纯卡通| 在线亚洲精品国产二区图片欧美 | 天堂中文最新版在线下载| 免费人成在线观看视频色| 欧美激情极品国产一区二区三区 | 精品国产一区二区三区久久久樱花 | 国产成人freesex在线| 久久热精品热| 多毛熟女@视频| 亚洲av免费高清在线观看| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱| 日韩在线高清观看一区二区三区| 免费观看av网站的网址| 免费av不卡在线播放| 人妻系列 视频| 亚洲av在线观看美女高潮| 成人亚洲欧美一区二区av| 久久久久久久久大av| 欧美精品亚洲一区二区| 国产一区二区三区综合在线观看 | 22中文网久久字幕| 亚洲激情五月婷婷啪啪| 精品人妻视频免费看| 国产成人免费观看mmmm| 色视频在线一区二区三区| 亚洲国产最新在线播放| 卡戴珊不雅视频在线播放| 男女啪啪激烈高潮av片| 汤姆久久久久久久影院中文字幕| 在线观看一区二区三区| 国产精品人妻久久久影院| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的 | 一级爰片在线观看| 一个人看的www免费观看视频| 日产精品乱码卡一卡2卡三| 高清日韩中文字幕在线| 亚洲精品久久午夜乱码| 久久精品夜色国产| 美女视频免费永久观看网站| 热re99久久精品国产66热6| 亚洲综合色惰| 亚洲国产欧美人成| 国模一区二区三区四区视频| 国产欧美日韩一区二区三区在线 | 亚洲精品视频女| 99久久精品热视频| 国产免费一区二区三区四区乱码| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 啦啦啦在线观看免费高清www| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 三级经典国产精品| 国产精品福利在线免费观看| 大码成人一级视频| 国产精品久久久久久精品电影小说 | 高清欧美精品videossex| 免费不卡的大黄色大毛片视频在线观看| 91久久精品电影网| 午夜激情久久久久久久| 青春草国产在线视频| 中文资源天堂在线| 日本黄色日本黄色录像| 久热久热在线精品观看| 久久久欧美国产精品| 国产永久视频网站| 国产亚洲欧美精品永久| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 3wmmmm亚洲av在线观看| 国产高清国产精品国产三级 | 亚洲精品成人av观看孕妇| 我要看日韩黄色一级片| 午夜老司机福利剧场| 五月天丁香电影| 哪个播放器可以免费观看大片| 日韩精品有码人妻一区| 久久 成人 亚洲| 亚洲国产精品国产精品| 全区人妻精品视频| 久久久国产一区二区| 久久精品国产亚洲网站| 99热这里只有是精品50| 日韩欧美 国产精品| 国产精品人妻久久久影院| 久久 成人 亚洲| 免费少妇av软件| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| 美女主播在线视频| 丰满少妇做爰视频| 青春草视频在线免费观看| 亚洲国产高清在线一区二区三| 国产亚洲av片在线观看秒播厂| 观看免费一级毛片| 国产精品国产三级专区第一集| 久久影院123| 下体分泌物呈黄色| 久热这里只有精品99| 中文字幕av成人在线电影| 成年女人在线观看亚洲视频| 身体一侧抽搐| 3wmmmm亚洲av在线观看| 国产精品一区二区三区四区免费观看| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 亚洲丝袜综合中文字幕| 亚洲精品一区蜜桃| 亚洲aⅴ乱码一区二区在线播放| 性色avwww在线观看| 国产精品久久久久久久久免| 久久av网站| 汤姆久久久久久久影院中文字幕| 久久国产亚洲av麻豆专区| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费 | 久久国产精品大桥未久av | 免费人妻精品一区二区三区视频| 丰满迷人的少妇在线观看| 丝袜脚勾引网站| 一级毛片aaaaaa免费看小| 日韩一本色道免费dvd| 国产亚洲最大av| 欧美丝袜亚洲另类| 国产成人精品福利久久| 亚洲熟女精品中文字幕| 亚洲欧洲日产国产| 久久久久性生活片| 丝袜喷水一区| 精品久久久精品久久久| 成人二区视频| 美女脱内裤让男人舔精品视频| av免费在线看不卡| 国内精品宾馆在线| 97超碰精品成人国产| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级 | 国产av码专区亚洲av| 日产精品乱码卡一卡2卡三| 一区二区三区精品91| 久久久久久久久久久免费av| 黑丝袜美女国产一区| 国产又色又爽无遮挡免| 国产亚洲5aaaaa淫片| 免费观看性生交大片5| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线| 久久久久久伊人网av| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线 | 国国产精品蜜臀av免费| 国产无遮挡羞羞视频在线观看| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 国产伦精品一区二区三区四那| 国产成人91sexporn| 嫩草影院新地址| 亚洲一级一片aⅴ在线观看| 毛片女人毛片| 91精品一卡2卡3卡4卡| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 在线观看一区二区三区激情| 久久久午夜欧美精品| 精品久久久久久久末码| 青春草视频在线免费观看| 欧美bdsm另类| 丝袜脚勾引网站| 国产av码专区亚洲av| 欧美性感艳星| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 大香蕉97超碰在线| 亚洲精品国产av蜜桃| 18禁动态无遮挡网站| 寂寞人妻少妇视频99o| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 免费久久久久久久精品成人欧美视频 | 精品人妻视频免费看| 在线观看一区二区三区激情| 亚洲欧洲国产日韩| 国产亚洲精品久久久com| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 国产成人a区在线观看| 少妇丰满av| 亚洲国产欧美在线一区| 亚洲精品国产色婷婷电影| 最近2019中文字幕mv第一页| 色网站视频免费| 国产高清有码在线观看视频| 久久亚洲国产成人精品v| 国产亚洲欧美精品永久| 97在线人人人人妻| 国产成人精品一,二区| 波野结衣二区三区在线| 亚洲第一区二区三区不卡| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 丰满人妻一区二区三区视频av| 美女高潮的动态| 91午夜精品亚洲一区二区三区| 国产精品久久久久成人av| 欧美日本视频| 97超视频在线观看视频| 国产v大片淫在线免费观看| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 美女脱内裤让男人舔精品视频| 嫩草影院入口| 国产一区二区三区综合在线观看 | 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 精品久久久久久久久亚洲| 久久久久性生活片| av天堂中文字幕网| 免费观看av网站的网址| 欧美一区二区亚洲| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 成年美女黄网站色视频大全免费 | www.av在线官网国产| 我要看日韩黄色一级片| 午夜免费观看性视频| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 插阴视频在线观看视频| 99久久精品一区二区三区| 中文字幕久久专区| 久久这里有精品视频免费| 亚洲国产日韩一区二区| 一级片'在线观看视频| 尤物成人国产欧美一区二区三区| 成人黄色视频免费在线看| 性色av一级| 天天躁夜夜躁狠狠久久av| 亚洲四区av| 国产高清不卡午夜福利| 国产av国产精品国产| 秋霞伦理黄片| 亚州av有码| 建设人人有责人人尽责人人享有的 | 成年av动漫网址| 午夜日本视频在线| 一区二区三区免费毛片| 国产在线免费精品| 18禁在线播放成人免费| 日韩欧美一区视频在线观看 | 男的添女的下面高潮视频| 一区二区av电影网| 精品午夜福利在线看| 国产在线一区二区三区精| 国产精品av视频在线免费观看| 韩国高清视频一区二区三区| 国产免费一级a男人的天堂| 精品久久久精品久久久| 波野结衣二区三区在线| 高清不卡的av网站| 中文资源天堂在线| 一级毛片电影观看| 下体分泌物呈黄色| 97精品久久久久久久久久精品| 亚洲国产精品999| 久久久国产一区二区| 联通29元200g的流量卡| 99热国产这里只有精品6| 欧美丝袜亚洲另类| 国产永久视频网站| 在现免费观看毛片| 99视频精品全部免费 在线| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 色视频在线一区二区三区| 99久久精品一区二区三区| 久久婷婷青草| 日韩av在线免费看完整版不卡| 五月天丁香电影| 中文字幕av成人在线电影| 建设人人有责人人尽责人人享有的 | www.av在线官网国产| 免费观看av网站的网址| 久久人人爽人人爽人人片va| 精品久久久久久久久av| 最近最新中文字幕大全电影3| 欧美日韩视频精品一区| 一本色道久久久久久精品综合| 久久久久久久久久久丰满| 久久久久久久久大av| 在线观看人妻少妇| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久影院| 欧美97在线视频| 一区二区av电影网| 亚洲怡红院男人天堂| 亚洲精品成人av观看孕妇| 国产精品成人在线| 成年av动漫网址| 99热网站在线观看| 久久久a久久爽久久v久久| 亚洲av福利一区| 国产淫语在线视频| 多毛熟女@视频| 性色avwww在线观看| 又爽又黄a免费视频| 日日撸夜夜添| 国产色婷婷99| 久久ye,这里只有精品| 色5月婷婷丁香| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 久久久久久九九精品二区国产| 亚洲精品成人av观看孕妇| 欧美日韩在线观看h| 91精品国产九色| 七月丁香在线播放| 秋霞伦理黄片| 日本爱情动作片www.在线观看| 成人亚洲欧美一区二区av| av国产精品久久久久影院| 国产在线免费精品| 六月丁香七月| 日韩国内少妇激情av| 亚洲成色77777| 亚洲,一卡二卡三卡| 在线精品无人区一区二区三 | 国产深夜福利视频在线观看| 一级毛片 在线播放| 青春草视频在线免费观看| 多毛熟女@视频| 精品少妇黑人巨大在线播放| 欧美zozozo另类| 国产熟女欧美一区二区| 丝袜脚勾引网站| 国产免费一级a男人的天堂| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩无卡精品| 香蕉精品网在线| av免费在线看不卡| 亚洲av中文字字幕乱码综合| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 亚洲av免费高清在线观看| 22中文网久久字幕| 久久精品国产亚洲网站| 一区在线观看完整版| 成年av动漫网址| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 最黄视频免费看| av线在线观看网站| 777米奇影视久久|