• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon

    2018-08-30 12:49:02YINTengJIANGBingyanSUZheanFANZheqiongHUANGQizhong
    新型炭材料 2018年4期

    YIN Teng, JIANG Bing-yan, SU Zhe-an, FAN Zhe-qiong, HUANG Qi-zhong

    (1. State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha400083, China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha400083, China)

    Abstract: A 2D numerical model was established for simulating the chemical vapor deposition (CVD) of carbon in a vertical reactor. A full multi-component diffusion model was proposed to describe the diffusion of the gas species. The effects of Ar, N2 or H2 carrier gases on the flow field, species concentration and deposition rate of pyrocarbon were investigated using C3H6 as the carbon source. Results show that H2 improves the stability of the gas flow. The concentration distributions of CH4, C2H2, C2H4 and C6H6 are uniform in H2. The pyrocarbon deposition rate is lowered, but the uniformity of deposition is improved when H2 is used as the carrier gas compared with N2 or Ar. The simulation results agree well with the experimental ones.

    Key words: Chemical vapor deposition; Diffusion; Simulation; Carrier gas

    1 Introduction

    Chemical vapor deposition (CVD) is an advanced technology which can be used to prepare pyrocarbon, nanofibers, carbon nanotubes and graphene[1-4]. CVD offers a lot of unique advantages such as versatility, reproducibility and cost effectiveness. CVD is a combined physical and chemical process that includes gas flow and chemical reactions. So the chemical and physical process should be considered at the same time to describe the CVD. However, the process is much difficult to study by trial and error methods because of the complexity of the interaction between the diffusion of the gaseous species and the deposition reactions of products. Numerical simulation is a promising tool for a deep understanding of the CVD. A number of woks on modeling CVD have been reported until now[5-7]. Hejun Li[8]used the parallel-consecutive model and the bimodal pore model to simulate the diffusion of reactants in the pores with different sizes. Pratyush[9]simulated the CVI in a vertical reactor. In his work, the Fick diffusion model was used to describe the diffusion. Zhang[10]used the Fick and Knudsen diffusion model to simulate the effects of methane partial pressure on the deposition rate of the reactants. Some published works have showed that the carrier gas plays an important role in the CVD. When H2was used as a carrier gas, the deposition reaction was inhibited by blocking most active sites to prevent an uncontrolled deposition of pyrocarbon[11].Li[12]simulated the H2inhibiting mechanism on the CVD. However, most of their works dealt with the chemical process and the chemical mechanism of the carrier gas. The effect of the carrier gas on the flow and diffusion of reactants was neglected by many researchers.

    In the present work, a multi-component diffusion model is proposed to simulate transport phenomena of gas species. The effects of the carrier gas on transport phenomena of the reactants and intermediate products are studied. The deposition rate and uniformity are also calculated and analyzed. The simulation results were validated by corresponding experiments. This work will provide useful insights into CVD mechanism for further computational research.

    2 Modelling

    2.1 Physical model

    Fig. 1 (a) shows the configuration of the CVD reactor. The CVD reactor is vertically mounted with an inlet at the bottom and an outlet at the top. The reactor consists of a cylindrical section (L1= 280 mm,D1=60 mm) which is covered by a piece of graphite paper on the inner side of the wall, and a conic

    Fig. 1 Schematic drawing of the vertical CVD reactor:(a)physical dimensions and (b) 2D axisymmetric model.

    section (L2=30 mm,D2=10 mm) which is at the bottom of the cylindrical section. Only half of the fluid zone is simulated due to its axial symmetry. In this study, propylene as the precursor, and hydrogen, nitrogen or argon as carrier gas are pumped into the CVD reactor. The deposition of pyrocarbon occurs on the surface of the graphite paper.

    2.2 Assumptions and governing equations

    The incompressible ideal gas law is used to describe the densities of gases. The laminar flow is assumed in this work. Heat generation by chemical reactions is neglected. All the reactions are regarded as irreversible first-order reactions. According to the assumptions mentioned above, mass conservation, momentum conservation, energy conservation, and species conservation equations are used[13].

    The formulation of mass conservation is given as:

    ▽·(ρu)=0

    (1)

    whereρis the density anduis the velocity of the fluid.

    The momentum equation is solved using the Navier-Stokes equation:

    ▽·ρuu+▽P+▽·τ=0

    (2)

    wherePis the pressure andτrepresents the shear stress.

    The energy conservation equation is applied for the fluid domain:

    CP▽·(ρuT)-▽·(λ▽T)=0

    (3)

    whereCPis the specific heat capacity of the gas mixture (J/kg/K);Tis the temperature (K),λis heat conductivity (W/mK).

    The species transport equation incorporating the chemical reactions is used as follows:

    (4)

    (5)

    D=[Dij]

    (6)

    whereNis the number of chemical species andYjis the mass fraction of speciesj. Because the mass fraction of the propylene is too large to be considered as dilute, the full multi-component diffusion model is used to solve the diffusion problem. In order to describe the multi-component diffusion, the [Dij] use a (N-1)×(N-1)matrix of the coefficients,Dijwhich can be defined by the equation[11]:

    (7)

    whereMiandMjare the molecular weight of speciesiandj, respectively (g/mol),Pabsis the absolute pressure (Pa),Ωis the diffusion collision integral andσijis the collision diameter.

    2.3 Kinetic mechanism

    The CVD reaction include homogeneous gas-phase reactions and heterogeneous reactions. The homogeneous reaction model, which consists of 19 species in 27 reactions, was used in this study[8]. The heterogeneous reactions model employ the deposition mechanism from Becker′s[1]research. Methane, acetylene, ethylene and benzene are the main deposition source in heterogeneous reactions. The temperature dependence of reaction rate is described by the well-known Arrhenius equation[14]:

    (8)

    wherekis the specific reaction rate,Tis the absolute temperature,Ris the ideal gas constant,Ais the pre-exponential factor andEis the activation energy. The pre-exponential factor and the activation energy used in this work is listed in Table 1[1].

    Table 1 Original surface reaction kinetic data of various species.

    2.4 Simulation conditions and the numerical method

    The following boundary conditions are imposed. The inner and outer walls of the reactor are adiabatic. The no-slip condition is imposed at the walls. The surface reactions are carried out on the vertical wall where the temperature isTw=1 173 K.

    In this simulation, The carrier gas is hydrogen, nitrogen or argon. The gas mixture, with a volume ratio of C3H6to carrier gas of 1∶10, enters the reactor with a velocityUin=0.1 m/s.

    Fluent uses the finite volume methods to discretize the governing equations (Eq.1, Eq.2,Eq.3,Eq.4,Eq.8) that are then solved with a segregated solver. SIMPLE algorithm is used to and the first order upwind scheme is applied for the governing equations. A convergence criterion of 1×10-6is used to the residuals of continuity, momentum, energy and species balance equations. The computational mesh number in this work is 18 780, which are created by Gambit with quadrilateral elements.

    3 Results and discussion

    3.1 Validation of simulation model

    An experiment is carried out to validate the simulation model. The size of the experiment reactor is the same as the simulation model. The wall is heated at

    Fig. 2 The simulation and experiment results of the temperature in the reactor: (a) temperature contour of the reactor, (b) the simulation and experiment results for the temperature at X=20 mm and (c) the simulation and experiment results for the temperature at Y=140 mm.

    1 170 K. The temperature distribution inside the reactor is measured by thermocouples at different parts in the reactor. Fig.2(a) shows the simulated contour of the temperature in the reactor. The temperature near the wall is higher than that in the center part of the reactor. Because the wall is used for heating element. The gas near the wall is heated by the heating element. So the temperature of the gas near the wall is high. The gas in the center part is heated through heat convection transfer. The gas at room temperature flows continuously through the reactor from the inlet to outlet. So the reactor is continuously cooled down in the center part. As a result, the temperature in the center part is lower than that near the wall. The dash lines in Fig.2(a) (X=20 mm and Y=140 mm) represents the positions used for extraction of the calculated and measured temperatures. Fig.2(b) shows the simulation and experiment results for the line of X=20 mm.The temperatures increase and then decrease from bottom to top for both simulation and experiment results. The maximum and minimum temperatures appears at the similar position. The average temperature is around 1 140 K for the calculated and measured results. The maximum difference of the temperature between the simulation and the experiment is less than 10 K. Fig.2(c) shows the simulation and experiment results for the line of Y=140 mm. The temperature increase from center to the wall in both results. The maximum difference of

    the temperature between the simulation and the experiment is less than 12 K.Therefore, it is reasonable to conclude that the simulation model is reliable.

    3.2 Effect of carrier gas on the gas flow field

    Fig.3 shows the flow field contours in the CVD reactor with the velocity colored in proportion to their magnitude (m/s) for clear visualization. As the figure shows, the velocity is maximum at the inlet and decreases as the gas approaches to the wall in all cases. Fig.3(a) shows that the flow field is steady when H2is used. As observed from the Fig.3(b) and (c), there is a circular region existing between the inlet and the wall. No such region is observed for the H2case. The velocity value of the flow is negative (visible in blue: -0.04~0 m/s). It means that the direction of the velocity is changed. As a result, the stability of the flow field is decreased when N2or Ar is used.

    Fig. 3 Gas flow field in the reactor when the carrier gas is (a) H2, (b) N2 and (c) Ar.

    Fig. 4 Velocity vector contour when the carrier gas is (a) H2, (b) N2 and (c) Ar.

    In order to investigate the circulation part of the flow, a 30×30 mm2region is extracted and the velocity vectors are shown in Fig.4. Fig.4(a) shows the velocity-vectors in the H2case. Most of the flow is a steady flow. In a small region (x=20-30 mm,y=0-15 mm) near the inlet, the direction of the flow is changed and some turbulence emerges. Fig.4(b) and Fig.4(c) shows the velocity-vectors in the N2and Ar cases, respectively. The velocity vectors are similar in both cases. The vector contours show two part of gas flow with different directions. The turbulence region in the N2and Ar cases is much bigger than that in the H2case. Compared with the three cases, it can be concluded that the stability of the flow field can be improved by using H2as a carrier gas.

    The stability of the flow can be described by the Reynolds number[15]. Equation 9 shows the Reynolds number:

    (9)

    whereρis the density of the gas (kg/m3),vis the velocity (m/s),Dis the reactor diameter (m),ηis the dynamic viscosity(Pa·s) andγis the kinematic viscosity (mm2/s). With the value ofReincrease, the turbulence of the fluid increases and the stability of the fluid field decreases.

    Table 2 shows the kinematic viscosity of H2, N2and Ar[16, 17]. The kinematic viscosity of the gas mixture increases in the order of Ar, N2, H2. As the kinematic viscosity of the gas mixture increases, theReof the fluid decrease. As a result, the stability of the flow field can be enhanced.

    Table 2 The kinematic viscosity of the carrier gases.

    3.3 Effect of carrier gas on concentration distributions of species

    Since CH4, C2H2,C2H4and C6H6are the main byproducts and deposition sources, it is important to examine changes of concentration distributions of these species along the wall substrate. Fig.5 shows the molar concentrations of major chemical components found at the substrate along the wall in H2, N2

    and Ar. The molar concentrations of CH4(a), C2H2(b), C2H4(c) and C6H6(d) are plotted as a function of the axial distance from the inlet.

    The molar concentrations of CH4, C2H2, C2H4and C6H6in the H2case are much lower than those in the cases of N2and Ar. The molar concentrations of the byproducts in the Ar case is highest among the three cases. In order to investigate the uniformity of the species, the concentration variance (S2) is used, which is defined as:

    (10)

    ByproductsConcentration variance (mol/m3)2H2N2ArCH41.810.011.1C2H21.06.37.5C2H41.47.79.2C6H61.620.723.9

    3.4 Effect of the carrier gas on deposition process

    Fig.6 shows the simulation results of deposited pyrocarbon distribution in the H2, N2or Ar cases.From the picture, the average deposition rate of the pyrocarbon in H2is much lower than in N2or Ar. Along the height of the wall, the deposition rate increases along the axial distance from the inlet below the height of 200 mm. After then, the deposition rate decreases along the wall because of the consumption of the carbon source and byproducts. However, the deposition rate in H2is much uniform than in Ar or N2.

    Fig. 6 The deposition rate along the substrate wall with different carrier gases.

    4 Deposition experiment

    4.1 Experimental details

    According to the simulation results, deposition experiments are carried out under the similar conditions to the simulation experiments. A vertical reactor is mounted with the gas inlet in the bottom and the outlet on the top. Graphite paper is employed as the substrate in the deposition experiments. C3H6is used as the carbon source, and H2, N2or Ar is used the carrier gas. The detailed experiment parameters are listed in Table 4.

    Table 4 The CVD experimental conditions.

    4.2 Experimental results

    In the experiment, the deposition rates can be measured by the thickness of the pyrocarbon on the graphite paper. Fig.7 shows the deposition rate at different heights of the substrate. According to Fig.7, the deposition rate in the carrier gas of H2is much lower than that in the N2and Ar cases. When N2or Ar is used as the carrier gas, the deposition rate increases along the height of the substrate below the height of 180 mm or decreases along the substrate above the height of 180 mm, respectively. The deposition rate is relatively more uniform when H2is used as the carrier gas, which agrees well with the simulation results.

    Fig. 7 Deposition rate with different carrier gases as a function of substrate height.

    Fig.8 presents surface morphology of the deposition carbon in different carrier gases. The deposition carbon presents a spherical cap morphology. The average diameters of the cap are 50, 80 and 80 μm when H2, N2and Ar are used as the carbon sources, respectively. Apparently, the diameters of the cap in N2(Fig.8 (b)) and Ar case (Fig.8 (c)) are much larger than that in H2(Fig.8 (a)), which implies that the reaction is much fast when N2or Ar is used as the carrier gas. However, Fig.8(a) shows a smooth and uniform morphology, which implies that H2helps to improve the uniformity of the pyrocarbon deposition.

    Fig. 8 SEM surface images of pyrocarbon prepared with different carrier gases: (a) H2, (b) N2 and (c) Ar.

    5 Conclusions

    This paper has employed a full multi-component diffusion model to simulate the CVD. The effects of H2, N2and Aron as the carrier on gas flow, species concentration and deposition rate have been investigated. As shown in the results,H2can improve the stability of the flow field. The reactant component distribution is much more uniform in H2than that in N2or Ar. Although the deposition rate is lower in H2compared with in N2or Ar, the deposition uniformity is much improved when H2is used. Under the existing operating conditions, the simulation results of this study have good agreement with the experimental ones.

    高清在线视频一区二区三区| 男女国产视频网站| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| www.熟女人妻精品国产| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产专区5o| 精品国产超薄肉色丝袜足j| 精品99又大又爽又粗少妇毛片| 久久av网站| 色94色欧美一区二区| 天天操日日干夜夜撸| 又大又黄又爽视频免费| 一本色道久久久久久精品综合| 欧美少妇被猛烈插入视频| 日韩三级伦理在线观看| 欧美日韩国产mv在线观看视频| 最近2019中文字幕mv第一页| 香蕉精品网在线| 18+在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区黑人 | 亚洲色图综合在线观看| 日韩欧美精品免费久久| 蜜桃国产av成人99| 波多野结衣av一区二区av| 日本欧美视频一区| 久久女婷五月综合色啪小说| 美女主播在线视频| 国产成人精品久久二区二区91 | 91午夜精品亚洲一区二区三区| 免费观看a级毛片全部| 久久ye,这里只有精品| 大片免费播放器 马上看| 9热在线视频观看99| 男女午夜视频在线观看| 伦精品一区二区三区| 亚洲欧美精品自产自拍| 一本—道久久a久久精品蜜桃钙片| 伦理电影免费视频| 咕卡用的链子| 涩涩av久久男人的天堂| 午夜福利,免费看| 在线天堂最新版资源| 国产精品秋霞免费鲁丝片| 2018国产大陆天天弄谢| 一本色道久久久久久精品综合| 国产视频首页在线观看| 亚洲色图综合在线观看| 免费观看性生交大片5| av在线播放精品| 如何舔出高潮| 国产伦理片在线播放av一区| 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 性色av一级| 国产 精品1| 五月伊人婷婷丁香| 国产极品天堂在线| 国产高清不卡午夜福利| 2022亚洲国产成人精品| 十分钟在线观看高清视频www| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 久热这里只有精品99| 性高湖久久久久久久久免费观看| 少妇被粗大猛烈的视频| 大片电影免费在线观看免费| 我要看黄色一级片免费的| 久热久热在线精品观看| 大香蕉久久网| 婷婷色麻豆天堂久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 激情视频va一区二区三区| 国产精品久久久av美女十八| av.在线天堂| 国产熟女午夜一区二区三区| 制服人妻中文乱码| 性色av一级| 国产淫语在线视频| 波野结衣二区三区在线| 国产麻豆69| 国产综合精华液| 国产片特级美女逼逼视频| 999精品在线视频| 一区二区日韩欧美中文字幕| 在线看a的网站| 只有这里有精品99| 看免费av毛片| 亚洲欧美精品综合一区二区三区 | 18在线观看网站| 久久久久视频综合| av在线播放精品| 黑人巨大精品欧美一区二区蜜桃| 高清在线视频一区二区三区| 久久热在线av| 成人亚洲欧美一区二区av| 色94色欧美一区二区| 黄片小视频在线播放| 久久99蜜桃精品久久| 中文精品一卡2卡3卡4更新| 黑人欧美特级aaaaaa片| 男女边吃奶边做爰视频| 国产成人av激情在线播放| 大片免费播放器 马上看| 国产激情久久老熟女| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 精品久久久精品久久久| 美女国产高潮福利片在线看| 啦啦啦视频在线资源免费观看| 国产片内射在线| 97在线视频观看| 观看av在线不卡| 街头女战士在线观看网站| videosex国产| 亚洲精品一二三| 精品第一国产精品| 人人妻人人澡人人看| 免费观看a级毛片全部| 人妻一区二区av| 免费黄频网站在线观看国产| 精品亚洲乱码少妇综合久久| 国产日韩欧美视频二区| 少妇熟女欧美另类| 在线 av 中文字幕| 一区二区三区乱码不卡18| 王馨瑶露胸无遮挡在线观看| 亚洲精品日本国产第一区| 好男人视频免费观看在线| 亚洲国产精品成人久久小说| 国产一级毛片在线| 久久青草综合色| 激情视频va一区二区三区| 又粗又硬又长又爽又黄的视频| av片东京热男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区久久| av免费在线看不卡| 国产一区二区在线观看av| 777米奇影视久久| av一本久久久久| 亚洲欧美精品综合一区二区三区 | 青春草亚洲视频在线观看| 国产视频首页在线观看| 午夜久久久在线观看| 国产成人91sexporn| 青草久久国产| 亚洲av日韩在线播放| 国产爽快片一区二区三区| tube8黄色片| 成年动漫av网址| 中文字幕人妻丝袜一区二区 | 在线观看www视频免费| 在线观看免费视频网站a站| 90打野战视频偷拍视频| 精品福利永久在线观看| 成人毛片60女人毛片免费| 一级,二级,三级黄色视频| 日韩人妻精品一区2区三区| 永久免费av网站大全| 99香蕉大伊视频| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 高清不卡的av网站| av卡一久久| 99久久综合免费| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 日韩一区二区三区影片| 国产黄色视频一区二区在线观看| 国产精品免费视频内射| 亚洲精品日本国产第一区| 蜜桃国产av成人99| 国产xxxxx性猛交| 精品人妻在线不人妻| 国产欧美亚洲国产| 男女免费视频国产| 观看av在线不卡| 久久精品久久久久久噜噜老黄| av又黄又爽大尺度在线免费看| 波多野结衣av一区二区av| 日日啪夜夜爽| 人妻 亚洲 视频| 日韩欧美一区视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品999| 尾随美女入室| 久久久a久久爽久久v久久| 久久国内精品自在自线图片| av在线播放精品| 美女大奶头黄色视频| kizo精华| 久久久久久久国产电影| 高清不卡的av网站| 黄色怎么调成土黄色| 久久影院123| 日韩制服骚丝袜av| 91aial.com中文字幕在线观看| 国产不卡av网站在线观看| 国产精品嫩草影院av在线观看| 国精品久久久久久国模美| 一区二区三区四区激情视频| 精品少妇久久久久久888优播| av国产久精品久网站免费入址| www.熟女人妻精品国产| 午夜激情久久久久久久| av片东京热男人的天堂| 极品人妻少妇av视频| 免费观看a级毛片全部| www.av在线官网国产| 国产探花极品一区二区| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 亚洲中文av在线| 999久久久国产精品视频| 丝瓜视频免费看黄片| 两个人免费观看高清视频| 免费看不卡的av| 国产探花极品一区二区| 国产成人精品在线电影| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆| 老鸭窝网址在线观看| 69精品国产乱码久久久| 亚洲av成人精品一二三区| 热99国产精品久久久久久7| 亚洲精品国产一区二区精华液| 日产精品乱码卡一卡2卡三| 伊人亚洲综合成人网| 国产福利在线免费观看视频| 欧美bdsm另类| 少妇的丰满在线观看| 啦啦啦在线免费观看视频4| 日韩一区二区三区影片| 国产免费又黄又爽又色| 免费大片黄手机在线观看| 久久久久久久久久久久大奶| 久久精品亚洲av国产电影网| 国产国语露脸激情在线看| 午夜激情久久久久久久| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 麻豆精品久久久久久蜜桃| 国产老妇伦熟女老妇高清| 久久久久精品性色| 亚洲,一卡二卡三卡| 美女高潮到喷水免费观看| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费视频网站a站| 国产又色又爽无遮挡免| 日韩一区二区视频免费看| 日韩电影二区| 国产深夜福利视频在线观看| h视频一区二区三区| 精品国产露脸久久av麻豆| 久久精品国产亚洲av高清一级| 午夜福利在线免费观看网站| 交换朋友夫妻互换小说| 日韩不卡一区二区三区视频在线| 国产亚洲欧美精品永久| 国产片内射在线| 国产日韩一区二区三区精品不卡| 黑人欧美特级aaaaaa片| 亚洲综合色网址| 在线天堂中文资源库| 国产在线免费精品| 91国产中文字幕| 爱豆传媒免费全集在线观看| 国产亚洲午夜精品一区二区久久| 精品少妇内射三级| 婷婷色av中文字幕| 90打野战视频偷拍视频| 午夜日本视频在线| 美女大奶头黄色视频| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 999精品在线视频| 国产成人精品在线电影| 欧美精品人与动牲交sv欧美| 亚洲国产av新网站| 90打野战视频偷拍视频| 亚洲一区二区三区欧美精品| 亚洲成国产人片在线观看| 久久久精品94久久精品| 国产精品熟女久久久久浪| 午夜福利视频在线观看免费| 欧美日本中文国产一区发布| 国产毛片在线视频| 国产黄色免费在线视频| 国产成人免费无遮挡视频| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 免费人妻精品一区二区三区视频| 日韩中文字幕视频在线看片| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 久久婷婷青草| 欧美日韩一区二区视频在线观看视频在线| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 精品久久蜜臀av无| 在线观看美女被高潮喷水网站| 在线 av 中文字幕| 美女中出高潮动态图| 亚洲在久久综合| 久久99精品国语久久久| 2018国产大陆天天弄谢| 欧美人与性动交α欧美软件| 如何舔出高潮| 日韩精品免费视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 777米奇影视久久| 我要看黄色一级片免费的| 秋霞在线观看毛片| 熟妇人妻不卡中文字幕| 国产xxxxx性猛交| 亚洲av欧美aⅴ国产| 国产 一区精品| 亚洲,欧美,日韩| 日韩精品免费视频一区二区三区| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区激情| 日韩熟女老妇一区二区性免费视频| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| xxx大片免费视频| www日本在线高清视频| 韩国精品一区二区三区| 美女高潮到喷水免费观看| 亚洲国产欧美在线一区| 侵犯人妻中文字幕一二三四区| 巨乳人妻的诱惑在线观看| 纵有疾风起免费观看全集完整版| 少妇的丰满在线观看| 日本欧美国产在线视频| 国产精品久久久av美女十八| 你懂的网址亚洲精品在线观看| 久久久久久久久久久久大奶| 国产黄频视频在线观看| 国产欧美日韩综合在线一区二区| 在线观看美女被高潮喷水网站| 人妻少妇偷人精品九色| 欧美成人精品欧美一级黄| 久久国产精品男人的天堂亚洲| 你懂的网址亚洲精品在线观看| 亚洲伊人久久精品综合| 免费女性裸体啪啪无遮挡网站| 久久久欧美国产精品| 久久久久久久久久久久大奶| 观看av在线不卡| 啦啦啦视频在线资源免费观看| 中文字幕精品免费在线观看视频| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 亚洲美女视频黄频| 成年人午夜在线观看视频| 亚洲精华国产精华液的使用体验| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 国产日韩欧美视频二区| 国产亚洲精品第一综合不卡| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 女人精品久久久久毛片| 丰满迷人的少妇在线观看| 亚洲色图综合在线观看| 丝袜在线中文字幕| 国产在线免费精品| 亚洲美女视频黄频| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 中文字幕精品免费在线观看视频| 国产精品久久久久久av不卡| 久久久精品免费免费高清| 一级爰片在线观看| 免费少妇av软件| av在线app专区| 亚洲中文av在线| av网站免费在线观看视频| 五月伊人婷婷丁香| 老汉色∧v一级毛片| 国产一级毛片在线| 精品一品国产午夜福利视频| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕| 亚洲av福利一区| 夜夜骑夜夜射夜夜干| 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 久久婷婷青草| 少妇精品久久久久久久| av国产久精品久网站免费入址| 亚洲精品国产av成人精品| 蜜桃国产av成人99| 午夜福利视频在线观看免费| 免费观看av网站的网址| av天堂久久9| 久久久久久人妻| 老司机影院毛片| 有码 亚洲区| 如何舔出高潮| 亚洲经典国产精华液单| 久久久久久久久免费视频了| 1024香蕉在线观看| 午夜激情久久久久久久| 男人舔女人的私密视频| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 免费看不卡的av| 色婷婷av一区二区三区视频| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 亚洲美女黄色视频免费看| 国产日韩欧美视频二区| 国产精品 国内视频| 亚洲四区av| 黄色一级大片看看| 欧美中文综合在线视频| 国产乱人偷精品视频| 国产在线一区二区三区精| 一本大道久久a久久精品| 女人被躁到高潮嗷嗷叫费观| 国产高清不卡午夜福利| 国精品久久久久久国模美| 少妇精品久久久久久久| 这个男人来自地球电影免费观看 | 亚洲一码二码三码区别大吗| 国产精品人妻久久久影院| 妹子高潮喷水视频| 国产一区二区激情短视频 | 欧美中文综合在线视频| 国产 精品1| 久久久欧美国产精品| 老鸭窝网址在线观看| 97在线视频观看| 国产亚洲一区二区精品| 尾随美女入室| 少妇人妻 视频| 国产老妇伦熟女老妇高清| kizo精华| 69精品国产乱码久久久| 最近手机中文字幕大全| 一区福利在线观看| 欧美精品人与动牲交sv欧美| 在线看a的网站| 国产av一区二区精品久久| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 国产av码专区亚洲av| 少妇人妻 视频| 亚洲国产欧美网| 青春草视频在线免费观看| 波野结衣二区三区在线| 国产精品av久久久久免费| 精品一区二区三区四区五区乱码 | 看非洲黑人一级黄片| 黑人欧美特级aaaaaa片| 好男人视频免费观看在线| 韩国精品一区二区三区| av.在线天堂| 亚洲欧洲日产国产| 国产黄色视频一区二区在线观看| 久久精品aⅴ一区二区三区四区 | 高清不卡的av网站| 亚洲国产最新在线播放| 久久久a久久爽久久v久久| 美女大奶头黄色视频| 中文字幕色久视频| 欧美日韩av久久| 伦理电影大哥的女人| av一本久久久久| 久久精品国产亚洲av天美| 成人国产麻豆网| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 免费av中文字幕在线| 精品亚洲乱码少妇综合久久| 2022亚洲国产成人精品| 啦啦啦在线免费观看视频4| 国产淫语在线视频| 中文字幕人妻熟女乱码| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| av免费在线看不卡| 国产精品免费视频内射| 男女无遮挡免费网站观看| 精品福利永久在线观看| 黄片播放在线免费| 亚洲图色成人| 日韩一本色道免费dvd| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 亚洲综合色惰| 免费黄色在线免费观看| 久久久久国产精品人妻一区二区| 伊人久久国产一区二区| 满18在线观看网站| 国产亚洲最大av| 国产野战对白在线观看| 麻豆av在线久日| 美女福利国产在线| 国产一区有黄有色的免费视频| 欧美人与性动交α欧美精品济南到 | 久热久热在线精品观看| 国产伦理片在线播放av一区| 999精品在线视频| www.av在线官网国产| 2018国产大陆天天弄谢| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 亚洲色图综合在线观看| 国产淫语在线视频| 亚洲图色成人| 99re6热这里在线精品视频| 国产97色在线日韩免费| 国产精品久久久久久久久免| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6| 亚洲国产毛片av蜜桃av| 免费人妻精品一区二区三区视频| 水蜜桃什么品种好| 丝袜美腿诱惑在线| 国产综合精华液| 久久毛片免费看一区二区三区| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 国产毛片在线视频| 可以免费在线观看a视频的电影网站 | 精品一区二区三卡| 日本wwww免费看| 亚洲欧美精品综合一区二区三区 | 亚洲伊人色综图| 国产女主播在线喷水免费视频网站| 国产激情久久老熟女| 国产亚洲av片在线观看秒播厂| 亚洲精品aⅴ在线观看| 激情五月婷婷亚洲| 秋霞在线观看毛片| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 熟妇人妻不卡中文字幕| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 毛片一级片免费看久久久久| 高清视频免费观看一区二区| 黄片播放在线免费| 在线精品无人区一区二区三| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 久久久久精品性色| 美女高潮到喷水免费观看| 9热在线视频观看99| 亚洲激情五月婷婷啪啪| 男人舔女人的私密视频| 男女边吃奶边做爰视频| 国产精品一区二区在线观看99| 国产黄色视频一区二区在线观看| 观看av在线不卡| 成年女人在线观看亚洲视频| 亚洲精品久久午夜乱码| 永久免费av网站大全| 黄色 视频免费看| 国产一区亚洲一区在线观看| 捣出白浆h1v1| 国产精品熟女久久久久浪| 久久精品国产自在天天线| 青春草视频在线免费观看| 国产成人a∨麻豆精品| 电影成人av| 亚洲国产欧美日韩在线播放| 午夜激情久久久久久久| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 亚洲欧洲国产日韩| 久久久欧美国产精品| 国产成人a∨麻豆精品| 久久99精品国语久久久| 午夜影院在线不卡| 国产成人免费无遮挡视频| 日韩人妻精品一区2区三区| 三上悠亚av全集在线观看| 黑人猛操日本美女一级片| 丝袜美腿诱惑在线| 国产无遮挡羞羞视频在线观看| 国产一区亚洲一区在线观看| 美女高潮到喷水免费观看| 一级a爱视频在线免费观看| 中国三级夫妇交换| 精品少妇黑人巨大在线播放| 男人爽女人下面视频在线观看| 久久精品久久久久久噜噜老黄| 免费看不卡的av|