• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Approximate Approach for Systems of Singular Volterra Integral Equations Based on Taylor Expansion

    2018-08-02 07:35:32MohsenDidgarandAlirezaVahidi
    Communications in Theoretical Physics 2018年8期

    Mohsen Didgarand Alireza Vahidi

    1Department of Mathematics,Guilan Science and Research Branch,Islamic Azad University,Rasht,Iran

    2Department of Mathematics,Rasht Branch,Islamic Azad University,Rasht,Iran

    3Department of Mathematics,College of Science,Yadegar-e-Emam Khomeyni(RAH)Shahr-e-Rey Branch,Islamic Azad University,Tehran,Iran

    AbstractIn this article,an extended Taylor expansion method is proposed to estimate the solution of linear singular Volterra integral equations systems.The method is based on combining the m-th order Taylor polynomial of unknown functions at an arbitrary point and integration method,such that the given system of singular integral equations is converted into a system of linear equations with respect to unknown functions and their derivatives.The required solutions are obtained by solving the resulting linear system.The proposed method gives a very satisfactory solution,which can be performed by any symbolic mathematical packages such as Maple,Mathematica,etc.Our proposed approach provides a significant advantage that the m-th order approximate solutions are equal to exact solutions if the exact solutions are polynomial functions of degree less than or equal to m.We present an error analysis for the proposed method to emphasize its reliability.Six numerical examples are provided to show the accuracy and the efficiency of the suggested scheme for which the exact solutions are known in advance.

    Key words:systems of singular Volterra integral equations(SSVIEs),systems of generalized Abel’s integral equations,error analysis,Taylor expansion

    1 Introduction

    Singular integral equations appear frequently in mathematical physics and have various applications in different fields including fluid mechanics,solid mechanics,quantum mechanics,bio-mechanics,astronomy,optics,electromagnetic theory,X-ray radiography,seismology,optical if ber evaluation,atomic scattering,radar ranging,electron emission,plasma diagnostics,and microscopy.[1]In recent years,approximate solution of integral equations has attracted great attention of many researchers[1?8]while numerical solution of weakly singular integral equations has been less considered.[9?18]Abel’s integral equation is one of the famous and important singular integral equations that arises from physical or mechanical models without passing through a differential equation.The general form of Abel’s integral equation is

    As mechanical description of Abel’s integral equation consider a point of mass moving in the gravity field on a smooth curve lying in a vertical plane.Let f(x)show the time in which the point mass reaches the lowest point while released from the height x.The problem is to find the equation of the curve.Abel’s integral equation is formulation of this problem.[1]

    Study and investigation of approximate solutions for systems of singular integral equations play a significant role in applied sciences,since they are not generally easy to solve analytically.Thus a variety of numerical and approximate methods have been developed to solve these,such as operational matrices,[19]homotopy perturbation method(HPM),[20]homotopy analysis method(HAM),[21]fractional differential transform method,[22]extrapolation method,[23]Legendre wavelets,[24]and Sinc approximation with the single exponential(SE).[25]

    Li[26]proposed a novel application of Taylor expansion method for approximate solution of linear ordinary differential equations with variable coefficients.The method expanded by Li and his co-authors to solve Abel’s integral equation,[18,27]Riccati equation,[28]an integral equation with fixed singularity for a cruciform crack,[29]a class of linear integro-differential equations,[30]and fractional integro-differential equations.[31]Vahidi and Didgar improved the Taylor expansion method proposed in Ref.[28]for determining the solution of Riccati equations.[32]Didgar and Ahmadi expanded the method proposed in Ref.[26]for solving systems of linear ordinary and fractional differential equations.[33]Moreover,Maleknejad and Damercheli[34]developed the method for solving linear second kind Volterra integral equations system.This investigation is an effort to propose a novel application of Taylor expansion[18,26?34]for solving systems of singular integral equations which possesses high accuracy.By expanding unknown functions as an m-th order Taylor poly-nomial and employing integration method,system of singular integral equations is converted into a new system of linear equations with respect to unknown functions and their derivatives.Then,intended approximate solutions can be obtained by solving the resulting linear system using a standard method.Besides simplicity and applicability,the considerable advantage of this method is that an m-th order approximation tends to the exact solution if it be a polynomial function of degree at most m.

    The paper is arranged as follows.In Sec.2,a method for systems of singular integral equations is described.An error analysis is given in Sec.3.In Sec.4,the accuracy and efficiency of the method is illustrated by considering six numerical examples.Section 5 is devoted to conclusions.

    2 Description of the Method

    Consider the following system of singular Volterra integral equations

    where λij(i,j= 1,...,n)are real constants,gij(x)(i,j=1,...,n)and fi(x)(i=1,...,n)are given functions in C(I)where I is the interval of interest.The ψj(x)(j=1,...,n)are unknown functions to be determined and kijare singular kernels of the form

    In this section we aim to show how the Taylor expansion method can be applied to the approximate solutions of singular system(2).Toward this end,we convert the SSVIEs into a system of linear equations with respect to unknown functions and their derivatives.This needs the desired solutions ψj(t)to be m+1 times continuously differentiable on the interval I,in other words ψj∈ Cm+1(I).Therefore,for ψj∈ Cm+1(I),the unknown functions ψj(t)can be expressed in terms of the m-th order Taylor series at an arbitrary point x∈I as

    where Ej,m(t,x)indicates the Lagrange error bound

    for some point ξjbetween x and t.Generally,the Lagrange error bound Ej,m(t,x)becomes sufficiently small as m gets great enough.Especially,if the solutions ψj(t)are polynomial functions of degree up to m,then the Lagrange error bound becomes zero,namely,the obtained approximate solutions of system(2)yield the exact solutions.Based on the aforementioned assumption,by omitting the last Lagrange error bound,we consider the truncated Taylor expansion ψj(t)as

    Inserting the approximate relation(6),for unknown function ψj(t),into Eq.(2)and in view of Eq.(3),we obtain

    In fact,Eq.(2)was converted into a linear system of ordinary differential equations with respect to ψj(x)and its derivatives up to order m.In other word,we have obtained n linear equations in Eq.(7)with respect to n×(m+1)unknown functionsfor k=0,...,m,j=1,...,n.In the following,we want to determineby solving a system of linear equations.In order to achieve this goal,other n×m independent linear equations with respect toare needed,which can be obtained by integrating both sides of Eq.(2)m times with respect to x from 0 to s and with the help of changing the order of the integrations.Thus,we have

    where

    in which the variable s has replaced by x,for simplicity.Similarly,we apply the Taylor expansion again and substituting(6)for ψj(t)into Eq.(8)results in

    for l=1,...,m.

    In this way,Eqs.(7)and(10)construct a system of linear equations with respect to the unknown functions ψj(x)and its derivatives up to order m.In the following,we indicate this system as

    where

    and in coefficient matrix(12),the first n rows refer to coefficients ofin Eq.(7)for k=0,...,m,j=1,...,n and the other rows refer to coefficients ofinfor k=1,...,m are determined by solving the resulting linear system but in point of fact,it is ψj(x)that we need.

    3 Error Analysis

    This section belongs to the stability analysis of the scheme and the error analysis proposed in Ref.[18]will be expanded for derived m-th order approximate solution of singular integral equations system(2)in order to get theoretical features about the convergence of the suggested method.We assume that the exact solutions ψj(t)are infinitely differentiable on the interval I;so ψj(t)can be expanded as an uniformly convergent Taylor series in I as follows Eq.(10)for l=1,...,m.Ultimately,the resulting system(11)can be solved by any appropriate method to obtain unknown functions.We note that not only ψj(x)but also

    Using the proposed method given in Sec.2,SSVIEs can be converted into an equivalent system of linear equations with respect to unknown functionsk=0,1,...as

    where

    Hence,under the solvability conditions of system(16)and letting B=V?1,the unique solution of system(16)is represented as

    We rewrite relation(19)in an alternative matrix form as

    Accordingly,we can find out that the vector Ψnconsists of the first n(m+1)elements of the exact solution vector Ψ must satisfy the following relation

    According to the proposed process,the unique solution of SSVIEs(2)can be denoted as

    where Ψnis replaced bynas its approximate solution.

    Subtracting Eq.(22)from Eq.(21)leads to

    Now,we expand the right-hand side of Eq.(23),the first n elements of the vector at the left-hand side of Eq.(23)can be expressed as

    where

    4 Numerical Examples

    In this section,six numerical examples are considered in order to establish the applicability and the accuracy of the proposed method.The results are compared with previous reports results to illustrate that the suggested method is not only accurate but also quite stable.In the following examples,absolute errors of the m-th order approximate values ψi,m(x)and the corresponding exact values ψi(x)asare determined.All computations were performed using Mathematica 8.

    Example 1Consider the following system of singular Volterra integral equations[19]

    with the exact solutions ψ1(x)=x and ψ2(x)=1.

    Using the proposed method in Sec.2,we obtain the approximate solutions of the problem(27)and it is important to note that after converting system(27)into a system of linear equations the Mathematica command“LinearSolve” is used for the new system.We can find by setting m=1,the first-order approximate solution yields the exact solution as expected,since the m-th order approximate solution yields the exact solution if the exact solution is a polynomial function of degree up to m.

    This example has been solved by operational matrices of piecewise constant orthogonal functions[19]on the interval[0,1).We present the maximum of the absolute errors obtained from Ref.[19]in Table 1.

    Table 1 The maximum of the absolute errors in Ref.[19].

    Table 2 Absolute errors of Example 2 for ψ1(x).

    Example 2Consider the following integral equations system[22,25]

    Example 3The following system of integral equations

    is considered in Ref.[25]with the exact solutions ψ1(x)=x and ψ2(x)=1.Employing the process described in Sec.2,by setting m=1,the first-order approximate solution of Eq.(29)results in the exact solution,as expected.This example was used in Ref.[25]and has been solved by SE-Sinc method.Tables 6 and 7 are related to the numerical results obtained from Ref.[25].

    Table 3 Absolute errors of Example 2 for ψ2(x).

    Table 4 Absolute errors of Example 2 by SE-Sinc method in Ref.[25]for ψ1(x).

    Table 6 Absolute errors of Example 3 by SE-Sinc method in Ref.[25]for ψ1(x).

    Example 4Consider the following system of Abel’s integral equations of the second kind[21]

    Table 7 Absolute errors of Example 3 by SE-Sinc method in Ref.[25]for ψ2(x).

    From Tables 8 and 9,we can find that the accuracy of our results is quite satisfactory and more accurate results can be obtained by taking higher-order m.This example was used in Ref.[21]and has been solved by homotopy analysis method.Figures 1 and 2 are related to the absolute errors of ψ1(x)and ψ2(x),respectively,in Ref.[21].From Tables 8 and 9 and Figs.1 and 2,we observe that the results obtained by Taylor expansion method are much better than those obtained in Ref.[21].

    Example 5Consider the following system of Abel’s integral equations of the second kind[21]with the exact solutions ψ(x)=x and

    1We obtain the approximate solutions by setting m=1,5,10,15.In the following,absolute errors are shown in Tables 10 and 11.From Tables 10 and 11,we observe that the accuracy of our results is quite satisfactory and more accurate results can be obtained by taking higherorder m.This example was used in Ref.[21]and has been solved by homotopy analysis method.Figures 3 and 4 are related to the absolute errors of ψ1(x)and ψ2(x),respectively,in Ref.[21].From Tables 10 and 11 and Figs.3 and 4,we can find that the results obtained by Taylor expansion method are much better than those obtained in Ref.[21].

    Table 8 Absolute errors of Example 4 for ψ1(x).

    Table 9 Absolute errors of Example 4 for ψ2(x).

    Table 10 Absolute errors of Example 5 for ψ1(x).

    Example 6Consider the following singular integral equations system of the first kind[1]

    with the exact solutions ψ1(x)=1+x+x3and ψ2(x)=1?x?x3.We evaluate the approximate solutions by setting m=1,2,3 and the obtained absolute errors are shown in Tables 12 and 13.We observe that the accuracy of our results is quite satisfactory and the third-order approximate solution yields the exact value,as expected.

    Table 11 Absolute errors of Example 5 for ψ2(x).

    Table 12 Absolute errors of Example 6 for ψ1(x).

    5 Conclusion

    The main objective of this investigation was to present a new application of Taylor expansion to conveniently solve linear singular integral equations systems.By employing the Taylor expansion of unknown functions at an arbitrary point and integration method,the SSVIEs has been converted into a system of linear equations with respect to unknown functions and their derivatives.The stability analysis of the method was also carried out and we have demonstrated the practicality and efficiency of our proposed method by several numerical examples.In particular for such cases when the exact solutions are polynomial functions of degree at most m,the derived m-th order approximations are equal to exact solutions.

    Table 13 Absolute errors of Example 6 for ψ2(x).

    Fig.1 The absolute error of ψ1(x)in Ref.[21].

    Fig.2 The absolute error of ψ2(x)in Ref.[21].

    Fig.3 The absolute error of ψ1(x)in Ref.[21].

    Fig.4 The absolute error of ψ2(x)in Ref.[21].

    亚洲av.av天堂| 国产白丝娇喘喷水9色精品| 考比视频在线观看| 黄色一级大片看看| 视频区图区小说| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 亚洲精品一区蜜桃| 一级毛片黄色毛片免费观看视频| 国产麻豆69| 国产综合精华液| 久久精品夜色国产| 国产精品人妻久久久久久| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲 欧美一区二区三区| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 天天操日日干夜夜撸| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 国产又色又爽无遮挡免| av在线观看视频网站免费| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 丝瓜视频免费看黄片| 国产成人午夜福利电影在线观看| 最新的欧美精品一区二区| 国产亚洲午夜精品一区二区久久| 久久精品夜色国产| 亚洲欧美成人精品一区二区| av播播在线观看一区| 国产亚洲最大av| 欧美日韩av久久| 午夜影院在线不卡| 22中文网久久字幕| 欧美精品av麻豆av| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 只有这里有精品99| 青春草亚洲视频在线观看| 久久精品国产综合久久久 | 美女国产视频在线观看| 在线精品无人区一区二区三| 精品亚洲乱码少妇综合久久| 国产日韩欧美视频二区| 麻豆精品久久久久久蜜桃| 韩国av在线不卡| 建设人人有责人人尽责人人享有的| 熟女人妻精品中文字幕| 国产成人欧美| 久久久久久人妻| 91成人精品电影| 国产亚洲av片在线观看秒播厂| 精品亚洲乱码少妇综合久久| 国产精品麻豆人妻色哟哟久久| 亚洲av电影在线进入| 久久久久精品久久久久真实原创| 热re99久久国产66热| 熟妇人妻不卡中文字幕| 国产精品久久久久久久电影| 黑人猛操日本美女一级片| 曰老女人黄片| 久久精品国产亚洲av天美| 国产精品久久久久久精品古装| 欧美3d第一页| 丰满少妇做爰视频| 热99国产精品久久久久久7| 在线 av 中文字幕| 夜夜骑夜夜射夜夜干| 人妻少妇偷人精品九色| 亚洲欧美日韩另类电影网站| 国产一级毛片在线| 乱码一卡2卡4卡精品| 成年女人在线观看亚洲视频| 99re6热这里在线精品视频| 国产精品.久久久| 90打野战视频偷拍视频| 久久99一区二区三区| 最新的欧美精品一区二区| 中文欧美无线码| 人人澡人人妻人| 另类精品久久| 大陆偷拍与自拍| 日日撸夜夜添| a 毛片基地| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| 春色校园在线视频观看| h视频一区二区三区| 22中文网久久字幕| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| 桃花免费在线播放| 国产一级毛片在线| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 久久人人爽人人片av| 色5月婷婷丁香| 亚洲色图 男人天堂 中文字幕 | 少妇精品久久久久久久| 亚洲精品视频女| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 国产探花极品一区二区| 精品久久久久久电影网| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 国产 一区精品| 高清不卡的av网站| 一级爰片在线观看| 一区二区三区精品91| 男女高潮啪啪啪动态图| 午夜久久久在线观看| 成人二区视频| 97精品久久久久久久久久精品| 亚洲五月色婷婷综合| 女的被弄到高潮叫床怎么办| 国产一区有黄有色的免费视频| 免费看不卡的av| av有码第一页| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 国产国拍精品亚洲av在线观看| xxxhd国产人妻xxx| 欧美人与性动交α欧美软件 | 成人亚洲欧美一区二区av| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 日韩制服骚丝袜av| 爱豆传媒免费全集在线观看| 最新中文字幕久久久久| 中国三级夫妇交换| 亚洲精品色激情综合| 久久99热这里只频精品6学生| 国语对白做爰xxxⅹ性视频网站| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 国产伦理片在线播放av一区| 一级毛片黄色毛片免费观看视频| 视频在线观看一区二区三区| 日本wwww免费看| av一本久久久久| 咕卡用的链子| 欧美3d第一页| 亚洲第一av免费看| 纯流量卡能插随身wifi吗| 成年av动漫网址| 欧美丝袜亚洲另类| 亚洲av综合色区一区| 高清毛片免费看| 考比视频在线观看| 全区人妻精品视频| 2022亚洲国产成人精品| 日韩制服骚丝袜av| 欧美国产精品一级二级三级| 成人无遮挡网站| 天堂俺去俺来也www色官网| 亚洲国产成人一精品久久久| 亚洲精华国产精华液的使用体验| 99视频精品全部免费 在线| 久久久久久伊人网av| 熟女人妻精品中文字幕| 黄色配什么色好看| 色哟哟·www| 蜜桃国产av成人99| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 日本av免费视频播放| 午夜91福利影院| 美女中出高潮动态图| 制服诱惑二区| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 国产成人精品婷婷| 丝袜在线中文字幕| 日韩在线高清观看一区二区三区| 国产不卡av网站在线观看| 久久久久久久国产电影| 中文字幕亚洲精品专区| 亚洲国产看品久久| 亚洲在久久综合| 亚洲av电影在线进入| 日本色播在线视频| 男女高潮啪啪啪动态图| 大香蕉97超碰在线| 三上悠亚av全集在线观看| 成年女人在线观看亚洲视频| 五月开心婷婷网| 欧美亚洲 丝袜 人妻 在线| av免费在线看不卡| 美女福利国产在线| 国产日韩欧美视频二区| 亚洲欧美成人精品一区二区| 亚洲国产精品一区二区三区在线| 欧美精品人与动牲交sv欧美| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 日日撸夜夜添| 午夜福利影视在线免费观看| 在线观看人妻少妇| 国产熟女欧美一区二区| 汤姆久久久久久久影院中文字幕| 日韩中字成人| 18禁在线无遮挡免费观看视频| 男女午夜视频在线观看 | av又黄又爽大尺度在线免费看| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 久久国产精品大桥未久av| 美女中出高潮动态图| 久久精品国产亚洲av涩爱| 一区在线观看完整版| 少妇猛男粗大的猛烈进出视频| 久久人人97超碰香蕉20202| 免费看光身美女| 国产极品粉嫩免费观看在线| 亚洲成人手机| 少妇精品久久久久久久| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | freevideosex欧美| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 国产探花极品一区二区| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区 | 国产免费一区二区三区四区乱码| 乱码一卡2卡4卡精品| 亚洲一码二码三码区别大吗| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 久久青草综合色| 自线自在国产av| 免费高清在线观看日韩| 26uuu在线亚洲综合色| 亚洲精品av麻豆狂野| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 99久国产av精品国产电影| 精品亚洲成a人片在线观看| 精品酒店卫生间| av福利片在线| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 久久久精品免费免费高清| 亚洲精品乱码久久久久久按摩| 久久影院123| 丝瓜视频免费看黄片| 久久久久久久久久成人| 久久99一区二区三区| 亚洲熟女精品中文字幕| 五月玫瑰六月丁香| 中文乱码字字幕精品一区二区三区| 内地一区二区视频在线| 熟女av电影| 亚洲精品视频女| 国产成人精品婷婷| 国产精品久久久久久av不卡| 久久久久网色| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| 中文欧美无线码| 日韩制服丝袜自拍偷拍| 蜜桃在线观看..| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| av在线观看视频网站免费| 久久精品久久精品一区二区三区| 自线自在国产av| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 黄网站色视频无遮挡免费观看| 久久久久国产网址| 亚洲av.av天堂| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 99热国产这里只有精品6| 性色avwww在线观看| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看 | 最近最新中文字幕大全免费视频 | 欧美国产精品一级二级三级| 一二三四在线观看免费中文在 | 纵有疾风起免费观看全集完整版| 亚洲精品乱久久久久久| 性色avwww在线观看| 精品人妻一区二区三区麻豆| 欧美激情极品国产一区二区三区 | 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 国产熟女欧美一区二区| 极品人妻少妇av视频| av在线播放精品| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 国产精品免费大片| 亚洲国产色片| a级片在线免费高清观看视频| 亚洲激情五月婷婷啪啪| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| 国产男女内射视频| 性色av一级| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 日本黄色日本黄色录像| 亚洲熟女精品中文字幕| 男女免费视频国产| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 大香蕉久久网| 日韩av免费高清视频| 欧美3d第一页| 美女脱内裤让男人舔精品视频| 国产精品欧美亚洲77777| 在线亚洲精品国产二区图片欧美| 免费观看av网站的网址| 少妇的逼好多水| 亚洲成人一二三区av| 日本-黄色视频高清免费观看| www.熟女人妻精品国产 | 纵有疾风起免费观看全集完整版| 9色porny在线观看| 久久久国产欧美日韩av| 久久99蜜桃精品久久| 日韩欧美精品免费久久| 免费黄频网站在线观看国产| 巨乳人妻的诱惑在线观看| 老司机影院毛片| 免费av中文字幕在线| 最近的中文字幕免费完整| 深夜精品福利| 日本wwww免费看| 美女福利国产在线| 丁香六月天网| 国产欧美亚洲国产| 精品一区二区三区四区五区乱码 | 久久人人爽人人爽人人片va| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院 | 国产成人av激情在线播放| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 十八禁高潮呻吟视频| 精品福利永久在线观看| 91精品国产国语对白视频| 亚洲丝袜综合中文字幕| 只有这里有精品99| 久久97久久精品| 午夜福利视频在线观看免费| 男女边摸边吃奶| 看免费av毛片| 乱人伦中国视频| 成年美女黄网站色视频大全免费| 亚洲欧洲日产国产| 另类精品久久| 国产精品久久久久久久电影| 国产亚洲午夜精品一区二区久久| 下体分泌物呈黄色| 日本黄色日本黄色录像| 精品一区二区三区四区五区乱码 | 一级毛片我不卡| 精品一区二区三卡| 美女主播在线视频| 好男人视频免费观看在线| 午夜视频国产福利| 久久这里只有精品19| 人妻少妇偷人精品九色| 国产毛片在线视频| av片东京热男人的天堂| 99久久精品国产国产毛片| 亚洲性久久影院| 美女国产视频在线观看| 99久久精品国产国产毛片| 免费看光身美女| 国产精品人妻久久久影院| 在线观看www视频免费| 国产精品.久久久| 午夜福利视频精品| 一级毛片黄色毛片免费观看视频| 久久久久网色| 丝袜人妻中文字幕| 黄色 视频免费看| 日韩伦理黄色片| 亚洲图色成人| av又黄又爽大尺度在线免费看| 亚洲三级黄色毛片| 国产片内射在线| kizo精华| 久久青草综合色| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 制服丝袜香蕉在线| av国产久精品久网站免费入址| 在线天堂中文资源库| 亚洲熟女精品中文字幕| 男女啪啪激烈高潮av片| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 欧美xxxx性猛交bbbb| 亚洲人成77777在线视频| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕 | 丝袜美足系列| 97超碰精品成人国产| 久久久国产一区二区| 成人综合一区亚洲| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 韩国av在线不卡| a级毛片在线看网站| 精品一区二区三区视频在线| 国产成人精品福利久久| 两个人看的免费小视频| 在线观看免费视频网站a站| 日韩大片免费观看网站| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 如何舔出高潮| 国产精品无大码| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站| av不卡在线播放| 人体艺术视频欧美日本| 一级毛片我不卡| 国产高清不卡午夜福利| 精品国产国语对白av| 黄色配什么色好看| 观看美女的网站| 人妻 亚洲 视频| 亚洲综合色网址| 国产成人精品一,二区| 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 国产毛片在线视频| 欧美精品av麻豆av| 国产午夜精品一二区理论片| 一级片'在线观看视频| 国产色婷婷99| 国产一区亚洲一区在线观看| av黄色大香蕉| 草草在线视频免费看| 久久精品国产a三级三级三级| 最新中文字幕久久久久| 激情视频va一区二区三区| 天堂中文最新版在线下载| 大片免费播放器 马上看| 亚洲在久久综合| 亚洲久久久国产精品| 成人国产av品久久久| 午夜91福利影院| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 黑人巨大精品欧美一区二区蜜桃 | 性色av一级| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 又大又黄又爽视频免费| 丝袜在线中文字幕| 亚洲一级一片aⅴ在线观看| 久久精品aⅴ一区二区三区四区 | 午夜老司机福利剧场| 中文天堂在线官网| 飞空精品影院首页| 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 男男h啪啪无遮挡| 久久99一区二区三区| 丰满饥渴人妻一区二区三| 亚洲av成人精品一二三区| 亚洲国产看品久久| 夫妻午夜视频| 少妇高潮的动态图| 亚洲国产色片| 日韩中字成人| 国产xxxxx性猛交| 黑人欧美特级aaaaaa片| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| av播播在线观看一区| 日韩制服丝袜自拍偷拍| 多毛熟女@视频| 九草在线视频观看| 男人爽女人下面视频在线观看| 国产黄频视频在线观看| 丁香六月天网| 亚洲国产精品一区三区| 插逼视频在线观看| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 亚洲精品av麻豆狂野| 男女免费视频国产| 国产一级毛片在线| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| www.av在线官网国产| 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 日本黄大片高清| 亚洲精品日本国产第一区| 亚洲欧美精品自产自拍| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 在现免费观看毛片| 制服丝袜香蕉在线| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡 | 欧美日韩av久久| 边亲边吃奶的免费视频| 97精品久久久久久久久久精品| 亚洲精品,欧美精品| 国产无遮挡羞羞视频在线观看| 波多野结衣一区麻豆| 久热久热在线精品观看| 一区二区av电影网| 一个人免费看片子| 日韩中文字幕视频在线看片| av黄色大香蕉| 亚洲av.av天堂| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| av在线app专区| 草草在线视频免费看| 韩国精品一区二区三区 | 永久免费av网站大全| 亚洲国产最新在线播放| 免费高清在线观看日韩| 国产精品久久久久成人av| 满18在线观看网站| 久久国内精品自在自线图片| 国产有黄有色有爽视频| 一级毛片我不卡| 精品熟女少妇av免费看| 男人爽女人下面视频在线观看| 男女边摸边吃奶| 亚洲成人一二三区av| 最新中文字幕久久久久| 精品亚洲成a人片在线观看| 久久人人爽人人爽人人片va| 人妻 亚洲 视频| 精品第一国产精品| 亚洲国产日韩一区二区| 99久久综合免费| av.在线天堂| 国产 精品1| 一区二区三区精品91| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网| 丝袜喷水一区| www.熟女人妻精品国产 | 久久影院123| 亚洲在久久综合| 久久精品国产综合久久久 | 曰老女人黄片| 搡女人真爽免费视频火全软件| 国产又色又爽无遮挡免| 夜夜骑夜夜射夜夜干| 日本午夜av视频| 一区二区日韩欧美中文字幕 | 不卡视频在线观看欧美| 国产精品一区www在线观看| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频| 国产老妇伦熟女老妇高清| 亚洲美女视频黄频| 人妻一区二区av| 色婷婷久久久亚洲欧美| 亚洲欧美成人综合另类久久久| a级片在线免费高清观看视频| 亚洲四区av| 日韩不卡一区二区三区视频在线| 宅男免费午夜| 色婷婷久久久亚洲欧美| 少妇人妻 视频| 人妻一区二区av| 久久久久精品性色| 日本wwww免费看| 欧美激情国产日韩精品一区| 人妻少妇偷人精品九色| 女人精品久久久久毛片| 在线天堂中文资源库| 在线免费观看不下载黄p国产| 少妇的丰满在线观看| 国产精品.久久久| 久久99热6这里只有精品| 国产国拍精品亚洲av在线观看| 久久久国产精品麻豆| 久久精品久久久久久久性| 有码 亚洲区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲高清精品|