黃豪中,張新赟,賈超杰,史 程,滕文文
?
噴油壓力噴孔直徑及燃油屬性對混合柴油噴霧特性的影響
黃豪中,張新赟,賈超杰,史 程,滕文文
(廣西大學機械工程學院,南寧 530004)
為了研究松油-柴油-PODE3-4混合燃料的噴霧特性,該文利用高壓共軌噴油試驗臺結合高速攝影技術拍攝了不同工況下松油-柴油-PODE3-4混合試驗燃料的噴霧發(fā)展圖像,分析了燃油屬性、噴油壓力、噴孔直徑對混合柴油噴霧特性的影響。結果表明:隨著噴油壓力的增加,試驗燃料的噴霧錐角變大,噴油壓力從100到160 MPa,每增加20 MPa噴霧錐角平均增加1°左右,噴霧前鋒貫穿距離也有一定程度的增長,隨著噴油壓力從100增加到160 MPa,最大噴霧前鋒貫穿距離增加13%左右;隨著噴孔直徑的增大,噴霧錐角和噴霧前鋒貫穿距離都呈現增大的趨勢,噴孔直徑從0.10增加到0.18 mm,噴霧錐角增加了3°左右,噴霧前鋒最大貫穿距離增加28%左右;在純柴油的基礎上摻混松油和PODE3-4后的混合燃料,其噴霧錐角、貫穿距離和油束面積相對于純柴油都有增長的趨勢,說明在純柴油的基礎上摻混一定比例松油和PODE3-4有助于改善燃料的霧化效果。試驗研究結果可以為松油和PODE3-4成為柴油機替代燃料提供參考。
柴油機;噴霧;燃油噴射;松油;聚甲氧基二甲醚;噴油壓力;噴孔直徑
內燃機作為日常生活主要的動力來源之一,提高其經濟性和降低排放是目前面臨的主要問題,尤其是在全球環(huán)境污染的情況下,除了改進發(fā)動機自身結構外,尋找一種經濟性好和排放污染少的新燃料去替代傳統(tǒng)燃油也是解決上述問題的有效途徑之一[1-3]。
松油具有較好的理化特性,其含氧量較高,黏度低,密度大,且能與柴油任意比混合,因此可以考慮作為新型替代燃料的一種。松油來源廣泛,制取途徑方便,將松脂高溫蒸餾出松節(jié)油,再進行水和反應即可得到松油[4-6]。目前,人們對松油/柴油混合燃料的燃燒排放問題研究仍然較少。Vallinayagam等[5-8]研究了柴油摻混不同比例的松油對其燃燒與排放特性的影響,本課題組在一臺四缸渦輪增壓柴油機上研究了柴油和松油混合燃料在不同負荷下的燃燒和排放特性[9-10],結果表明,混合燃料的有效燃油消耗率和最大壓力升高率比純柴油大,中高負荷時CO及THC的排放相對于純柴油得到較好改善,柴油摻混50%的松油在全負荷下可接近純柴油的動力性;并且也對柴油和松油混合燃料的噴霧特性做了研究[11],發(fā)現在純柴油中摻混一定比例的松油會改善純柴油的霧化效果。但是松油的十六烷值低,可燃性不好,影響燃燒效率的提升,且NOx排放增加,因此需要添加一種高十六烷值的燃料解決上述問題。
聚甲氧基二甲醚(PODEn)具有較高的十六烷值(63以上),能與柴油以任意比例互溶,并且具有較好的可燃性和較高的揮發(fā)性,另外,制取PODE的方法較多[12-14],其中包括以甲醇和甲醛為原料合成,提升了煤的清潔高效利用。近幾年國外學者對柴油與PODEn混合燃料在柴油機上的燃燒性能開展研究[15-17]。國內的清華大學、天津大學以及上海交通大學等[18-20]也研究了柴油與PODEn混合燃料對柴油機燃燒與排放性能的影響,結果表明在柴油中摻混一定比例的PODEn后,Soot、PM、CO和HC排放都顯著下降,而且提高了發(fā)動機的燃燒效率和熱效率。劉浩業(yè)等[21]在汽油-柴油混合燃料中加入PODE3-4,結果發(fā)現三組分混合燃料的燃燒效率和有效熱效率均高于汽油-柴油混合燃料,并且Soot排放進一步降低。因此添加具有高十六烷值的含氧燃料PODE3-4可以解決由于松油十六烷值低而帶來的可燃性低和燃燒效率低的問題,并且可以進一步降低碳煙。由于燃料的霧化和破碎程度是發(fā)動機燃燒排放特性的重要影響因素之一[22-24],因此有必要對柴油-松油-PODE3-43種組分混合燃料的噴霧特性進行研究,而且目前還未有過這3種組分混合燃料的相關研究,本文通過高速相機拍攝柴油-松油-PODE3-4混合燃料在定容彈內的噴霧發(fā)展過程圖片,分析混合燃料的噴霧特性,為3種組分混合燃料對發(fā)動機燃燒排放性能的影響提供依據。
試驗所用基礎燃料為0#普通柴油,記為p0。在p0的基礎上摻混20%的松油,記為p20。在p20的基礎上摻混10%、20%的PODE3-4,分別記為pd10、pd20。表1為柴油、松油和PODE3-4的部分理化特性參數。
表1 試驗燃料的理化特性
圖1為模擬發(fā)動機壓縮上止點處工況的定容彈系統(tǒng)試驗示意圖,由定容彈、燃油噴射系統(tǒng)、進排氣系統(tǒng),圖像采集系統(tǒng)組成。用石英玻璃做成3個可視窗安裝在定容彈的前端和左右兩側;進氣孔和排氣孔設置在定容彈的后端面,實現進排氣和掃氣,通過進氣孔向定容彈內腔充入氮氣直至達到試驗所需環(huán)境背壓;定容彈頂部裝有加熱棒、壓力傳感器和溫度傳感器。加熱棒下端延伸到定容彈內腔中用于升高試驗環(huán)境溫度,定容彈內部的壓力用壓力傳感器來檢測,定容彈內部的溫度用溫度傳感器來檢測。高速相機在定容彈的一側視窗拍攝噴霧發(fā)展過程的圖片,另外兩側視窗用鹵鎢燈進行定容彈內腔背景的補光。試驗采用博世第3代高壓共軌燃油噴射試驗臺控制噴油信號,噴油器使用P型單孔噴油嘴。高速相機和共軌噴油器的觸發(fā)和同步通過ECU驅動信號來實現。噴霧試驗參數見表2。
1. 油箱 2. 高壓泵 3. 電機 4. 共軌 5. 電控單元 6. 高速相機 7. 定容彈 8. 噴油器 9. 加熱棒 10. 鹵鎢燈 11. 高壓氮氣 12. 計算機
本試驗用高速相機拍攝試驗燃料的噴霧發(fā)展過程,使用Matlab編程處理噴霧圖片計算得到試驗所需的噴霧錐角,噴霧貫穿距離,噴霧投影面積等特性參數。如圖2所示,某一時刻的噴霧貫穿距離定義為從噴油嘴開始到這一時刻噴霧前鋒的軸向距離[28];某一時刻的噴霧錐角定義為從噴油嘴開始到這一時刻噴霧的(1/2)處引出的2條切線之間的夾角[29];某一時刻噴霧霧柱所占像素點乘以一個像素點表示的真實面積值即可得到該時刻的噴霧面積;相鄰數據點的貫穿距離做差,其與相鄰數據點時間間隔的比值,即為相鄰數據點之間噴霧的貫穿速度,可以較準確的表達整個噴霧過程中噴霧貫穿速度的變化趨勢。
表2 噴霧試驗參數
注:0#普通柴油,記為p0;在p0的基礎上摻混20%的松油,記為p20;在p20的基礎上摻混10%、20%的PODE3-4,分別記為pd10、pd20;噴油壓力為160 MPa,噴孔直徑0.10 mm.
Note: 0#diesel oil is denoted as p0; Mixing 20% pine on the basis of p0, denoted as p20; Mixing 10% and 20% PODE3-4on the basis of p20, denoted as pd10 and pd20; Injection pressure of 160 MPa; Nozzle diameter is 0.10 mm.
圖2 噴霧參數定義
圖3給出了環(huán)境溫度為500 K、噴油壓力為160 MPa、環(huán)境背壓為5 MPa、噴孔直徑為0.10 mm的工況下,4種不同試驗燃料(p0、p20、pd10、pd20)的噴霧發(fā)展圖像??梢钥闯?種燃料的霧柱隨時間逐漸變長,pd10與pd20的霧柱邊緣產生部分薄霧,原因是摻混PODE3-4后的燃料噴霧在環(huán)境氣體中擴散程度更大。
圖4為該工況下試驗燃料的噴霧特性曲線,由圖4a可知,在相同試驗工況下,p20的貫穿距離大于p0的貫穿距離,摻混PODE3-4后的pd10與p20的貫穿距離無太大變化,繼續(xù)摻混PODE3-4的pd20的貫穿距離又變大。一方面因為燃料的破碎霧化效果受黏度、表面張力、及密度的影響[30-31],松油的黏度為柴油的51%,PODE3-4的黏度為柴油的31%,摻混松油后,混合燃料的黏度減小,油滴不易黏連在一起,油束的射流破碎效果更好,在噴嘴處的流動阻力降低,速度增大,導致噴霧貫穿距離增大,PODE3-4的黏度比松油更低,且有更高的密度,噴射時慣性更大,所以摻混PODE3-4后使得噴霧貫穿距離進一步增大。另一方面,燃料破碎霧化效果越好,噴霧液滴蒸發(fā)速率越快,液滴表面蒸發(fā)產生的氣體環(huán)流減小了液滴運動阻力,液滴動能損失較慢,噴霧向前貫穿的距離更長。
注:噴油壓力為160 MPa,噴孔直徑為0.10 mm.
由圖4b可知,在相同試驗工況下,摻混松油的p20的噴霧錐角大于純柴油p0的噴霧錐角,繼續(xù)摻混PODE3-4后噴霧錐角又持續(xù)變大。原因是噴霧破碎受到燃料運動黏度的影響,從而影響燃油霧化,燃料的運動黏度越大,噴霧時油束不容易分散開。另一方面由于油滴的初始能量相同,黏度高的油滴在一起質量大,因此初始的動能較小,擴散較慢,從而單位時間內的噴霧錐角較小。
由圖4c可知,在相同試驗工況下,噴射開始的0.5 ms內,貫穿速度從大到小順序依次為pd20、pd10、p20、p0,原因如前文所述,是受到燃料的黏度、表面張力以及揮發(fā)性所影響。0.5 ms后4種燃料的貫穿速度衰減緩慢,并且產生波動,原因是二次霧化的油束與環(huán)境氣體的卷吸作用變強,促進了油滴的破碎霧化,油霧在環(huán)境氣體中緩慢擴散,因此中后期貫穿速度緩慢衰減,此外油束本身有很大的擾動,噴霧前端不穩(wěn)定,導致貫穿速度產生波動。
燃油噴霧的霧化效果是由噴霧的油束面積體現的,油束面積受到噴霧貫穿距離和噴霧錐角的直接影響。由圖4d可知,在相同試驗工況下,摻混松油的油束面積整體大于純柴油的油束面積,繼續(xù)摻混PODE3-4后的油束面積又進一步增大,說明相比純柴油,摻混松油和PODE3-4的混合燃料的霧化質量得到提升。
注:噴油壓力為160 MPa,噴孔直徑為0.10 mm.
圖5和圖3d給出了環(huán)境溫度為500 K、環(huán)境背壓為5 MPa、噴孔直徑為0.10 mm的工況下,pd20在4個不同噴油壓力(100、120、140、160 MPa)下的噴霧發(fā)展圖像,可以看出4種噴油壓力下燃料霧柱均隨時間逐漸增長,并且噴油壓力越大,噴霧霧柱越長并且越粗大。
注:噴孔直徑為0.10 mm.
圖6為該工況下pd20的噴霧特性曲線。由圖6a可以看出,隨著噴油時間的發(fā)展,4種噴油壓力下pd20的噴霧貫穿距離都呈現初期增長較快,中后期逐漸變緩慢的趨勢,并且隨著噴油壓力的增加,噴霧貫穿距離也隨之增加,噴油壓力從100增加到160 MPa,最大噴霧貫穿距離增加13%左右。其原因是噴油初始時刻,較高的噴油壓力導致油滴具有較大的初速度,并且初次霧化的油束在環(huán)境氣體中發(fā)生的卷吸作用不明顯,因此初始時刻噴霧燃料的貫穿距離增長較快,而隨著噴油時間的發(fā)展,二次霧化的油束與環(huán)境氣體發(fā)生的卷吸作用越來越明顯,而且由于初期噴射的燃油和環(huán)境氣體對油滴的阻礙作用,油滴能量損失,其動能逐漸減小,因此中后期時噴霧燃料貫穿距離的增長逐漸變得緩慢,而噴油壓力越高,油滴的初始動能就越大,油滴的霧化破碎效果也越好,油束的貫穿距離也隨之變大。
注:噴孔直徑為0.10 mm.
由圖6b可以看出,隨著噴油時間的發(fā)展,四種噴油壓力下pd20的噴霧錐角在噴霧初期逐漸減小,中后期趨于穩(wěn)定,但整體變化不大,并且隨著噴油壓力的增加,噴霧錐角也隨之增大,噴油壓力從100到160 MPa,每增加20 MPa噴霧錐角增加1°左右。其原因是因為噴霧初期油滴徑向動能較大,油霧的擴散速度很快,因此噴霧錐角較大,而中后期噴霧與環(huán)境氣體發(fā)生的卷席作用較強,且初期噴射燃油和環(huán)境氣體阻礙了后期噴霧錐角的繼續(xù)發(fā)展,油滴能量逐漸損失,因此中后期噴霧錐角相對趨于穩(wěn)定,此外噴霧末期的錐角有變小的趨勢,是因為末期的油滴能量耗盡,且由于受到溫度的影響,最外圍的噴霧呈現氣相形態(tài),相機無法捕捉,所以末期的噴霧錐角變小,而噴油壓力的增大會促進油滴的破碎和霧化程度,因此噴霧錐角也會隨之增加。
由圖6c可知,噴油壓力越大,噴霧初始時刻的貫穿速度也越大,原因是在環(huán)境背壓不變的情況下,噴油壓力越大噴孔內和噴孔外的壓力差越大,因此初始時刻的噴油速率也越大。另一方面,噴射開始的0.5 ms內,在噴霧貫穿速度衰減的過程中,高噴油壓力下的貫穿速度一直高于低噴油壓力下的貫穿速度。在0.5 ms后4種噴油壓力下的貫穿速度衰減緩慢,并且差距逐漸縮小,原因是高的噴油壓力加強了噴霧的卷吸作用,從而貫穿速度衰減相對于低的噴油壓力較快。此外由于噴霧前端不穩(wěn)定,噴霧中后期貫穿速度仍然產生波動。
由圖6d可以看出,提高噴油壓力,燃料的油束面積也隨之增大,因此提高噴油壓力可以改善燃料的噴霧特性,并且可以提高空氣的利用率。
圖7和圖3d給出了環(huán)境溫度為500 K、環(huán)境背壓為5 MPa、噴油壓力為160 MPa的工況下,pd20在3個不同噴孔直徑(0.10、0.14、0.18 mm)下的噴霧發(fā)展圖像,可以看出3種噴孔直徑下的噴霧霧柱均隨時間逐漸增長,并且噴孔直徑越大,霧柱明顯變長變粗。
注:噴油壓力為160 MPa.
圖8為該工況下pd20的噴霧特性曲線,由圖8可以看出,在不同噴孔直徑下,燃油pd20的噴霧貫穿距離和噴霧錐角的總體發(fā)展趨勢并未發(fā)生變化。由圖8a可以看出,噴孔直徑越大,燃油pd20的噴霧貫穿距離也隨之增大,噴孔直徑從0.10增加到0.18 mm,噴霧前鋒最大貫穿距離增加28%左右。原因是噴孔直徑越大,相同噴油持續(xù)期下的噴油量就會越多,另一方面大的噴孔直徑不利于燃油的破碎霧化,油滴的索特直徑就會越大,因此油滴的貫穿動能較高,向前貫穿的更遠。
由圖8b可知,噴孔直徑越大,燃油pd20的噴霧錐角也隨之增大,噴孔直徑從0.10增加到0.18 mm,噴霧錐角增加了3°左右。原因是在相同工況下,當噴嘴的長度保持不變時,孔徑的增加導致噴嘴的長徑比/變小,噴霧的空化現象更容易發(fā)生,空化氣泡在噴嘴出口處潰滅,射流湍動擾動增強,對應的雷諾數也會增大,致使湍動擾動的法向脈動速度變大,從而增大了噴霧錐角[32-33],這與Sou等[34]提出的雷諾數較大會致使超空化效應產生,進而使得噴霧錐角變大的結論相互一致。
注:噴油壓力為160 MPa。
由圖8c可以看出,整個噴霧過程中,3種孔徑下噴霧貫穿速度的整體趨勢并未發(fā)生太大變化,前期貫穿速度下降較快,中后期衰減緩慢并且產生波動。另外,大孔徑的貫穿速度整體上始終大于小孔徑的貫穿速度,原因是噴孔直徑變大不利于燃油的破碎霧化,導致油滴的索特直徑較大,貫穿動能較高,并且噴霧的卷吸作用較弱,對油滴的阻礙作用變弱,因此貫穿距離衰減較為緩慢,由圖8d可以看出,增大噴孔直徑,燃料的油束面積也隨之增大,這是噴霧錐角和貫穿距離兩方面影響的結果,但是增大噴孔直徑會導致單位時間內噴油量增加,并且大孔徑不利于燃料的破碎霧化,因此會引起大量的碳煙生成。
1)相同試驗工況下,在純柴油中摻混松油和PODE3-4后的混合燃料其噴霧錐角、貫穿距離和油束面積相對于純柴油都有增長的趨勢,說明摻混一定比例松油和PODE3-4可有效的改善純柴油的霧化和擴散效果。
2)噴油壓力會影響燃料的噴霧特性,噴霧貫穿距離在噴霧初始時刻增長較快,而在噴霧中后期增長逐漸變緩慢,且隨著噴油壓力從100增加到160 MPa,噴霧貫穿距離也隨之變大,噴霧前鋒最大貫穿距離增加13%左右。隨著噴霧時間的發(fā)展,噴霧錐角呈現出先降低后趨于平穩(wěn)的趨勢,但整體變化并不大,且隨著噴油壓力從100增加到160 MPa,噴霧錐角也隨之增大,噴油壓力每增加20 MPa噴霧錐角平均增加1°左右,提高噴油壓力,燃料的油束面積也隨之增大,可以提高空氣的利用率。
3)噴孔直徑會影響燃料的噴霧特性,隨著噴孔直徑從0.10增加到0.18 mm,噴霧錐角和噴霧貫穿距離都有不同程度的增長,噴霧錐角增加了3°左右,噴霧前鋒最大貫穿距離增加28%左右,增大噴孔直徑,燃料的油束面積也隨之增大,但是過大的噴孔直徑會導致單位時間內噴油量增加,且不利于燃料的破碎霧化,會引起大量的碳煙生成。
[1] Gupta S, Poola R, Sekar R. Injection parameter effects on diesel spray characteristics[R]. SAE paper No.2000-01- 2787V001, 2000.
[2] Agarwal A K, Chaudhury V H. Spray characteristics of biodiesel/blends in a high pressure constant volume spray chamber[J]. Experimental Thermal & Fluid Science, 2012, 42(42): 212-218.
[3] Kim W I, Lee K, Chang S L. Spray and atomization characteristics of isobutene blended DME fuels[J]. Journal of Natural Gas Science & Engineering, 2015, 22: 98-106.
[4] Anand B P, Saravanan C G, Srinivasan C A. Performance and exhaust emission of turpentine oil powered direct injection diesel engine[J]. Renewable Energy, 2010, 35(6): 1179-1184.
[5] Vallinayagam R, Vedharaj S, Yang W M, et al. Impact of ignition promoting additives on the characteristics of a diesel engine powered by pine oil–diesel blend[J]. Fuel, 2014, 117(3): 278-285.
[6] Vallinayagam R, Vedharaj S, Yang W M, et al. Combustion performance and emission characteristics study of pine oil in a diesel engine[J]. Energy, 2013, 57(3): 344-351.
[7] Vallinayagam R, Vedharaj S, Yang W M, et al. Pine oil–biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine[J]. Applied Energy, 2014, 130: 466-473.
[8] Vallinayagam R, Vedharaj S, Yang W M, et al. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter[J]. Atmospheric Environment, 2013, 80(12): 190-197.
[9] Huang H, Liu Q, Shi C, et al. Experimental study on spray, combustion and emission characteristics of pine oil/diesel blends in a multi-cylinder diesel engine[J]. Fuel Processing Technology, 2016, 153: 137-148.
[10] Huang H, Teng W, Liu Q, et al. Combustion performance and emission characteristics of a diesel engine under low- temperature combustion of pine oil–diesel blends[J]. Energy Conversion & Management, 2016, 128: 317-326.
[11] 黃豪中,史程,張鵬,等. 噴射壓力及環(huán)境背壓對松油-柴油混合燃料噴霧特性的影響[J]. 農業(yè)工程學報,2016,32(17):55-61.Huang Haozhong, Shi Cheng, Zhang Peng, et al. Experimental on effcects of injection pressureand ambientpressureon spray characteristics of pine oil/diesel blends [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 55-61. (in Chinese with English abstract)
[12] 韓紅梅. 聚甲氧基二甲醚合成技術進展及產業(yè)化建議[J].煤炭加工與綜合利用,2014(4):30-32.Han Hongmei. Progress of PODE synthetic technology and suggestions on industrialization[J]. Coal Processing & Comprehensive Utilization, 2014(4): 30-32. (in Chinese with English abstract)
[13] 劉奕,高曉晨,高煥新,等. 合成聚甲醛二甲醚的反應動力學[J]. 化學反應工程與工藝,2014,30(4):365-370.Liu Yi, Gao Xiaochen, Gao Huanxin, et al. Kinetics of synthesis of polyoxymethylene dimethyl ethers[J]. Chemical Reaction Engineering and Technology, 2014, 30(4): 365-370. (in Chinese with English abstract)
[14] 趙啟,王輝,秦張峰,等. 分子篩催化劑上甲醇與三聚甲醛縮合制聚甲醛二甲醚[J]. 燃料化學學報,2011,39(12):918-923.Zhao Qi, Wang Hui, Qin Zhangfeng, et al. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. Journal of Fuel Chemistry and Technology 2011, 39(12): 918-923. (in Chinese with English abstract)
[15] Lumpp B, Rothe D, Past?tter C, et al. Oxymethylene ethers as diesel fuel additives of the future[J]. Mtz Worldwide Emagazine, 2011, 72(3):34-38.
[16] Pellegrini L, Marchionna M, Patrini R, et al. Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine[J]. Microelectronic Engineering, 2012, 87(5-8): 778-781.
[17] Pellegrini L, Marchionna M, Patrini R, et al. Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car[J]. Sae Technical Papers, 2013, 2:334-339.
[18] Liu H, Wang Z, Wang J, et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE 3-4)/diesel blends[J]. Energy, 2015, 88: 793-800.
[19] Liu H, Wang Z, Zhang J, et al. Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines ☆[J]. Applied Energy, 2017, 185: 1393-1402.
[20] Liu J, Wang H, Li Y, et al. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177: 206-216.
[21] 劉浩業(yè),王志,王建昕. 用PODE3-4煤基燃料改善汽油/柴油寬餾分燃料的燃燒與排放特性[J]. 內燃機工程, 2016, 37(6):1-8. Liu Haoye, Wang Zhi, Wang Jianxin. Improving combustion and emission characteristic of gasoline/diesel wide distillation fuel (WDF) by PODE3-4[J]. Chinese Internal Combustion Engine Engineerin, 2016, 37(6): 1-8. (in Chinese with English abstract)
[22] 王謙,賴曉易,吳玉強,等. 柴油機瞬態(tài)噴霧特性及噴油器后滴油現象試驗研究及分析[J]. 內燃機工程,2015,36(5):18-24. Wang Qian, Lai Xiaoyi, Wu Yuqiang, et al. An experimental study of spray characteristics of a diesel and analyzing of fuel dripping phenomenon[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(5): 18-24. (in Chinese with English abstract)
[23] Gao Y, Deng J, Li C, et al. Experimental study of the spray characteristics of biodiesel based on inedible oil[J]. Biotechnology Advances, 2009, 27(5): 616-624.
[24] 姚春德,胡江濤,銀增輝,等. 噴油壓力對高壓共軌柴油機燃燒影響的可視化研究[J]. 農業(yè)機械學報,2016,47(1):355-361. Yao Chunde, Hu Jiangtao, Yin Zhenhui, et al. Visualization on combustion characteristics of common rail diesel engine at different injection pressures[J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(1): 355-361. (in Chinese with English abstract)
[25] 楊皓,李興虎,牟鳴飛,等. 柴油/聚甲氧基二甲醚混合燃料的柴油機性能與排放試驗[J]. 汽車安全與節(jié)能學報,2015,6(3):280-285.Yang Hao, Li Xinghu, Mu Mingfei, et al. Experiments on the performances and emissions of diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends[J]. Automotive Safety and Energy, 2015, 6(3): 280-285. (in Chinese with English abstract)
[26] Huang H, Teng W, Liu Q, et al. Combustion performance and emission characteristics of a diesel engine under low- temperature combustion of pine oil–diesel blends[J]. Energy Conversion & Management, 2016, 128: 317-326.
[27] 劉帥,王忠,李志越,等. 正丁醇/柴油噴霧特性及缸內混合氣形成過程數值模擬[J]. 農業(yè)工程學報,2016,32(增刊1):50-56.Liu Shuai, Wang Zhong, Li Zhiyue, et al. Spray behavior of butanol-diesel and numerical simulation of mixtureformation with engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.1): 50-56. (in Chinese with English abstract)
[28] 安彥召,黃豪中,蘇萬華,等. 燃油屬性和環(huán)境密度對柴油機混合燃料噴霧的影響[J]. 內燃機學報,2013, 31(2):103-108.AnYanzhao, HuangHaozhong, SuWanhua, et al. Influence of fuel property and ambient density on spray of fuel blend[J]. Transactions of CSICE, 2013, 31(2): 103-108. (in Chinese with English abstract)
[29] Naber J D, Siebers D L. Effects of gas density and vaporization on penetration and dispersion of diesel sprays[J]. Sae Technical Papers, 1996, 105(3): 82-111.
[30] Deshmukh D, Mohan A M, Anand T N C, et al. Spray characterization of straight vegetable oils at high injection pressures[J]. Fuel, 2012, 97(7): 879-883.
[31] 朱浩月,王春海,方俊華,等. 生物柴油高壓共軌噴油規(guī)律與噴霧特性的試驗研究[J]. 內燃機工程,2013,34(增刊1):1-4.Zhu Haoyue, Wang Chunhai, Fang Junhua, et al. Injection rate and spray characteristics of biodiesel in HPcommon rail system[J]. Chinese Internal Combustion Engine Engineering, 2013, 34(Supp.1): 1-4. (in Chinese with English abstract)
[32] 徐陽杰,李國岫,虞育松,等. 噴孔直徑對柴油射流霧化影響的實驗研究[J]. 工程熱物理學報,2015,36(4):907-911.Xu Yangjie, Li Guoxiu, Yu Yusong, et al. The experimental investigation on the diesel spray characteristics with various injector nozzle parameters[J]. Journal of Engineering Thermophysics, 2015, 36(4): 907-911. (in Chinese with English abstract)
[33] 黃豪中,安彥召,蘇萬華,等. 噴射壓力和噴孔直徑對柴油機混合燃料噴霧特性的影響[J].內燃機學報,2013, 31(3):200-207. Huang Haozhong, An Yanzhao, Su Wanhua, et al. Investigation on the influence of injection pressure and nozzle diameter on the spray of blended fuel in diesel engine[J]. Transactions of CSICE, 2013, 31(3): 200-207. (in Chinese with English abstract)
[34] Sou A, Hosokawa S, Tomiyama A. Effects of cavitation in a nozzle on liquid jet atomization[J]. International Journal of Heat & Mass Transfer, 2007, 50(17): 3575-3582.
Effects of injection pressure and nozzle diameter and fuel property on spray characteristics of blended diesel fuel
Huang Haozhong, Zhang Xinyun, Jia Chaojie, Shi Cheng, Teng Wenwen
(530004,)
The fuel spray performance and atomization quality played a fundamental role in optimization of combustion efficiency and exhaust emissions in internal combustion engines. In order to achieve better atomizing mode of diesel, the spray characteristics of diesel blending pine oil and PODE3-4were experimental studied. A spray trial platform include the visual constant volume chamber and the high-pressure common rail test bench. The high-speed photograph technique was applied to systematically investigate the spray process of blended fuel. To be specific, this study was conducted under the diesel mixed with 20% pine oil, and 10% or 20% PODE3-4was then added based on the mixture of diesel and 20% pine oil. Then, the influences of injection pressure, nozzle diameter and fuel property on macroscopic spray parameters (including spray cone angle, spray penetration distance and fuel flow area) were investigated in detail. It can be observed from the experimental research results that, at first, the spray penetration distance of blended fuel presented a certain degree of linear growth with the fuel injection, and then the increasing rate of the penetration distance decreased. On the other hand, it was observed that the spray cone angle was wider at the beginning of the spray development, and it gradually converged to a smaller and constant value. In general, the variation of the spray cone angle is stabilized during spray process. The decrease of spray penetration velocity is faster in the early stage, and the decrease is slow in the middle and late period and the fluctuation is produced. For the same nozzle diameter (10 mm), the blended fuel had a longer penetration distance with the increasing of the fuel injection pressure from 100 to 160 MPa. And the effect of injection pressure on the spray cone angle according to the variation in injection pressure showed that the spray cone angle at 160 MPa injection pressure was larger than that at 100 MPa. When increasing the penetration distance by 13% from 100 to 160 MPa, for each increase of 20 MPa, the spray cone angle increases averagely by 1°. The initial spray penetration velocity increases with the increase of the injection pressure, but the final spray penetration velocity is not very different. If increasing the injection pressure, the fuel area will also increase, and therefore, increasing the injection pressure can improve the spray characteristics of the fuel and improve the utilization rate of the air. When the nozzle diameter increased from 0.10 to 0.18 mm at the same injection pressure (160 MPa), the increment of nozzle diameter led to obvious increase of the spray cone angle and the penetration distance. During the spray evolution process, the mean spray cone angle increased by about 3°. The spray penetration distance increased by about 28% at the end of the injection. The spray penetration velocity of the large nozzle diameter is always greater than that of the small nozzle diameter. The fuel area increases with the increase of the nozzle diameter. However, excessive nozzle diameter will result in an increase in the amount of fuel injection, and it is not conducive to the broken atomization of fuel. In addition, analyses showed that the spray penetration distance, spray cone angle and fuel area increased slightly after a certain proportion of pine oil and PODE3-4were blended into diesel, which was very conducive to improve air and fuel mixture effect with pine oil. It can be concluded that investigating the spray characteristics of diesel - pine oil- PODE3-4blend would be significantly beneficial for enhancing the atomization quality of pure diesel, and also provide a valuable reference on the spray characteristics to choose an acceptable and appropriate alternative fuel for common rail diesel engine.
diesel engineers; spraying; fuel injection; pine oil; PODE3-4; injection pressure; nozzle diameter
黃豪中,張新赟,賈超杰,史 程,滕文文. 噴油壓力噴孔直徑及燃油屬性對混合柴油噴霧特性的影響[J]. 農業(yè)工程學報,2018,34(14):45-51. doi:10.11975/j.issn.1002-6819.2018.14.006 http://www.tcsae.org
Huang Haozhong, Zhang Xinyun, Jia Chaojie, Shi Cheng, Teng Wenwen. Effects of injection pressure and nozzle diameter and fuel property on spray characteristics of blended diesel fuel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 45-51. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.006 http://www.tcsae.org
2017-12-26
2018-01-03
國家自然科學基金面上項目(51076033);廣西科學研究與技術開發(fā)計劃(桂科AC16380047)
黃豪中,教授,博士,主要研究方向為內燃機燃燒與排放控制。Email:hhz421@gxu.edu.cn
10.11975/j.issn.1002-6819.2018.14.006
TK421+.7
A
1002-6819(2018)-14-0045-07