• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravity and Spin Forces in Gravitational Quantum Field Theory?

    2018-08-02 07:35:40YueLiangWu吳岳良andRuiZhang張睿
    Communications in Theoretical Physics 2018年8期
    關(guān)鍵詞:張睿

    Yue-Liang Wu(吳岳良)and Rui Zhang(張睿)

    1Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3International Center for Theoretical Physics Asia-Pacific(ICTP-AP),University of Chinese Academy of Sciences,Beijing 100049,China

    AbstractIn the new framework of gravitational quantum field theory(GQFT)with spin and scaling gauge invariance developed in Phys.Rev.D 93(2016)024012-1,we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe.We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3)and SP(1,3)in biframe spacetime into SO(3)representations for deriving the propagators of the basic quantum fields and extract their interaction terms.The leading order Feynman rules are presented.A tree-level 2 to 2 scattering amplitude of the Dirac fermions,through a gravifield and a spin gauge if eld,is calculated and compared to the Born approximation of the potential.It is shown that the Newton’s gravitational law in the early universe is modified due to the background field.The spin dependence of the gravitational potential is demonstrated.

    Key words:gravifield,spin gauge field,background field,quantum gravity,tensor projection operators,scattering amplitudes,modified Newton’s law

    1 Introduction

    The gravitational quantum field theory(GQFT)with spin and scaling gauge invariance was developed in Refs.[1–2]to overcome the long term obstacle between the general theory of relativity(GR)and quantum mechanics.In fact,there has been enormous efforts on the theory beyond Einstein’s theory since the GR was established by Einstein in 1915.[3]The metric describing the geometry of the spacetime are commonly factorized linearly to explore the quantum structure of gravity and its interaction with matter fields,[4?5]and the Ricci scalar has been shown to be the key of the dynamics of gravity.The property of GR with spin and torsion was investigated in Refs.[6–8]where the totally antisymmetric coupling of the torsion to spin was presented.The general quadratic terms of the 2-rank tensor fields that satisfy the ghost-free and locality conditions were discussed in Ref.[9].With the tool named tensor projection operators developed in Ref.[10],which projects the SO(1,3)tensor representation to the components of different SO(3)representations,the general propagators and gauge freedoms were investigated and extrapolated to a more general case including propagating torsion.[11]The totally antisymmetric part and its renormalizability was anayzed in Ref.[12].

    Recently,a new framework of gravitational quantum field theory(GQFT)was proposed to treat the gravitational interaction on the same footing as electroweak and strong interactions,[1?2]where a biframe spacetime is initiated,namely,the locally flat non-coordinate spacetime and the globally flat Minkowski spacetime,a basic gravifield is defined on the biframe spacetime as a bicovariant vector field which is in general a 16-component field.The spin gauge field and scaling gauge field are introduced to keep the action invariant under a local SP(1,3)×SG(1)gauge transformation.A non-constant background solution has been obtained,which may account for the inflationary behaviour of the early universe.In a proceeding work,a more general action for a hyperunified field theory(HUFT)under the hyper-spin gauge and scaling gauge symmetries was proposed[13]to merge all elementary particles into a single hyper-spinor field and unify all basic forces into a fundamental interaction governed by a hyperspin gauge symmetry.A background solution remains to exist.In such an HUFT,it enables us to demonstrate the gravitational origin of gauge symmetry as the hypergravifield plays an essential role as a Goldstone-like field.The gauge-gravity and gravity-geometry correspondences lead to the gravitational gauge-geometry duality.It has been shown that a general conformal scaling gauge symmetry in HUFT results in a general condition of coupling constants,which eliminates the higher derivative terms due to the quadratic Riemann and Ricci tensors,so that the HUFT will get rid of the so-called unitarity problem caused by the higher order gravitational interactions.To demonstrate explicitly,in the present paper,we consider the gravitational interactions of gravifield and spin gauge field only in four dimensional case with a background field solution.Expanding the full action under such a background field,it is natural to extract the dynamics and interactions of the quantum fields.The interactions among these fields will reflect the gravitational behavior in the early universe.

    2 Action Expansion in a Non-Constant Background Field

    Let us start from a basic action by simply taking four dimentional spacetime,i.e.,D=4,from the hyperunified field theory(HUFT)[13]in hyper-spacetime,

    The tensors are taken the general forms presented in Ref.[13]

    The quantized field are expressed as:

    We can expand the action(1)and collect the leading order interactions and quadratic terms.As the quadratic term of the quantum gravifield includes a non-constant coefficientit is useful to absorb it into the field via a field-rede finition

    The final quadratic terms are given by:

    There are other terms,which involves two quantum fields,but with higher orders of the background field,we present them in the Appendix A.In the early universe,the background field ?(x)is sufficiently small,so that we can ignore the effect of those terms and only consider the quadratic terms in Eq.(2).

    Though the propagators can hardly be read from the action,we can utilize the tensor projection operators to decompose the spin components of the tensor fields,and then derive their propagators.The scaling gauge field decouples from the Dirac spinors,so we would not include it in our present considerations.We shall discuss the details in Sec.3.We can also get the leading-order interaction terms,which are given in the appendix B.Notice that we have absorbed the gauge coupling constant gh,which depends on the normalization of coefficients g1,g2and g4.We shall do a field rede finition after some normalization of the propagator in Sec.5 and turn the interactions to a usual form of gauge interactions.

    3 Tensor Projection Operators and Propagators of Gravifield and Spin Gauge Field as Well as Scalar Field

    The SO(1,3)tensor-like fields hμaand ?μabcan be decomposed into different SO(3)spin-parity components:Following Ref.[9],we shall de fine the tensor projection operatorswhere the subscripts f1and f2denoting the field type,the superscripts J and P label the spin and parity.The tensor projection operators satisfy the following relations:

    with the de finition

    To be specific,we write down the explicit forms for the tensor projection operator of the 2+component of the gravifield

    with the de finition

    and the tensor projection operator of the totally antisymmetric part of the spin gauge field ?μab,

    The explicit forms of other tensor projection operators are presented in the appendix C.

    In general,the tensor projection operators have the following properties,

    Thus we can write the quadratic terms of the action in terms of the tensor projection operators as follows,

    The field equations of the field typecan be expressed by tensor projection operators as:

    The explicit forms of the coefficient matrices are given by

    It is obvious that most of the matrices are degenerate,and these degeneracies indicate certain symmetries of the quadratic terms[11]relevant to unphysical degrees of freedom.When considering only the tree-level calculations,we do not need to know the exact gauge- fixing terms and gauge transformations by introducing the Faddeev-Popov ghosts.Instead,we can just apply the specific gauge- fixing conditions by setting the constraints

    without breaking the field equations,and neglect the corresponding lines in the coefficient matrices.Thus we only need to invert the“reduced” matrices and get the propagators.

    The resulting propagators are given as follows in the specific gauge:

    In general,when treating the fields χμaand ?μabas Yang-Mills gauge fields in GQFT,we can simply add the usual gauge- fixing terms for the gauge-type gravifield χμaand the spin gauge field ?μab.For simplicity,we take the following explicit forms for their gauge fixing conditions

    In such a case,the coefficient matrices of the field equations are given by

    Except for the 1+component of the gravifield,all other coefficient matrices are non-degenerate.Thus we are able to inverse the matrices by requiring

    and get the propagators:

    It is seen that in this case the propagator of the gravifield recovers the same one as the case without adding gauge fixing condition,while the propagator of the spin gauge field is modified for the spin 1 component with even parity,which is relevant to the total antisymmetric part of spin gauge field.

    It is noticed that there is an intersection term ??h,which is caused as the choice of h and ? is not orthogonal.To avoid such a complication,it is useful to rede fine the quantum field

    so that the propagator of the field Hμabecomes

    which is compatible with the propagator in the usual linear gravity approach[5]up to a gauge term pμpν/p2.If we take the gauge coefficients λ,to be 3/2,the explicit form of the H-H propagator is

    When taking the gauge fixing parameters as follows

    the explicit form of the ?-? propagator is

    so that the highest order pole in the propagator isterm,which behaves like a Yang-Mills gauge field propagator.In the following section,we will use the rede fined symmetric quantum gravifield to calculate the physical observable.

    4 Gravitational Scattering Amplitude of Dirac Spinor and Modified Newton’s Law with Background Field

    Let us now focus on the gravitational interaction between the Dirac spinor field Ψ in the early universe.The leading order vertex of the fermion involves the background field.

    In the momentum space,the background scaling factor is given by

    where ?kμ≡ ?/?kμ.Corresponding to Feynman rules shown in Figs.1 and 2.

    Fig.1 3-vertex for f-f-h.The dashed line connected to the cross is the background.

    Fig.2 3-vertex for ?-?-h.The dashed line connected to the cross is the background.

    Note that in calculating the fermion-fermion scatter-ing,the gamma matrix in the vertex is contracted with the two external spinors,which satisfies the equationSo that the couplings to ? do not contribute to the tree-level diagrams.For the same reason,the third term from the H propagator does not contribute to the result,either.

    The tree level amplitude of the two-fermion scattering,with in-state momenta p1and p2,and out-state momenta p3and p4,is shown in Fig.3

    Fig.3 Tree diagram for 2-fermion scattering via gravifield.

    The main purpose is to check the newtonian potential in the early universe with the existence of background field.For the case that all fields are massless,we cannot take a non-relativistic limit to simplify the amplitude.Let us first check the cross section of this scattering process to contract all the spinors.After integrating the momenta of the propagator,the amplitude in Eq.(34)becomes:

    The derivatives of δ(p)can be expressed as some functions multiplied by δ(p),thus we can write the second line in Eq.(35)to the following general form

    Then our result of the scattering amplitude,except for the overall coefficient and F(p1?p3)term that are related to the background field,is consistent with the leading order result shown in Ref.[14].If we were working in another gauge if xing condition,the difference would be terms proportional to qμqν/q2,contracted with the vertex will gives the termboth of which are vanishing because of the on-shell condition of the external fermions.So our result is indeed gauge independent.

    The squared matrix element,after throwing all the spin information,is:

    we can simplify Eq.(36)into the follow form

    As long as the two massless fermions are not in the same direction,we can always make a Lorentz boost to a centerof-energy frame,so thatWhen taking the weak interaction limit that θ→ 0,we have

    In comparison with the Born approximation of the cross section[16]

    To compare our result with those from the usual Newtonian potential,we identify the factorwith the coefficient of the Einstein equation 8πG.So the relation between αEand Newtonian gravitational constant GNis

    Then we obtain the potential in the momentum space as:

    The leading term will contribute to a 1/r potential in the coordinate space.Such a term coincides with the Newton’s law,but it is modified by a factorwhich depends on the size of the inverse of scaling factorIn the early universe,the scaling factor is much smaller,thus the gravitational potential can become much stronger.The modified termcontains the structure of the derivatives of delta functions,we shall investigate its effect elsewhere.

    Note that the coefficient 16πGNis four times than the gravitational potential for the massive Dirac fermions.This is because we are working on the massless Dirac fermions.When considering the Dirac fermion getting a mass from spontaneous symmetry breaking,a mass term will be generated.In a unitary scaling gauge condition detχ=1,we need to consider the change of the spinor structure,and an additional

    from the third term(30)of the graviton propagator.The massive Dirac fermion allows us to take a non-relativistic approximation

    The leading order and next-to-leading-order contributions fromis found to be

    The leading term for μ =0 requires r=r′,which together with Eq.(42)enables us to get a factor 1/4 for the potential(50).The next-to-leading-order term forμ=0 comes from the expansion of E

    The next-to-leading order fromμ=i can be simplified to

    the spinor formalism can be re-expressed as a four-vector

    Substituting it into the expression of the amplitude Eq.(34)

    we can obtain the total contribution up to next-to-leading order,

    So the potential for massive fermions is

    Ignoring the kinematic energies,the next-to-leading order effect is proportional to the inner product of two particles,

    If we consider the anti-fermion,its spinor structure is

    and the vertex would have a minus sign from ?(p2+p4)μ.The vertex spinor contraction is

    So the there was only an overall minus sign from the momentum,and will be compensated by the commutation of the fermion operator in the Wick contraction,thus the amplitude does not flip sign.The only possible difference lies in spin of the anti-fermion η?σiη.Thus we may use a separate spin notation to distinguish particle and antiparticle

    So the next-to-leading order effect between fermion and anti-fermion is

    Let us now consider the special case that the two massless ingoing particles are in the same direction.Suppose that their momenta are chosen as follows

    As the overall δ4(p1?p3+p2?p4)guarantees the momentum conservation,the outgoing momenta must be in the same direction.In this case,all the momenta are in the same direction,they are null vectors.So that their product gives zero,namely s=t=u=0.As a consequence,the cross-section becomes vanishing.

    5 Scattering Amplitude of the Dirac Spinor via the Spin Gauge Field

    It is interesting to consider the scattering amplitude of Dirac spinor via the spin gauge field.The leading order spin gauge interaction of Dirac spinor is given by the totally antisymmetric coupling of the spin gauge field.The vertex Feynman rule in Fig.4 can be derived from the last term in Eq.(33).

    Fig.4 3-vertex for f-f-?.

    The propagator of the totally antisymmetric part of the spin gauge field is taken the following form

    We may rede fine the coupling constants[13]

    and rede fine the spin gauge field and replace the vertex

    The Dirac spinor scattering amplitude via the spin gauge field is shown in Fig.5.

    Fig.5 Tree diagram for 2-fermion scattering via spin gauge field.

    If the Dirac spinor acquires a mass from some symmetry breaking,we may take the non-relativistic limit of this amplitude.Different from the Coulomb potential where the leading contribution comes fromthe γ5in Eq.(57)will lead to

    It is shown that the potential for 2-fermion scattering without spin change can be attractive(repulsive)for aligned spins and repulsive(attractive)for opposed spins,which relies on the sign of the coefficient(1?αW+βW)whether it is positive 1 ? αW+ βW> 0(negative 1?αW+βW<0).The potential of the totally antisymmetric field was studied in a different way in Ref.[6],which arrived at the case of negative coefficient 1?αW+βW<0.Such an interaction is independent of the background field.In the early universe,the scaling factor is so small that the gravitational effect becomes dominant to the cross sections.The spin gauge coupling is no longer significant,its cross section is found to be:

    When taking the weak interaction limit that θ → 0,we have

    which leads to a 1/r potential in the coordinate space.

    6 Conclusion

    We have investigated the gravitational interactions with the background field in the framework of GQFT.The full action of the GQFT with spin gauge and scaling gauge transformations has been expanded in a nonconstant background field.To the leading order gravitational interactions in GQFT,we have derived the Feynman rules for the propagators and interacting vertices of the quantum fields by using the tensor projection operators.The quantum gravifield has been rede fined to be normalized and diagonal,which leads to an interaction between the Dirac spinor and scalar fields.In the leading order,the scalar interaction with the Dirac spinor vanishes when the massless Dirac spinor are on-mass shell as the external fields.We have calculated the tree-level two Dirac spinors scattering through the gravitational interaction and analyzed its amplitude and cross section.Besides the modified term from the derivative of delta function,the overall amplitude is proportional to the inverse of the scaling factors,which implies that the gravitational potential is much stronger in the early universe.The spin dependence of the gravitational potential in the nonrelativistic case has been analyzed.We have also calculated the interaction between the Dirac spinor and the totally antisymmetric part of the spin gauge field at the leading order,which is similar to the result of the scattering through a vector field,but with a flip sign in the amplitude due to the property of axial vector,resulting in a spin gauge force,which depends on the sign of the coefficient in its quadratic terms.

    Appendix A Next-to-Leading Order Quadratic Terms

    We have presented the leading order quadratic terms in the context,the following are the higher order terms of the background field.We de fine

    The next-to-leading order quadratic terms for hμa-? are:

    The terms for hμa-wνare:

    The terms for ?-wμare:

    The terms for wμ-wνare:

    The terms for ?-? are:

    The terms for hμa-hνbare:

    Appendix B Leading Order Vertices

    We have presented the leading order vertices of the fermions in the context,the following are the 3-vertices for the spin gauge field ?μabwith the rede fined field ? by a coupling constant:

    For the gravifield hμainteractions,we have

    For the scalar field ?,except the pure scalar interaction term 4λs?3?,and the scalar and gravifield interactions are found to be,

    for h-?-h,and

    for h-?-?,as well as

    or h-w-?,and

    for h-h-w.With coupling to the spin gauge field,we obtain

    for h-?-?.More interactions include

    Appendix C Tensor Projection Operators

    Here we show the exact expression of projection operatorsfor the spin gauge field,gravifield and scalar,in which we have used the de finitionsfor short.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    小主人報(2022年7期)2022-08-16 06:59:28
    小主人報(2022年5期)2022-04-01 01:12:02
    The dilemma and development of industrial design in contemporary life
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    我的開心事
    人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 99久久精品一区二区三区| videossex国产| 99久久中文字幕三级久久日本| 国产精品久久久久久久电影| 欧美+日韩+精品| 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 欧美一级a爱片免费观看看| 亚洲欧美日韩高清专用| 黑人高潮一二区| 人人妻人人看人人澡| 能在线免费看毛片的网站| 亚洲精品乱码久久久久久按摩| 十八禁国产超污无遮挡网站| 在线免费观看不下载黄p国产| 伦精品一区二区三区| 99热这里只有是精品在线观看| 观看美女的网站| 黑人高潮一二区| 中国国产av一级| 国产伦精品一区二区三区四那| 午夜精品在线福利| 99久久精品热视频| 国产免费一级a男人的天堂| 国产精品麻豆人妻色哟哟久久 | 日本一二三区视频观看| av在线观看视频网站免费| 日韩在线高清观看一区二区三区| 久久久久性生活片| АⅤ资源中文在线天堂| 久久久午夜欧美精品| 在线播放无遮挡| 中文字幕制服av| 青春草亚洲视频在线观看| 99国产极品粉嫩在线观看| 日韩欧美在线乱码| 99热这里只有是精品在线观看| 国产成人精品婷婷| 22中文网久久字幕| 日韩大尺度精品在线看网址| 少妇人妻精品综合一区二区 | 成人三级黄色视频| 日韩欧美国产在线观看| 最近中文字幕高清免费大全6| 国产精品,欧美在线| 22中文网久久字幕| 免费av观看视频| 亚洲欧美精品综合久久99| 91麻豆精品激情在线观看国产| 看免费成人av毛片| 干丝袜人妻中文字幕| 欧美一区二区国产精品久久精品| 精品少妇黑人巨大在线播放 | 最近视频中文字幕2019在线8| 99国产极品粉嫩在线观看| 成年版毛片免费区| 亚洲久久久久久中文字幕| 国国产精品蜜臀av免费| 日韩av不卡免费在线播放| 日韩,欧美,国产一区二区三区 | 国产淫片久久久久久久久| 欧美在线一区亚洲| 久久婷婷人人爽人人干人人爱| 永久网站在线| av在线亚洲专区| 天堂影院成人在线观看| 亚洲av免费高清在线观看| а√天堂www在线а√下载| 三级男女做爰猛烈吃奶摸视频| 国产成人a区在线观看| 国产精品久久久久久精品电影小说 | 久久久久久久亚洲中文字幕| 91久久精品国产一区二区三区| 色综合亚洲欧美另类图片| 亚洲精品日韩在线中文字幕 | 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区亚洲| 好男人视频免费观看在线| 免费观看的影片在线观看| 午夜激情欧美在线| 欧美成人免费av一区二区三区| 女人被狂操c到高潮| 成人av在线播放网站| 麻豆成人午夜福利视频| 国产日本99.免费观看| 亚洲最大成人手机在线| 卡戴珊不雅视频在线播放| 亚洲精品粉嫩美女一区| 国产不卡一卡二| 国产精品综合久久久久久久免费| 久久精品人妻少妇| 亚洲精品自拍成人| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久久久毛片| 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱 | 亚洲综合色惰| 国产一区亚洲一区在线观看| 在线免费观看的www视频| 亚洲国产欧美在线一区| 波多野结衣高清作品| 国产国拍精品亚洲av在线观看| 久久中文看片网| 男人舔女人下体高潮全视频| 国产午夜精品久久久久久一区二区三区| 国产三级在线视频| 2021天堂中文幕一二区在线观| 亚洲精品日韩在线中文字幕 | 亚洲成人久久爱视频| 一进一出抽搐动态| 国产日本99.免费观看| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式| 蜜桃久久精品国产亚洲av| 亚洲国产精品国产精品| 亚洲天堂国产精品一区在线| 中文在线观看免费www的网站| 午夜久久久久精精品| 亚洲天堂国产精品一区在线| 久久久精品大字幕| 午夜精品一区二区三区免费看| 天堂av国产一区二区熟女人妻| 18+在线观看网站| 少妇的逼水好多| 日韩,欧美,国产一区二区三区 | 97超碰精品成人国产| av在线亚洲专区| 亚洲,欧美,日韩| 国产精品99久久久久久久久| 国产精品不卡视频一区二区| 亚洲无线观看免费| 老熟妇乱子伦视频在线观看| 欧美日韩综合久久久久久| 91aial.com中文字幕在线观看| 国内揄拍国产精品人妻在线| 国产精品一区二区三区四区久久| 亚洲欧美日韩卡通动漫| 中国美女看黄片| 久久99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久久久久久| 欧美变态另类bdsm刘玥| www.av在线官网国产| 久久精品91蜜桃| 久久鲁丝午夜福利片| 国产白丝娇喘喷水9色精品| 国产av在哪里看| 一区福利在线观看| 国产亚洲5aaaaa淫片| 99久久久亚洲精品蜜臀av| 成年女人看的毛片在线观看| 国产精品99久久久久久久久| 白带黄色成豆腐渣| 亚洲成av人片在线播放无| 国产精品野战在线观看| 国产av麻豆久久久久久久| 亚洲久久久久久中文字幕| 亚洲国产精品久久男人天堂| 欧美色视频一区免费| 久久午夜亚洲精品久久| 麻豆成人午夜福利视频| 韩国av在线不卡| 男插女下体视频免费在线播放| 天天躁日日操中文字幕| 日日干狠狠操夜夜爽| 性插视频无遮挡在线免费观看| 国产视频首页在线观看| 欧美精品国产亚洲| 国产精品日韩av在线免费观看| 欧美精品国产亚洲| 亚洲欧洲日产国产| 最近视频中文字幕2019在线8| eeuss影院久久| 久久精品久久久久久噜噜老黄 | 99久久九九国产精品国产免费| 大香蕉久久网| 搞女人的毛片| 国产色婷婷99| 国产单亲对白刺激| 精品日产1卡2卡| 国产精品一二三区在线看| 国产精华一区二区三区| 毛片女人毛片| 国产精品久久久久久精品电影小说 | 国产亚洲av片在线观看秒播厂 | 99久久九九国产精品国产免费| 搞女人的毛片| 在线国产一区二区在线| 免费一级毛片在线播放高清视频| 国产精品久久电影中文字幕| 午夜福利成人在线免费观看| 在线免费观看不下载黄p国产| 热99re8久久精品国产| 一级黄片播放器| 国产成人aa在线观看| 能在线免费观看的黄片| 麻豆av噜噜一区二区三区| 少妇熟女欧美另类| 秋霞在线观看毛片| 精品无人区乱码1区二区| 人妻系列 视频| 国产在视频线在精品| 免费一级毛片在线播放高清视频| 国产免费一级a男人的天堂| 亚洲内射少妇av| 久久九九热精品免费| 国产综合懂色| 精品久久久久久久人妻蜜臀av| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 亚洲性久久影院| 精品久久久噜噜| 成人午夜精彩视频在线观看| 国产毛片a区久久久久| 天天一区二区日本电影三级| 国产精品一区二区三区四区免费观看| 欧美人与善性xxx| 亚洲成av人片在线播放无| 日韩欧美在线乱码| 色5月婷婷丁香| 亚洲无线观看免费| 麻豆成人av视频| 亚洲欧美日韩东京热| 久久鲁丝午夜福利片| 国产毛片a区久久久久| 国产亚洲精品久久久久久毛片| 日韩一本色道免费dvd| 欧美日韩在线观看h| 精品国产三级普通话版| 国产私拍福利视频在线观看| 波多野结衣高清作品| 乱人视频在线观看| 一区二区三区四区激情视频 | 精品日产1卡2卡| 美女高潮的动态| 直男gayav资源| 如何舔出高潮| 亚洲成人中文字幕在线播放| 中文欧美无线码| avwww免费| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 国产黄a三级三级三级人| 舔av片在线| 黄色视频,在线免费观看| 久久韩国三级中文字幕| 给我免费播放毛片高清在线观看| 久久久色成人| 噜噜噜噜噜久久久久久91| 超碰av人人做人人爽久久| 一区二区三区四区激情视频 | 丝袜喷水一区| 成人一区二区视频在线观看| 97超碰精品成人国产| 免费一级毛片在线播放高清视频| 久久鲁丝午夜福利片| 网址你懂的国产日韩在线| 欧美日韩一区二区视频在线观看视频在线 | 菩萨蛮人人尽说江南好唐韦庄 | 一本精品99久久精品77| 国产精品麻豆人妻色哟哟久久 | 色噜噜av男人的天堂激情| 国产精品免费一区二区三区在线| 日日撸夜夜添| 在线免费观看的www视频| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 午夜福利在线观看吧| 亚洲欧美清纯卡通| 国产淫片久久久久久久久| 久久人人爽人人片av| 校园春色视频在线观看| 亚洲精华国产精华液的使用体验 | 色综合色国产| 免费av观看视频| 女同久久另类99精品国产91| 永久网站在线| 日本黄大片高清| 国产av在哪里看| 美女黄网站色视频| 国产一区二区激情短视频| 一个人免费在线观看电影| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| 久久久久久久亚洲中文字幕| 国产精品99久久久久久久久| 在线a可以看的网站| 国产三级中文精品| 国产不卡一卡二| 变态另类丝袜制服| 观看美女的网站| 春色校园在线视频观看| 亚洲国产色片| 成熟少妇高潮喷水视频| 国产成人精品一,二区 | 色噜噜av男人的天堂激情| 在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 一级毛片久久久久久久久女| 综合色丁香网| 我的女老师完整版在线观看| 久久中文看片网| 久久久久久久久久黄片| 又粗又硬又长又爽又黄的视频 | 日本免费一区二区三区高清不卡| 国产午夜精品久久久久久一区二区三区| 国产av在哪里看| 精品国产三级普通话版| 免费av毛片视频| www.色视频.com| 日韩欧美三级三区| 精品久久国产蜜桃| 深夜精品福利| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品专区久久| 国产成人freesex在线| 午夜免费男女啪啪视频观看| 国产精品99久久久久久久久| 亚洲经典国产精华液单| www.av在线官网国产| 国内精品一区二区在线观看| 天天一区二区日本电影三级| 变态另类成人亚洲欧美熟女| 久久久久国产网址| 亚洲av成人精品一区久久| 最近最新中文字幕大全电影3| 国产在视频线在精品| 国产成人福利小说| 国产一区二区激情短视频| 精品久久国产蜜桃| 狠狠狠狠99中文字幕| 亚洲七黄色美女视频| 少妇裸体淫交视频免费看高清| 久久久久久久久久黄片| 免费电影在线观看免费观看| 国产精品av视频在线免费观看| 欧美又色又爽又黄视频| 国产av在哪里看| 少妇人妻一区二区三区视频| 久久国产乱子免费精品| 五月玫瑰六月丁香| 美女黄网站色视频| 亚洲18禁久久av| 99九九线精品视频在线观看视频| 中文字幕熟女人妻在线| 日本免费a在线| 狂野欧美白嫩少妇大欣赏| 丝袜喷水一区| 午夜久久久久精精品| 日韩大尺度精品在线看网址| 欧美变态另类bdsm刘玥| 亚洲av中文字字幕乱码综合| 亚洲,欧美,日韩| 你懂的网址亚洲精品在线观看 | 亚洲av不卡在线观看| 一本精品99久久精品77| 国产精品久久电影中文字幕| 亚洲国产精品国产精品| 十八禁国产超污无遮挡网站| 成人综合一区亚洲| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 国语自产精品视频在线第100页| 欧美最新免费一区二区三区| 亚洲欧美精品专区久久| 亚洲精品成人久久久久久| 插逼视频在线观看| 日日啪夜夜撸| 国产精品日韩av在线免费观看| 亚洲欧美日韩卡通动漫| 桃色一区二区三区在线观看| 国产精品野战在线观看| 寂寞人妻少妇视频99o| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 久久久久网色| 直男gayav资源| www.av在线官网国产| 日韩欧美 国产精品| 国产精品一及| 国产黄片视频在线免费观看| 国产黄色视频一区二区在线观看 | 久久婷婷人人爽人人干人人爱| 日韩强制内射视频| 国产人妻一区二区三区在| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 亚洲成人精品中文字幕电影| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 一本一本综合久久| 国产在线精品亚洲第一网站| 99久久九九国产精品国产免费| 精华霜和精华液先用哪个| 国产精品女同一区二区软件| 久久人人爽人人片av| 麻豆一二三区av精品| 男的添女的下面高潮视频| 国产一区二区亚洲精品在线观看| 亚洲va在线va天堂va国产| 国产精品久久电影中文字幕| www.av在线官网国产| 黄片无遮挡物在线观看| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产高清国产av| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 乱系列少妇在线播放| 99久久精品一区二区三区| 国产精品.久久久| 亚洲av男天堂| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区 | 联通29元200g的流量卡| 亚洲性久久影院| 日韩中字成人| 日韩高清综合在线| 亚洲人成网站高清观看| 成人特级黄色片久久久久久久| 久久婷婷人人爽人人干人人爱| 中国国产av一级| 18禁在线无遮挡免费观看视频| 日本欧美国产在线视频| 能在线免费观看的黄片| 特大巨黑吊av在线直播| 小蜜桃在线观看免费完整版高清| 我的老师免费观看完整版| 免费观看a级毛片全部| 五月玫瑰六月丁香| 国产黄片视频在线免费观看| 少妇人妻精品综合一区二区 | 久久久久九九精品影院| 99热网站在线观看| 亚洲精品粉嫩美女一区| 简卡轻食公司| 国内精品久久久久精免费| 国产午夜福利久久久久久| 亚洲自偷自拍三级| 久久久久久伊人网av| 六月丁香七月| 国产精品美女特级片免费视频播放器| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜 | 成年免费大片在线观看| 日韩一区二区视频免费看| 在线观看免费视频日本深夜| 免费电影在线观看免费观看| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕| 亚洲第一区二区三区不卡| 国产精品一及| 综合色av麻豆| 欧美成人a在线观看| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 国产精品,欧美在线| 免费搜索国产男女视频| 99久国产av精品| 成人毛片60女人毛片免费| 久久精品影院6| 午夜精品在线福利| 精品久久久噜噜| 12—13女人毛片做爰片一| 久久中文看片网| 一级黄片播放器| 亚洲人成网站在线观看播放| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 亚洲高清免费不卡视频| 日韩 亚洲 欧美在线| 欧美潮喷喷水| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频 | 一级av片app| 精品久久久久久久久久久久久| 联通29元200g的流量卡| 亚洲最大成人中文| 亚洲欧洲国产日韩| 国产精华一区二区三区| 免费人成在线观看视频色| 国产高潮美女av| 久久中文看片网| 岛国在线免费视频观看| av在线播放精品| 蜜桃久久精品国产亚洲av| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 搡女人真爽免费视频火全软件| 一边摸一边抽搐一进一小说| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在 | 精品久久久久久久久久久久久| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 久久韩国三级中文字幕| 婷婷色av中文字幕| 给我免费播放毛片高清在线观看| 国产欧美日韩精品一区二区| 久久热精品热| 丰满人妻一区二区三区视频av| 一个人观看的视频www高清免费观看| 国内久久婷婷六月综合欲色啪| 内射极品少妇av片p| 久久精品国产自在天天线| 国产精品久久视频播放| 成人午夜精彩视频在线观看| 婷婷色综合大香蕉| 午夜激情福利司机影院| 欧美不卡视频在线免费观看| 日韩欧美一区二区三区在线观看| 一区二区三区免费毛片| 国内久久婷婷六月综合欲色啪| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品,欧美在线| 久久精品夜色国产| 国产午夜精品一二区理论片| 国内精品一区二区在线观看| 天天躁夜夜躁狠狠久久av| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 亚洲欧洲日产国产| 18禁裸乳无遮挡免费网站照片| 日韩高清综合在线| 成人欧美大片| 国产亚洲精品av在线| 伊人久久精品亚洲午夜| 成年版毛片免费区| 国产精品一及| 美女xxoo啪啪120秒动态图| 久久午夜福利片| 插阴视频在线观看视频| 一本精品99久久精品77| 尾随美女入室| 日本黄色视频三级网站网址| 麻豆久久精品国产亚洲av| 国产精品免费一区二区三区在线| 国产黄片视频在线免费观看| 一区二区三区四区激情视频 | 国产淫片久久久久久久久| 国产亚洲欧美98| 特级一级黄色大片| 精品熟女少妇av免费看| 此物有八面人人有两片| 菩萨蛮人人尽说江南好唐韦庄 | av天堂中文字幕网| 日韩人妻高清精品专区| 国产精品一区二区三区四区久久| 亚洲内射少妇av| 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 免费无遮挡裸体视频| 精品久久久久久久久亚洲| 国产老妇伦熟女老妇高清| 国产精品一区二区性色av| 听说在线观看完整版免费高清| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 日本免费一区二区三区高清不卡| 午夜福利在线观看吧| 国产精品乱码一区二三区的特点| 亚州av有码| 国产成人a区在线观看| eeuss影院久久| 如何舔出高潮| 又粗又爽又猛毛片免费看| 成人午夜高清在线视频| 成年av动漫网址| 日韩国内少妇激情av| 国产成人精品婷婷| 国产中年淑女户外野战色| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看| 一区二区三区四区激情视频 | 日本成人三级电影网站| 亚洲aⅴ乱码一区二区在线播放| 联通29元200g的流量卡| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影 | 国产亚洲av嫩草精品影院| 国产免费男女视频| 日本爱情动作片www.在线观看| 美女被艹到高潮喷水动态| 亚洲国产精品sss在线观看| 毛片女人毛片| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区| 一本久久中文字幕| 中文亚洲av片在线观看爽| 国产黄片视频在线免费观看| 九草在线视频观看| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 97在线视频观看| 97超碰精品成人国产| 99久久精品热视频| av黄色大香蕉| av在线观看视频网站免费| 免费黄网站久久成人精品| 亚洲av男天堂| 亚洲国产精品久久男人天堂| 日韩制服骚丝袜av| 非洲黑人性xxxx精品又粗又长| 亚洲av中文av极速乱| 男人的好看免费观看在线视频| 亚洲中文字幕日韩| 成人午夜高清在线视频| 亚洲经典国产精华液单|