• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravity and Spin Forces in Gravitational Quantum Field Theory?

    2018-08-02 07:35:40YueLiangWu吳岳良andRuiZhang張睿
    Communications in Theoretical Physics 2018年8期
    關(guān)鍵詞:張睿

    Yue-Liang Wu(吳岳良)and Rui Zhang(張睿)

    1Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3International Center for Theoretical Physics Asia-Pacific(ICTP-AP),University of Chinese Academy of Sciences,Beijing 100049,China

    AbstractIn the new framework of gravitational quantum field theory(GQFT)with spin and scaling gauge invariance developed in Phys.Rev.D 93(2016)024012-1,we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe.We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3)and SP(1,3)in biframe spacetime into SO(3)representations for deriving the propagators of the basic quantum fields and extract their interaction terms.The leading order Feynman rules are presented.A tree-level 2 to 2 scattering amplitude of the Dirac fermions,through a gravifield and a spin gauge if eld,is calculated and compared to the Born approximation of the potential.It is shown that the Newton’s gravitational law in the early universe is modified due to the background field.The spin dependence of the gravitational potential is demonstrated.

    Key words:gravifield,spin gauge field,background field,quantum gravity,tensor projection operators,scattering amplitudes,modified Newton’s law

    1 Introduction

    The gravitational quantum field theory(GQFT)with spin and scaling gauge invariance was developed in Refs.[1–2]to overcome the long term obstacle between the general theory of relativity(GR)and quantum mechanics.In fact,there has been enormous efforts on the theory beyond Einstein’s theory since the GR was established by Einstein in 1915.[3]The metric describing the geometry of the spacetime are commonly factorized linearly to explore the quantum structure of gravity and its interaction with matter fields,[4?5]and the Ricci scalar has been shown to be the key of the dynamics of gravity.The property of GR with spin and torsion was investigated in Refs.[6–8]where the totally antisymmetric coupling of the torsion to spin was presented.The general quadratic terms of the 2-rank tensor fields that satisfy the ghost-free and locality conditions were discussed in Ref.[9].With the tool named tensor projection operators developed in Ref.[10],which projects the SO(1,3)tensor representation to the components of different SO(3)representations,the general propagators and gauge freedoms were investigated and extrapolated to a more general case including propagating torsion.[11]The totally antisymmetric part and its renormalizability was anayzed in Ref.[12].

    Recently,a new framework of gravitational quantum field theory(GQFT)was proposed to treat the gravitational interaction on the same footing as electroweak and strong interactions,[1?2]where a biframe spacetime is initiated,namely,the locally flat non-coordinate spacetime and the globally flat Minkowski spacetime,a basic gravifield is defined on the biframe spacetime as a bicovariant vector field which is in general a 16-component field.The spin gauge field and scaling gauge field are introduced to keep the action invariant under a local SP(1,3)×SG(1)gauge transformation.A non-constant background solution has been obtained,which may account for the inflationary behaviour of the early universe.In a proceeding work,a more general action for a hyperunified field theory(HUFT)under the hyper-spin gauge and scaling gauge symmetries was proposed[13]to merge all elementary particles into a single hyper-spinor field and unify all basic forces into a fundamental interaction governed by a hyperspin gauge symmetry.A background solution remains to exist.In such an HUFT,it enables us to demonstrate the gravitational origin of gauge symmetry as the hypergravifield plays an essential role as a Goldstone-like field.The gauge-gravity and gravity-geometry correspondences lead to the gravitational gauge-geometry duality.It has been shown that a general conformal scaling gauge symmetry in HUFT results in a general condition of coupling constants,which eliminates the higher derivative terms due to the quadratic Riemann and Ricci tensors,so that the HUFT will get rid of the so-called unitarity problem caused by the higher order gravitational interactions.To demonstrate explicitly,in the present paper,we consider the gravitational interactions of gravifield and spin gauge field only in four dimensional case with a background field solution.Expanding the full action under such a background field,it is natural to extract the dynamics and interactions of the quantum fields.The interactions among these fields will reflect the gravitational behavior in the early universe.

    2 Action Expansion in a Non-Constant Background Field

    Let us start from a basic action by simply taking four dimentional spacetime,i.e.,D=4,from the hyperunified field theory(HUFT)[13]in hyper-spacetime,

    The tensors are taken the general forms presented in Ref.[13]

    The quantized field are expressed as:

    We can expand the action(1)and collect the leading order interactions and quadratic terms.As the quadratic term of the quantum gravifield includes a non-constant coefficientit is useful to absorb it into the field via a field-rede finition

    The final quadratic terms are given by:

    There are other terms,which involves two quantum fields,but with higher orders of the background field,we present them in the Appendix A.In the early universe,the background field ?(x)is sufficiently small,so that we can ignore the effect of those terms and only consider the quadratic terms in Eq.(2).

    Though the propagators can hardly be read from the action,we can utilize the tensor projection operators to decompose the spin components of the tensor fields,and then derive their propagators.The scaling gauge field decouples from the Dirac spinors,so we would not include it in our present considerations.We shall discuss the details in Sec.3.We can also get the leading-order interaction terms,which are given in the appendix B.Notice that we have absorbed the gauge coupling constant gh,which depends on the normalization of coefficients g1,g2and g4.We shall do a field rede finition after some normalization of the propagator in Sec.5 and turn the interactions to a usual form of gauge interactions.

    3 Tensor Projection Operators and Propagators of Gravifield and Spin Gauge Field as Well as Scalar Field

    The SO(1,3)tensor-like fields hμaand ?μabcan be decomposed into different SO(3)spin-parity components:Following Ref.[9],we shall de fine the tensor projection operatorswhere the subscripts f1and f2denoting the field type,the superscripts J and P label the spin and parity.The tensor projection operators satisfy the following relations:

    with the de finition

    To be specific,we write down the explicit forms for the tensor projection operator of the 2+component of the gravifield

    with the de finition

    and the tensor projection operator of the totally antisymmetric part of the spin gauge field ?μab,

    The explicit forms of other tensor projection operators are presented in the appendix C.

    In general,the tensor projection operators have the following properties,

    Thus we can write the quadratic terms of the action in terms of the tensor projection operators as follows,

    The field equations of the field typecan be expressed by tensor projection operators as:

    The explicit forms of the coefficient matrices are given by

    It is obvious that most of the matrices are degenerate,and these degeneracies indicate certain symmetries of the quadratic terms[11]relevant to unphysical degrees of freedom.When considering only the tree-level calculations,we do not need to know the exact gauge- fixing terms and gauge transformations by introducing the Faddeev-Popov ghosts.Instead,we can just apply the specific gauge- fixing conditions by setting the constraints

    without breaking the field equations,and neglect the corresponding lines in the coefficient matrices.Thus we only need to invert the“reduced” matrices and get the propagators.

    The resulting propagators are given as follows in the specific gauge:

    In general,when treating the fields χμaand ?μabas Yang-Mills gauge fields in GQFT,we can simply add the usual gauge- fixing terms for the gauge-type gravifield χμaand the spin gauge field ?μab.For simplicity,we take the following explicit forms for their gauge fixing conditions

    In such a case,the coefficient matrices of the field equations are given by

    Except for the 1+component of the gravifield,all other coefficient matrices are non-degenerate.Thus we are able to inverse the matrices by requiring

    and get the propagators:

    It is seen that in this case the propagator of the gravifield recovers the same one as the case without adding gauge fixing condition,while the propagator of the spin gauge field is modified for the spin 1 component with even parity,which is relevant to the total antisymmetric part of spin gauge field.

    It is noticed that there is an intersection term ??h,which is caused as the choice of h and ? is not orthogonal.To avoid such a complication,it is useful to rede fine the quantum field

    so that the propagator of the field Hμabecomes

    which is compatible with the propagator in the usual linear gravity approach[5]up to a gauge term pμpν/p2.If we take the gauge coefficients λ,to be 3/2,the explicit form of the H-H propagator is

    When taking the gauge fixing parameters as follows

    the explicit form of the ?-? propagator is

    so that the highest order pole in the propagator isterm,which behaves like a Yang-Mills gauge field propagator.In the following section,we will use the rede fined symmetric quantum gravifield to calculate the physical observable.

    4 Gravitational Scattering Amplitude of Dirac Spinor and Modified Newton’s Law with Background Field

    Let us now focus on the gravitational interaction between the Dirac spinor field Ψ in the early universe.The leading order vertex of the fermion involves the background field.

    In the momentum space,the background scaling factor is given by

    where ?kμ≡ ?/?kμ.Corresponding to Feynman rules shown in Figs.1 and 2.

    Fig.1 3-vertex for f-f-h.The dashed line connected to the cross is the background.

    Fig.2 3-vertex for ?-?-h.The dashed line connected to the cross is the background.

    Note that in calculating the fermion-fermion scatter-ing,the gamma matrix in the vertex is contracted with the two external spinors,which satisfies the equationSo that the couplings to ? do not contribute to the tree-level diagrams.For the same reason,the third term from the H propagator does not contribute to the result,either.

    The tree level amplitude of the two-fermion scattering,with in-state momenta p1and p2,and out-state momenta p3and p4,is shown in Fig.3

    Fig.3 Tree diagram for 2-fermion scattering via gravifield.

    The main purpose is to check the newtonian potential in the early universe with the existence of background field.For the case that all fields are massless,we cannot take a non-relativistic limit to simplify the amplitude.Let us first check the cross section of this scattering process to contract all the spinors.After integrating the momenta of the propagator,the amplitude in Eq.(34)becomes:

    The derivatives of δ(p)can be expressed as some functions multiplied by δ(p),thus we can write the second line in Eq.(35)to the following general form

    Then our result of the scattering amplitude,except for the overall coefficient and F(p1?p3)term that are related to the background field,is consistent with the leading order result shown in Ref.[14].If we were working in another gauge if xing condition,the difference would be terms proportional to qμqν/q2,contracted with the vertex will gives the termboth of which are vanishing because of the on-shell condition of the external fermions.So our result is indeed gauge independent.

    The squared matrix element,after throwing all the spin information,is:

    we can simplify Eq.(36)into the follow form

    As long as the two massless fermions are not in the same direction,we can always make a Lorentz boost to a centerof-energy frame,so thatWhen taking the weak interaction limit that θ→ 0,we have

    In comparison with the Born approximation of the cross section[16]

    To compare our result with those from the usual Newtonian potential,we identify the factorwith the coefficient of the Einstein equation 8πG.So the relation between αEand Newtonian gravitational constant GNis

    Then we obtain the potential in the momentum space as:

    The leading term will contribute to a 1/r potential in the coordinate space.Such a term coincides with the Newton’s law,but it is modified by a factorwhich depends on the size of the inverse of scaling factorIn the early universe,the scaling factor is much smaller,thus the gravitational potential can become much stronger.The modified termcontains the structure of the derivatives of delta functions,we shall investigate its effect elsewhere.

    Note that the coefficient 16πGNis four times than the gravitational potential for the massive Dirac fermions.This is because we are working on the massless Dirac fermions.When considering the Dirac fermion getting a mass from spontaneous symmetry breaking,a mass term will be generated.In a unitary scaling gauge condition detχ=1,we need to consider the change of the spinor structure,and an additional

    from the third term(30)of the graviton propagator.The massive Dirac fermion allows us to take a non-relativistic approximation

    The leading order and next-to-leading-order contributions fromis found to be

    The leading term for μ =0 requires r=r′,which together with Eq.(42)enables us to get a factor 1/4 for the potential(50).The next-to-leading-order term forμ=0 comes from the expansion of E

    The next-to-leading order fromμ=i can be simplified to

    the spinor formalism can be re-expressed as a four-vector

    Substituting it into the expression of the amplitude Eq.(34)

    we can obtain the total contribution up to next-to-leading order,

    So the potential for massive fermions is

    Ignoring the kinematic energies,the next-to-leading order effect is proportional to the inner product of two particles,

    If we consider the anti-fermion,its spinor structure is

    and the vertex would have a minus sign from ?(p2+p4)μ.The vertex spinor contraction is

    So the there was only an overall minus sign from the momentum,and will be compensated by the commutation of the fermion operator in the Wick contraction,thus the amplitude does not flip sign.The only possible difference lies in spin of the anti-fermion η?σiη.Thus we may use a separate spin notation to distinguish particle and antiparticle

    So the next-to-leading order effect between fermion and anti-fermion is

    Let us now consider the special case that the two massless ingoing particles are in the same direction.Suppose that their momenta are chosen as follows

    As the overall δ4(p1?p3+p2?p4)guarantees the momentum conservation,the outgoing momenta must be in the same direction.In this case,all the momenta are in the same direction,they are null vectors.So that their product gives zero,namely s=t=u=0.As a consequence,the cross-section becomes vanishing.

    5 Scattering Amplitude of the Dirac Spinor via the Spin Gauge Field

    It is interesting to consider the scattering amplitude of Dirac spinor via the spin gauge field.The leading order spin gauge interaction of Dirac spinor is given by the totally antisymmetric coupling of the spin gauge field.The vertex Feynman rule in Fig.4 can be derived from the last term in Eq.(33).

    Fig.4 3-vertex for f-f-?.

    The propagator of the totally antisymmetric part of the spin gauge field is taken the following form

    We may rede fine the coupling constants[13]

    and rede fine the spin gauge field and replace the vertex

    The Dirac spinor scattering amplitude via the spin gauge field is shown in Fig.5.

    Fig.5 Tree diagram for 2-fermion scattering via spin gauge field.

    If the Dirac spinor acquires a mass from some symmetry breaking,we may take the non-relativistic limit of this amplitude.Different from the Coulomb potential where the leading contribution comes fromthe γ5in Eq.(57)will lead to

    It is shown that the potential for 2-fermion scattering without spin change can be attractive(repulsive)for aligned spins and repulsive(attractive)for opposed spins,which relies on the sign of the coefficient(1?αW+βW)whether it is positive 1 ? αW+ βW> 0(negative 1?αW+βW<0).The potential of the totally antisymmetric field was studied in a different way in Ref.[6],which arrived at the case of negative coefficient 1?αW+βW<0.Such an interaction is independent of the background field.In the early universe,the scaling factor is so small that the gravitational effect becomes dominant to the cross sections.The spin gauge coupling is no longer significant,its cross section is found to be:

    When taking the weak interaction limit that θ → 0,we have

    which leads to a 1/r potential in the coordinate space.

    6 Conclusion

    We have investigated the gravitational interactions with the background field in the framework of GQFT.The full action of the GQFT with spin gauge and scaling gauge transformations has been expanded in a nonconstant background field.To the leading order gravitational interactions in GQFT,we have derived the Feynman rules for the propagators and interacting vertices of the quantum fields by using the tensor projection operators.The quantum gravifield has been rede fined to be normalized and diagonal,which leads to an interaction between the Dirac spinor and scalar fields.In the leading order,the scalar interaction with the Dirac spinor vanishes when the massless Dirac spinor are on-mass shell as the external fields.We have calculated the tree-level two Dirac spinors scattering through the gravitational interaction and analyzed its amplitude and cross section.Besides the modified term from the derivative of delta function,the overall amplitude is proportional to the inverse of the scaling factors,which implies that the gravitational potential is much stronger in the early universe.The spin dependence of the gravitational potential in the nonrelativistic case has been analyzed.We have also calculated the interaction between the Dirac spinor and the totally antisymmetric part of the spin gauge field at the leading order,which is similar to the result of the scattering through a vector field,but with a flip sign in the amplitude due to the property of axial vector,resulting in a spin gauge force,which depends on the sign of the coefficient in its quadratic terms.

    Appendix A Next-to-Leading Order Quadratic Terms

    We have presented the leading order quadratic terms in the context,the following are the higher order terms of the background field.We de fine

    The next-to-leading order quadratic terms for hμa-? are:

    The terms for hμa-wνare:

    The terms for ?-wμare:

    The terms for wμ-wνare:

    The terms for ?-? are:

    The terms for hμa-hνbare:

    Appendix B Leading Order Vertices

    We have presented the leading order vertices of the fermions in the context,the following are the 3-vertices for the spin gauge field ?μabwith the rede fined field ? by a coupling constant:

    For the gravifield hμainteractions,we have

    For the scalar field ?,except the pure scalar interaction term 4λs?3?,and the scalar and gravifield interactions are found to be,

    for h-?-h,and

    for h-?-?,as well as

    or h-w-?,and

    for h-h-w.With coupling to the spin gauge field,we obtain

    for h-?-?.More interactions include

    Appendix C Tensor Projection Operators

    Here we show the exact expression of projection operatorsfor the spin gauge field,gravifield and scalar,in which we have used the de finitionsfor short.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    小主人報(2022年7期)2022-08-16 06:59:28
    小主人報(2022年5期)2022-04-01 01:12:02
    The dilemma and development of industrial design in contemporary life
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    我的開心事
    亚洲天堂av无毛| 性少妇av在线| 大码成人一级视频| 久久国产亚洲av麻豆专区| 一二三四在线观看免费中文在| av天堂在线播放| 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区黑人| 中文字幕色久视频| 2021少妇久久久久久久久久久| 999久久久国产精品视频| 亚洲av美国av| 日本色播在线视频| 真人做人爱边吃奶动态| 成人国产一区最新在线观看 | 国产成人影院久久av| 一级片'在线观看视频| 精品高清国产在线一区| av天堂在线播放| 色94色欧美一区二区| 美女主播在线视频| 久久综合国产亚洲精品| 国产日韩欧美视频二区| 欧美黄色片欧美黄色片| 青草久久国产| 午夜免费鲁丝| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 一区在线观看完整版| 久久影院123| 狂野欧美激情性bbbbbb| 免费看不卡的av| cao死你这个sao货| 免费av中文字幕在线| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 老司机亚洲免费影院| 无遮挡黄片免费观看| 大陆偷拍与自拍| 精品国产一区二区久久| av电影中文网址| 男女午夜视频在线观看| 国产福利在线免费观看视频| 夫妻午夜视频| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 精品福利永久在线观看| 大片电影免费在线观看免费| 国产视频一区二区在线看| 国产精品国产av在线观看| 国产精品 国内视频| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| 久久久国产欧美日韩av| 欧美激情高清一区二区三区| 亚洲精品国产一区二区精华液| 在线 av 中文字幕| 久久天堂一区二区三区四区| 日本色播在线视频| 91九色精品人成在线观看| av天堂在线播放| 亚洲九九香蕉| 成人国产av品久久久| 欧美成人午夜精品| 99re6热这里在线精品视频| 两性夫妻黄色片| 看免费av毛片| 中文字幕制服av| 九草在线视频观看| 国产国语露脸激情在线看| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| 国产欧美日韩一区二区三 | 亚洲欧洲国产日韩| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 国产成人精品久久二区二区91| 91麻豆av在线| 国产精品一二三区在线看| 国产不卡av网站在线观看| 国产成人影院久久av| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| 老司机影院毛片| 操出白浆在线播放| 精品少妇内射三级| 国产xxxxx性猛交| 男女下面插进去视频免费观看| 久久久久视频综合| 秋霞在线观看毛片| 亚洲,欧美精品.| 两性夫妻黄色片| 午夜免费鲁丝| videos熟女内射| 丝袜美腿诱惑在线| 亚洲欧洲日产国产| 又紧又爽又黄一区二区| 99re6热这里在线精品视频| av福利片在线| 超碰成人久久| kizo精华| 香蕉国产在线看| 日日夜夜操网爽| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 男女高潮啪啪啪动态图| 三上悠亚av全集在线观看| 日韩熟女老妇一区二区性免费视频| 99久久精品国产亚洲精品| 婷婷色综合www| 亚洲国产看品久久| 又大又爽又粗| 咕卡用的链子| 国产精品久久久人人做人人爽| 亚洲五月婷婷丁香| 99国产精品99久久久久| 精品视频人人做人人爽| 麻豆国产av国片精品| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 久久免费观看电影| 国产免费视频播放在线视频| 亚洲第一av免费看| 香蕉国产在线看| 国产成人a∨麻豆精品| 久久久国产欧美日韩av| 国产精品国产三级专区第一集| 久久青草综合色| 乱人伦中国视频| 男女免费视频国产| 日本av手机在线免费观看| 男人舔女人的私密视频| 美女大奶头黄色视频| 久久国产精品人妻蜜桃| 91成人精品电影| 高清黄色对白视频在线免费看| 一级毛片电影观看| 丝瓜视频免费看黄片| 国产免费福利视频在线观看| www.熟女人妻精品国产| 日本五十路高清| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 天天躁狠狠躁夜夜躁狠狠躁| 久久99精品国语久久久| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 国产麻豆69| 免费日韩欧美在线观看| 国产欧美日韩精品亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 男女边吃奶边做爰视频| 老熟女久久久| 日韩av在线免费看完整版不卡| 亚洲欧美日韩高清在线视频 | 麻豆乱淫一区二区| 国产免费现黄频在线看| 久久午夜综合久久蜜桃| 国产亚洲av片在线观看秒播厂| 久久国产精品大桥未久av| 只有这里有精品99| 免费在线观看视频国产中文字幕亚洲 | 成人国产av品久久久| 免费一级毛片在线播放高清视频 | 久久人人97超碰香蕉20202| 精品国产乱码久久久久久男人| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 国产高清不卡午夜福利| 中国国产av一级| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 亚洲av片天天在线观看| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 午夜两性在线视频| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| av在线app专区| 麻豆av在线久日| 午夜福利视频精品| 人妻 亚洲 视频| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 精品欧美一区二区三区在线| 欧美成人精品欧美一级黄| 国产成人精品久久久久久| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲 | 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 欧美精品亚洲一区二区| tube8黄色片| 这个男人来自地球电影免费观看| 不卡av一区二区三区| 高清视频免费观看一区二区| 男女边吃奶边做爰视频| 精品亚洲成a人片在线观看| 麻豆av在线久日| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| xxx大片免费视频| 亚洲精品在线美女| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 另类亚洲欧美激情| 成年女人毛片免费观看观看9 | 精品福利永久在线观看| 在线观看免费高清a一片| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 性色av一级| 免费观看av网站的网址| 99国产精品99久久久久| 精品少妇黑人巨大在线播放| 欧美精品av麻豆av| 男女午夜视频在线观看| 69精品国产乱码久久久| 国产亚洲av高清不卡| 国产av精品麻豆| 9色porny在线观看| 欧美变态另类bdsm刘玥| 精品欧美一区二区三区在线| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 精品少妇久久久久久888优播| 国产成人系列免费观看| 国产一区二区在线观看av| 日韩中文字幕欧美一区二区 | 亚洲精品成人av观看孕妇| 成在线人永久免费视频| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 女警被强在线播放| 超碰97精品在线观看| 国产福利在线免费观看视频| 亚洲精品国产av成人精品| 日本黄色日本黄色录像| 欧美国产精品一级二级三级| 国产在线观看jvid| 七月丁香在线播放| www.自偷自拍.com| 超色免费av| 欧美 亚洲 国产 日韩一| www.999成人在线观看| 又粗又硬又长又爽又黄的视频| 久久人人97超碰香蕉20202| 最新的欧美精品一区二区| 久久青草综合色| avwww免费| 亚洲国产av新网站| 91字幕亚洲| 欧美亚洲 丝袜 人妻 在线| 2021少妇久久久久久久久久久| 美女高潮到喷水免费观看| 国产高清videossex| 新久久久久国产一级毛片| 成年人黄色毛片网站| 水蜜桃什么品种好| 99国产精品一区二区蜜桃av | cao死你这个sao货| 热99国产精品久久久久久7| 国产亚洲欧美在线一区二区| 久久99热这里只频精品6学生| avwww免费| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 日本色播在线视频| 亚洲精品国产区一区二| 免费人妻精品一区二区三区视频| 一级黄色大片毛片| av网站免费在线观看视频| 人妻人人澡人人爽人人| 成在线人永久免费视频| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 色综合欧美亚洲国产小说| 久久精品国产a三级三级三级| 国产色视频综合| 国产精品免费视频内射| av网站免费在线观看视频| 无限看片的www在线观看| 国产一区二区激情短视频 | 美女视频免费永久观看网站| 大香蕉久久成人网| 久久国产精品影院| 久久精品成人免费网站| 亚洲欧美一区二区三区国产| av网站免费在线观看视频| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 91老司机精品| 人妻一区二区av| 男女边吃奶边做爰视频| 久热这里只有精品99| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 亚洲一码二码三码区别大吗| 免费看不卡的av| 亚洲国产av新网站| 欧美性长视频在线观看| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站| 性色av一级| 在线看a的网站| 两个人看的免费小视频| 纯流量卡能插随身wifi吗| 男女之事视频高清在线观看 | 国产亚洲av高清不卡| 亚洲av日韩精品久久久久久密 | 精品卡一卡二卡四卡免费| 精品一区二区三卡| 国产精品成人在线| 婷婷色综合www| 亚洲av美国av| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡 | 精品国产一区二区三区四区第35| 国产精品偷伦视频观看了| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 日本色播在线视频| www日本在线高清视频| 18禁国产床啪视频网站| 视频区图区小说| 精品福利观看| av有码第一页| 夫妻午夜视频| 日韩制服丝袜自拍偷拍| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 亚洲欧美激情在线| 精品国产一区二区三区久久久樱花| 国产精品一区二区免费欧美 | 久久鲁丝午夜福利片| 9色porny在线观看| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | av一本久久久久| 男女午夜视频在线观看| 各种免费的搞黄视频| 91成人精品电影| 久久久久久亚洲精品国产蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 一级片'在线观看视频| 欧美97在线视频| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 中文精品一卡2卡3卡4更新| 亚洲国产毛片av蜜桃av| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲 | 在线精品无人区一区二区三| 啦啦啦在线免费观看视频4| 久久鲁丝午夜福利片| 亚洲色图综合在线观看| 国产成人精品在线电影| 亚洲精品国产av成人精品| 少妇裸体淫交视频免费看高清 | 日韩 亚洲 欧美在线| 老鸭窝网址在线观看| 亚洲欧美中文字幕日韩二区| 亚洲av国产av综合av卡| 亚洲av综合色区一区| 成人黄色视频免费在线看| 美女视频免费永久观看网站| 午夜老司机福利片| 日本五十路高清| 一级毛片 在线播放| 在线观看人妻少妇| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 国产男女内射视频| 1024香蕉在线观看| 国产精品三级大全| 91麻豆精品激情在线观看国产 | 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 国产成人欧美| 菩萨蛮人人尽说江南好唐韦庄| 亚洲少妇的诱惑av| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 国产高清国产精品国产三级| 99re6热这里在线精品视频| 亚洲 欧美一区二区三区| 国产精品.久久久| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 久久久久网色| 亚洲人成电影观看| 亚洲国产成人一精品久久久| 免费不卡黄色视频| 欧美在线黄色| 欧美精品av麻豆av| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 欧美黄色淫秽网站| 国产主播在线观看一区二区 | 国产精品九九99| 在线观看免费高清a一片| 天天添夜夜摸| 在线 av 中文字幕| 嫁个100分男人电影在线观看 | 国产精品人妻久久久影院| avwww免费| 欧美大码av| 欧美人与善性xxx| 久久精品久久精品一区二区三区| videosex国产| 免费日韩欧美在线观看| 麻豆av在线久日| 亚洲av综合色区一区| 18禁黄网站禁片午夜丰满| 午夜免费成人在线视频| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 国产高清videossex| 黄片小视频在线播放| 日本av手机在线免费观看| 国产免费现黄频在线看| 五月天丁香电影| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 99久久精品国产亚洲精品| 国产xxxxx性猛交| 免费av中文字幕在线| 男女床上黄色一级片免费看| 亚洲国产欧美网| 国产伦人伦偷精品视频| 一级黄片播放器| 别揉我奶头~嗯~啊~动态视频 | 99精国产麻豆久久婷婷| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 午夜久久久在线观看| 亚洲,欧美精品.| 国产1区2区3区精品| 中文字幕人妻丝袜制服| 国产亚洲av高清不卡| 美女主播在线视频| 欧美精品高潮呻吟av久久| svipshipincom国产片| www.999成人在线观看| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 亚洲熟女毛片儿| 操出白浆在线播放| 国产真人三级小视频在线观看| 国产视频首页在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 国产黄色免费在线视频| 中文字幕制服av| 中文字幕色久视频| 免费在线观看完整版高清| 精品少妇内射三级| 美女国产高潮福利片在线看| av网站免费在线观看视频| 咕卡用的链子| 国产熟女欧美一区二区| 又黄又粗又硬又大视频| 日韩av在线免费看完整版不卡| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 亚洲精品第二区| 99热国产这里只有精品6| 亚洲国产毛片av蜜桃av| 久久影院123| 成人亚洲精品一区在线观看| 亚洲国产精品成人久久小说| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 成人18禁高潮啪啪吃奶动态图| videosex国产| 水蜜桃什么品种好| 日本一区二区免费在线视频| 欧美97在线视频| 色视频在线一区二区三区| 久久人妻福利社区极品人妻图片 | 美女大奶头黄色视频| 水蜜桃什么品种好| 久久免费观看电影| 女性被躁到高潮视频| 亚洲欧美精品自产自拍| 咕卡用的链子| 一本一本久久a久久精品综合妖精| 久久青草综合色| 精品久久久久久久毛片微露脸 | 国产亚洲欧美精品永久| 一边摸一边做爽爽视频免费| 久久久亚洲精品成人影院| 一本综合久久免费| 日本a在线网址| 下体分泌物呈黄色| 久久99精品国语久久久| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 亚洲人成77777在线视频| 一级毛片女人18水好多 | 欧美国产精品一级二级三级| 欧美黑人精品巨大| 2018国产大陆天天弄谢| 免费在线观看影片大全网站 | 欧美国产精品一级二级三级| 宅男免费午夜| 久久 成人 亚洲| 男女之事视频高清在线观看 | 尾随美女入室| 日日夜夜操网爽| 精品久久久久久久毛片微露脸 | 看免费av毛片| 视频区欧美日本亚洲| 9191精品国产免费久久| 黑丝袜美女国产一区| 亚洲成人手机| 国产高清不卡午夜福利| 国语对白做爰xxxⅹ性视频网站| 国产成人精品久久久久久| 在线 av 中文字幕| 18在线观看网站| 狂野欧美激情性bbbbbb| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 最新的欧美精品一区二区| 美女视频免费永久观看网站| 国产成人av教育| 国产野战对白在线观看| 大码成人一级视频| avwww免费| 9色porny在线观看| 岛国毛片在线播放| 9191精品国产免费久久| 天堂中文最新版在线下载| 九色亚洲精品在线播放| 国产一区二区三区av在线| 性色av一级| 91国产中文字幕| 亚洲中文字幕日韩| 国产一区二区三区av在线| 老司机靠b影院| 操出白浆在线播放| 免费少妇av软件| 电影成人av| 国产黄色视频一区二区在线观看| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 男女无遮挡免费网站观看| 久久影院123| 美女高潮到喷水免费观看| 99久久99久久久精品蜜桃| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 亚洲五月婷婷丁香| 亚洲少妇的诱惑av| 男女国产视频网站| 国产免费又黄又爽又色| www.精华液| 免费在线观看完整版高清| 久久久久久久精品精品| 国产精品一区二区在线观看99| 一边摸一边抽搐一进一出视频| 看免费成人av毛片| 精品高清国产在线一区| 久久天堂一区二区三区四区| 国产免费视频播放在线视频| 久久中文字幕一级| 欧美日韩av久久| 99香蕉大伊视频| 亚洲图色成人| 可以免费在线观看a视频的电影网站| 国产91精品成人一区二区三区 | 中文欧美无线码| 久久久久久人人人人人| 操美女的视频在线观看| 欧美在线黄色| 青春草亚洲视频在线观看| 看十八女毛片水多多多| 一级毛片我不卡| a级毛片在线看网站| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| 青春草视频在线免费观看| 久久综合国产亚洲精品| 国产成人精品在线电影| 中文乱码字字幕精品一区二区三区| 国产成人影院久久av| 久久人人97超碰香蕉20202| 大码成人一级视频| 一本一本久久a久久精品综合妖精| 国产高清videossex| 国产精品九九99| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美|