• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Approximate Approach for Systems of Singular Volterra Integral Equations Based on Taylor Expansion

    2018-08-02 07:35:32MohsenDidgarandAlirezaVahidi
    Communications in Theoretical Physics 2018年8期

    Mohsen Didgarand Alireza Vahidi

    1Department of Mathematics,Guilan Science and Research Branch,Islamic Azad University,Rasht,Iran

    2Department of Mathematics,Rasht Branch,Islamic Azad University,Rasht,Iran

    3Department of Mathematics,College of Science,Yadegar-e-Emam Khomeyni(RAH)Shahr-e-Rey Branch,Islamic Azad University,Tehran,Iran

    AbstractIn this article,an extended Taylor expansion method is proposed to estimate the solution of linear singular Volterra integral equations systems.The method is based on combining the m-th order Taylor polynomial of unknown functions at an arbitrary point and integration method,such that the given system of singular integral equations is converted into a system of linear equations with respect to unknown functions and their derivatives.The required solutions are obtained by solving the resulting linear system.The proposed method gives a very satisfactory solution,which can be performed by any symbolic mathematical packages such as Maple,Mathematica,etc.Our proposed approach provides a significant advantage that the m-th order approximate solutions are equal to exact solutions if the exact solutions are polynomial functions of degree less than or equal to m.We present an error analysis for the proposed method to emphasize its reliability.Six numerical examples are provided to show the accuracy and the efficiency of the suggested scheme for which the exact solutions are known in advance.

    Key words:systems of singular Volterra integral equations(SSVIEs),systems of generalized Abel’s integral equations,error analysis,Taylor expansion

    1 Introduction

    Singular integral equations appear frequently in mathematical physics and have various applications in different fields including fluid mechanics,solid mechanics,quantum mechanics,bio-mechanics,astronomy,optics,electromagnetic theory,X-ray radiography,seismology,optical if ber evaluation,atomic scattering,radar ranging,electron emission,plasma diagnostics,and microscopy.[1]In recent years,approximate solution of integral equations has attracted great attention of many researchers[1?8]while numerical solution of weakly singular integral equations has been less considered.[9?18]Abel’s integral equation is one of the famous and important singular integral equations that arises from physical or mechanical models without passing through a differential equation.The general form of Abel’s integral equation is

    As mechanical description of Abel’s integral equation consider a point of mass moving in the gravity field on a smooth curve lying in a vertical plane.Let f(x)show the time in which the point mass reaches the lowest point while released from the height x.The problem is to find the equation of the curve.Abel’s integral equation is formulation of this problem.[1]

    Study and investigation of approximate solutions for systems of singular integral equations play a significant role in applied sciences,since they are not generally easy to solve analytically.Thus a variety of numerical and approximate methods have been developed to solve these,such as operational matrices,[19]homotopy perturbation method(HPM),[20]homotopy analysis method(HAM),[21]fractional differential transform method,[22]extrapolation method,[23]Legendre wavelets,[24]and Sinc approximation with the single exponential(SE).[25]

    Li[26]proposed a novel application of Taylor expansion method for approximate solution of linear ordinary differential equations with variable coefficients.The method expanded by Li and his co-authors to solve Abel’s integral equation,[18,27]Riccati equation,[28]an integral equation with fixed singularity for a cruciform crack,[29]a class of linear integro-differential equations,[30]and fractional integro-differential equations.[31]Vahidi and Didgar improved the Taylor expansion method proposed in Ref.[28]for determining the solution of Riccati equations.[32]Didgar and Ahmadi expanded the method proposed in Ref.[26]for solving systems of linear ordinary and fractional differential equations.[33]Moreover,Maleknejad and Damercheli[34]developed the method for solving linear second kind Volterra integral equations system.This investigation is an effort to propose a novel application of Taylor expansion[18,26?34]for solving systems of singular integral equations which possesses high accuracy.By expanding unknown functions as an m-th order Taylor poly-nomial and employing integration method,system of singular integral equations is converted into a new system of linear equations with respect to unknown functions and their derivatives.Then,intended approximate solutions can be obtained by solving the resulting linear system using a standard method.Besides simplicity and applicability,the considerable advantage of this method is that an m-th order approximation tends to the exact solution if it be a polynomial function of degree at most m.

    The paper is arranged as follows.In Sec.2,a method for systems of singular integral equations is described.An error analysis is given in Sec.3.In Sec.4,the accuracy and efficiency of the method is illustrated by considering six numerical examples.Section 5 is devoted to conclusions.

    2 Description of the Method

    Consider the following system of singular Volterra integral equations

    where λij(i,j= 1,...,n)are real constants,gij(x)(i,j=1,...,n)and fi(x)(i=1,...,n)are given functions in C(I)where I is the interval of interest.The ψj(x)(j=1,...,n)are unknown functions to be determined and kijare singular kernels of the form

    In this section we aim to show how the Taylor expansion method can be applied to the approximate solutions of singular system(2).Toward this end,we convert the SSVIEs into a system of linear equations with respect to unknown functions and their derivatives.This needs the desired solutions ψj(t)to be m+1 times continuously differentiable on the interval I,in other words ψj∈ Cm+1(I).Therefore,for ψj∈ Cm+1(I),the unknown functions ψj(t)can be expressed in terms of the m-th order Taylor series at an arbitrary point x∈I as

    where Ej,m(t,x)indicates the Lagrange error bound

    for some point ξjbetween x and t.Generally,the Lagrange error bound Ej,m(t,x)becomes sufficiently small as m gets great enough.Especially,if the solutions ψj(t)are polynomial functions of degree up to m,then the Lagrange error bound becomes zero,namely,the obtained approximate solutions of system(2)yield the exact solutions.Based on the aforementioned assumption,by omitting the last Lagrange error bound,we consider the truncated Taylor expansion ψj(t)as

    Inserting the approximate relation(6),for unknown function ψj(t),into Eq.(2)and in view of Eq.(3),we obtain

    In fact,Eq.(2)was converted into a linear system of ordinary differential equations with respect to ψj(x)and its derivatives up to order m.In other word,we have obtained n linear equations in Eq.(7)with respect to n×(m+1)unknown functionsfor k=0,...,m,j=1,...,n.In the following,we want to determineby solving a system of linear equations.In order to achieve this goal,other n×m independent linear equations with respect toare needed,which can be obtained by integrating both sides of Eq.(2)m times with respect to x from 0 to s and with the help of changing the order of the integrations.Thus,we have

    where

    in which the variable s has replaced by x,for simplicity.Similarly,we apply the Taylor expansion again and substituting(6)for ψj(t)into Eq.(8)results in

    for l=1,...,m.

    In this way,Eqs.(7)and(10)construct a system of linear equations with respect to the unknown functions ψj(x)and its derivatives up to order m.In the following,we indicate this system as

    where

    and in coefficient matrix(12),the first n rows refer to coefficients ofin Eq.(7)for k=0,...,m,j=1,...,n and the other rows refer to coefficients ofinfor k=1,...,m are determined by solving the resulting linear system but in point of fact,it is ψj(x)that we need.

    3 Error Analysis

    This section belongs to the stability analysis of the scheme and the error analysis proposed in Ref.[18]will be expanded for derived m-th order approximate solution of singular integral equations system(2)in order to get theoretical features about the convergence of the suggested method.We assume that the exact solutions ψj(t)are infinitely differentiable on the interval I;so ψj(t)can be expanded as an uniformly convergent Taylor series in I as follows Eq.(10)for l=1,...,m.Ultimately,the resulting system(11)can be solved by any appropriate method to obtain unknown functions.We note that not only ψj(x)but also

    Using the proposed method given in Sec.2,SSVIEs can be converted into an equivalent system of linear equations with respect to unknown functionsk=0,1,...as

    where

    Hence,under the solvability conditions of system(16)and letting B=V?1,the unique solution of system(16)is represented as

    We rewrite relation(19)in an alternative matrix form as

    Accordingly,we can find out that the vector Ψnconsists of the first n(m+1)elements of the exact solution vector Ψ must satisfy the following relation

    According to the proposed process,the unique solution of SSVIEs(2)can be denoted as

    where Ψnis replaced bynas its approximate solution.

    Subtracting Eq.(22)from Eq.(21)leads to

    Now,we expand the right-hand side of Eq.(23),the first n elements of the vector at the left-hand side of Eq.(23)can be expressed as

    where

    4 Numerical Examples

    In this section,six numerical examples are considered in order to establish the applicability and the accuracy of the proposed method.The results are compared with previous reports results to illustrate that the suggested method is not only accurate but also quite stable.In the following examples,absolute errors of the m-th order approximate values ψi,m(x)and the corresponding exact values ψi(x)asare determined.All computations were performed using Mathematica 8.

    Example 1Consider the following system of singular Volterra integral equations[19]

    with the exact solutions ψ1(x)=x and ψ2(x)=1.

    Using the proposed method in Sec.2,we obtain the approximate solutions of the problem(27)and it is important to note that after converting system(27)into a system of linear equations the Mathematica command“LinearSolve” is used for the new system.We can find by setting m=1,the first-order approximate solution yields the exact solution as expected,since the m-th order approximate solution yields the exact solution if the exact solution is a polynomial function of degree up to m.

    This example has been solved by operational matrices of piecewise constant orthogonal functions[19]on the interval[0,1).We present the maximum of the absolute errors obtained from Ref.[19]in Table 1.

    Table 1 The maximum of the absolute errors in Ref.[19].

    Table 2 Absolute errors of Example 2 for ψ1(x).

    Example 2Consider the following integral equations system[22,25]

    Example 3The following system of integral equations

    is considered in Ref.[25]with the exact solutions ψ1(x)=x and ψ2(x)=1.Employing the process described in Sec.2,by setting m=1,the first-order approximate solution of Eq.(29)results in the exact solution,as expected.This example was used in Ref.[25]and has been solved by SE-Sinc method.Tables 6 and 7 are related to the numerical results obtained from Ref.[25].

    Table 3 Absolute errors of Example 2 for ψ2(x).

    Table 4 Absolute errors of Example 2 by SE-Sinc method in Ref.[25]for ψ1(x).

    Table 6 Absolute errors of Example 3 by SE-Sinc method in Ref.[25]for ψ1(x).

    Example 4Consider the following system of Abel’s integral equations of the second kind[21]

    Table 7 Absolute errors of Example 3 by SE-Sinc method in Ref.[25]for ψ2(x).

    From Tables 8 and 9,we can find that the accuracy of our results is quite satisfactory and more accurate results can be obtained by taking higher-order m.This example was used in Ref.[21]and has been solved by homotopy analysis method.Figures 1 and 2 are related to the absolute errors of ψ1(x)and ψ2(x),respectively,in Ref.[21].From Tables 8 and 9 and Figs.1 and 2,we observe that the results obtained by Taylor expansion method are much better than those obtained in Ref.[21].

    Example 5Consider the following system of Abel’s integral equations of the second kind[21]with the exact solutions ψ(x)=x and

    1We obtain the approximate solutions by setting m=1,5,10,15.In the following,absolute errors are shown in Tables 10 and 11.From Tables 10 and 11,we observe that the accuracy of our results is quite satisfactory and more accurate results can be obtained by taking higherorder m.This example was used in Ref.[21]and has been solved by homotopy analysis method.Figures 3 and 4 are related to the absolute errors of ψ1(x)and ψ2(x),respectively,in Ref.[21].From Tables 10 and 11 and Figs.3 and 4,we can find that the results obtained by Taylor expansion method are much better than those obtained in Ref.[21].

    Table 8 Absolute errors of Example 4 for ψ1(x).

    Table 9 Absolute errors of Example 4 for ψ2(x).

    Table 10 Absolute errors of Example 5 for ψ1(x).

    Example 6Consider the following singular integral equations system of the first kind[1]

    with the exact solutions ψ1(x)=1+x+x3and ψ2(x)=1?x?x3.We evaluate the approximate solutions by setting m=1,2,3 and the obtained absolute errors are shown in Tables 12 and 13.We observe that the accuracy of our results is quite satisfactory and the third-order approximate solution yields the exact value,as expected.

    Table 11 Absolute errors of Example 5 for ψ2(x).

    Table 12 Absolute errors of Example 6 for ψ1(x).

    5 Conclusion

    The main objective of this investigation was to present a new application of Taylor expansion to conveniently solve linear singular integral equations systems.By employing the Taylor expansion of unknown functions at an arbitrary point and integration method,the SSVIEs has been converted into a system of linear equations with respect to unknown functions and their derivatives.The stability analysis of the method was also carried out and we have demonstrated the practicality and efficiency of our proposed method by several numerical examples.In particular for such cases when the exact solutions are polynomial functions of degree at most m,the derived m-th order approximations are equal to exact solutions.

    Table 13 Absolute errors of Example 6 for ψ2(x).

    Fig.1 The absolute error of ψ1(x)in Ref.[21].

    Fig.2 The absolute error of ψ2(x)in Ref.[21].

    Fig.3 The absolute error of ψ1(x)in Ref.[21].

    Fig.4 The absolute error of ψ2(x)in Ref.[21].

    亚洲人成伊人成综合网2020| 男人的好看免费观看在线视频 | 亚洲人成77777在线视频| 老熟妇仑乱视频hdxx| 丝袜美足系列| 精品无人区乱码1区二区| 极品教师在线免费播放| 国产精品爽爽va在线观看网站 | www.熟女人妻精品国产| 麻豆国产av国片精品| 中文字幕另类日韩欧美亚洲嫩草| 丰满的人妻完整版| 悠悠久久av| 午夜福利影视在线免费观看| 午夜久久久久精精品| 午夜老司机福利片| 电影成人av| 淫秽高清视频在线观看| avwww免费| 99国产极品粉嫩在线观看| 国产亚洲精品久久久久久毛片| 国产熟女xx| 最近最新中文字幕大全电影3 | 国产精品精品国产色婷婷| 午夜福利一区二区在线看| 欧美+亚洲+日韩+国产| 一a级毛片在线观看| 国产亚洲精品久久久久久毛片| 在线国产一区二区在线| 日韩欧美在线二视频| 啦啦啦 在线观看视频| 一区福利在线观看| 亚洲自拍偷在线| 12—13女人毛片做爰片一| 欧美性长视频在线观看| 亚洲精品国产一区二区精华液| 99香蕉大伊视频| 久久天躁狠狠躁夜夜2o2o| 性色av乱码一区二区三区2| 精品国内亚洲2022精品成人| 国产高清videossex| 9191精品国产免费久久| 又紧又爽又黄一区二区| 国产亚洲av高清不卡| 午夜日韩欧美国产| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 可以在线观看的亚洲视频| 亚洲国产精品成人综合色| 午夜亚洲福利在线播放| 国产黄a三级三级三级人| 宅男免费午夜| 久久人人精品亚洲av| 欧美亚洲日本最大视频资源| av免费在线观看网站| 成人国产综合亚洲| 亚洲情色 制服丝袜| 老司机午夜十八禁免费视频| 青草久久国产| 午夜福利在线观看吧| 亚洲五月天丁香| 母亲3免费完整高清在线观看| 亚洲五月天丁香| 国产精华一区二区三区| 亚洲人成电影观看| 精品免费久久久久久久清纯| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久亚洲av鲁大| 亚洲色图av天堂| 9191精品国产免费久久| 久久人妻av系列| 首页视频小说图片口味搜索| 美女 人体艺术 gogo| 亚洲av第一区精品v没综合| 国产欧美日韩精品亚洲av| 精品国产美女av久久久久小说| 日本 av在线| 精品久久久久久,| 天天躁夜夜躁狠狠躁躁| 黄色 视频免费看| 亚洲精品在线美女| 午夜两性在线视频| 不卡av一区二区三区| 99国产精品99久久久久| 香蕉国产在线看| 最好的美女福利视频网| 老熟妇仑乱视频hdxx| 黄网站色视频无遮挡免费观看| 国产精品乱码一区二三区的特点 | 一进一出抽搐gif免费好疼| 亚洲精品国产区一区二| 九色亚洲精品在线播放| 手机成人av网站| 无限看片的www在线观看| 高潮久久久久久久久久久不卡| 欧美成狂野欧美在线观看| 99riav亚洲国产免费| 亚洲五月天丁香| 国产精品久久久久久人妻精品电影| 亚洲aⅴ乱码一区二区在线播放 | 色婷婷久久久亚洲欧美| 国产伦一二天堂av在线观看| 亚洲一区二区三区不卡视频| 又黄又粗又硬又大视频| 国产亚洲精品一区二区www| 国产亚洲精品av在线| 精品久久久精品久久久| 午夜日韩欧美国产| 国产亚洲精品一区二区www| 精品国产国语对白av| 久久青草综合色| 国产成人av激情在线播放| 高潮久久久久久久久久久不卡| 欧美性长视频在线观看| 美女 人体艺术 gogo| 国产极品粉嫩免费观看在线| 国产欧美日韩综合在线一区二区| 99精品久久久久人妻精品| 久99久视频精品免费| 一进一出抽搐动态| 在线观看日韩欧美| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3 | 狂野欧美激情性xxxx| www.精华液| 色av中文字幕| 亚洲成国产人片在线观看| 久久这里只有精品19| 一级作爱视频免费观看| 给我免费播放毛片高清在线观看| 亚洲精华国产精华精| 国产99久久九九免费精品| 精品久久久久久久人妻蜜臀av | 悠悠久久av| 亚洲伊人色综图| 丁香欧美五月| avwww免费| 日韩欧美三级三区| 国产亚洲欧美在线一区二区| 久久久久久国产a免费观看| 大陆偷拍与自拍| 大型av网站在线播放| 99riav亚洲国产免费| 男人操女人黄网站| 国产国语露脸激情在线看| 亚洲人成伊人成综合网2020| 日本vs欧美在线观看视频| 女人被狂操c到高潮| 成人亚洲精品av一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产在线精品亚洲第一网站| 一级毛片女人18水好多| 国产精品电影一区二区三区| 韩国av一区二区三区四区| 不卡av一区二区三区| 在线观看66精品国产| 动漫黄色视频在线观看| 午夜精品国产一区二区电影| 午夜免费成人在线视频| 欧美在线黄色| 亚洲第一青青草原| 亚洲中文av在线| 午夜亚洲福利在线播放| a在线观看视频网站| 午夜精品久久久久久毛片777| 美女 人体艺术 gogo| 欧美成人免费av一区二区三区| 最新美女视频免费是黄的| 国产1区2区3区精品| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 免费在线观看影片大全网站| 久久国产乱子伦精品免费另类| 亚洲国产毛片av蜜桃av| 最好的美女福利视频网| 在线视频色国产色| 巨乳人妻的诱惑在线观看| 欧美在线黄色| 国产精品久久久人人做人人爽| 亚洲,欧美精品.| 亚洲av美国av| 99精品欧美一区二区三区四区| 深夜精品福利| 色综合站精品国产| 国产不卡一卡二| 国产欧美日韩一区二区三| 久久精品影院6| 国产精品精品国产色婷婷| 夜夜爽天天搞| 老鸭窝网址在线观看| 久久久久九九精品影院| 久久久国产成人免费| 久久久国产成人精品二区| 久久午夜综合久久蜜桃| 日日爽夜夜爽网站| 无限看片的www在线观看| 97人妻天天添夜夜摸| 少妇粗大呻吟视频| 亚洲美女黄片视频| 国产精品,欧美在线| 国产三级黄色录像| 亚洲一码二码三码区别大吗| 99国产精品一区二区蜜桃av| 后天国语完整版免费观看| 操美女的视频在线观看| 伦理电影免费视频| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 精品乱码久久久久久99久播| 亚洲av熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品久久男人天堂| 黄片播放在线免费| 亚洲av成人一区二区三| 亚洲成人免费电影在线观看| 亚洲人成网站在线播放欧美日韩| 免费在线观看影片大全网站| 女人高潮潮喷娇喘18禁视频| 男女下面进入的视频免费午夜 | 午夜免费鲁丝| xxx96com| 韩国av一区二区三区四区| 一区二区三区激情视频| 久久久久亚洲av毛片大全| 99re在线观看精品视频| 国产精品九九99| 欧美成人性av电影在线观看| 别揉我奶头~嗯~啊~动态视频| 中出人妻视频一区二区| 国产精品一区二区免费欧美| 99久久99久久久精品蜜桃| 日韩精品中文字幕看吧| 好男人电影高清在线观看| 欧美午夜高清在线| 日本免费a在线| 午夜精品在线福利| 首页视频小说图片口味搜索| 中国美女看黄片| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| 欧美丝袜亚洲另类 | 色婷婷久久久亚洲欧美| 免费在线观看影片大全网站| 国产又色又爽无遮挡免费看| 女生性感内裤真人,穿戴方法视频| 性色av乱码一区二区三区2| 亚洲五月婷婷丁香| 色av中文字幕| 成人欧美大片| 美女国产高潮福利片在线看| 老熟妇仑乱视频hdxx| 色在线成人网| 亚洲自拍偷在线| 久久精品国产亚洲av香蕉五月| 免费高清在线观看日韩| 丝袜人妻中文字幕| 亚洲成国产人片在线观看| 夜夜躁狠狠躁天天躁| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 少妇被粗大的猛进出69影院| 日韩欧美免费精品| 一级作爱视频免费观看| 日韩欧美国产在线观看| 757午夜福利合集在线观看| 男人舔女人的私密视频| 国产精品二区激情视频| 视频在线观看一区二区三区| 国产成人欧美在线观看| 麻豆一二三区av精品| 国产99白浆流出| av视频免费观看在线观看| 少妇裸体淫交视频免费看高清 | 丁香六月欧美| 亚洲国产高清在线一区二区三 | 亚洲成人久久性| 日本精品一区二区三区蜜桃| 午夜免费激情av| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| 日本五十路高清| 免费高清视频大片| 最近最新免费中文字幕在线| 操美女的视频在线观看| 亚洲欧美日韩高清在线视频| 成人国产综合亚洲| 日本五十路高清| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av高清一级| 无人区码免费观看不卡| 夜夜躁狠狠躁天天躁| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| 一个人免费在线观看的高清视频| 一区在线观看完整版| 国产精品电影一区二区三区| 午夜福利18| a级毛片在线看网站| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三 | 亚洲av五月六月丁香网| 女人高潮潮喷娇喘18禁视频| 国产午夜精品久久久久久| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 午夜激情av网站| 一区福利在线观看| 69av精品久久久久久| 中文字幕色久视频| 99国产精品99久久久久| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 18禁裸乳无遮挡免费网站照片 | 麻豆av在线久日| 国产精品久久电影中文字幕| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 91麻豆av在线| 久久精品亚洲精品国产色婷小说| av中文乱码字幕在线| 黑丝袜美女国产一区| 欧美色欧美亚洲另类二区 | 久久中文看片网| a在线观看视频网站| 亚洲天堂国产精品一区在线| 亚洲欧美精品综合一区二区三区| 欧美黑人精品巨大| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看| 精品久久久久久,| 18禁美女被吸乳视频| 亚洲免费av在线视频| 久久精品国产综合久久久| 老司机靠b影院| 国产91精品成人一区二区三区| 夜夜爽天天搞| 精品久久久久久成人av| 少妇熟女aⅴ在线视频| 国产男靠女视频免费网站| 午夜福利免费观看在线| 国产欧美日韩综合在线一区二区| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| 欧美激情极品国产一区二区三区| 精品免费久久久久久久清纯| 两人在一起打扑克的视频| 国产亚洲精品av在线| 最好的美女福利视频网| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点 | x7x7x7水蜜桃| 无限看片的www在线观看| 亚洲少妇的诱惑av| 视频区欧美日本亚洲| 香蕉国产在线看| 国产精品野战在线观看| 999久久久精品免费观看国产| 国产精品,欧美在线| 欧美色视频一区免费| 国产成人精品久久二区二区免费| 自线自在国产av| 香蕉丝袜av| 精品久久久久久成人av| 国产精品亚洲一级av第二区| 亚洲成av片中文字幕在线观看| 欧美色视频一区免费| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费 | 波多野结衣一区麻豆| 国产成人精品久久二区二区免费| 国产三级在线视频| cao死你这个sao货| 人妻久久中文字幕网| 麻豆成人av在线观看| 国产主播在线观看一区二区| 一区二区三区精品91| 国产精品野战在线观看| 色在线成人网| 亚洲精华国产精华精| 午夜免费鲁丝| 婷婷精品国产亚洲av在线| 日韩av在线大香蕉| 久久青草综合色| 久久国产精品男人的天堂亚洲| 成年人黄色毛片网站| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 久久国产精品影院| 88av欧美| 黄色片一级片一级黄色片| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 啪啪无遮挡十八禁网站| 久久影院123| 国产亚洲av高清不卡| 国产91精品成人一区二区三区| 男人操女人黄网站| 男男h啪啪无遮挡| 国产99白浆流出| 午夜福利免费观看在线| www国产在线视频色| 日本黄色视频三级网站网址| 久久久久久大精品| 国产单亲对白刺激| 亚洲欧美日韩另类电影网站| 女生性感内裤真人,穿戴方法视频| 日本撒尿小便嘘嘘汇集6| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 岛国在线观看网站| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品免费视频内射| 美女高潮到喷水免费观看| 性欧美人与动物交配| 黑人巨大精品欧美一区二区mp4| 美女高潮到喷水免费观看| 婷婷丁香在线五月| 国产一区二区三区视频了| 久久中文字幕一级| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 久久人妻熟女aⅴ| 国产在线精品亚洲第一网站| 亚洲少妇的诱惑av| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 国产av一区二区精品久久| bbb黄色大片| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| www.精华液| 亚洲 国产 在线| 男女下面插进去视频免费观看| 国产在线精品亚洲第一网站| 色在线成人网| 亚洲成av人片免费观看| 成人永久免费在线观看视频| 午夜福利,免费看| 在线av久久热| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 国内精品久久久久精免费| 搡老岳熟女国产| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产高清有码在线观看视频 | 一区二区三区高清视频在线| 亚洲av熟女| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月| x7x7x7水蜜桃| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 午夜福利欧美成人| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| av在线天堂中文字幕| 亚洲在线自拍视频| 亚洲国产看品久久| 久久香蕉激情| 亚洲专区国产一区二区| 一二三四在线观看免费中文在| 久久中文字幕人妻熟女| 人妻丰满熟妇av一区二区三区| 午夜a级毛片| 国产成人欧美在线观看| 亚洲全国av大片| 午夜福利视频1000在线观看 | 男女之事视频高清在线观看| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 身体一侧抽搐| 日韩av在线大香蕉| 看黄色毛片网站| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 黄色成人免费大全| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 女人爽到高潮嗷嗷叫在线视频| 老汉色av国产亚洲站长工具| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久,| 一进一出抽搐动态| 国产午夜福利久久久久久| 久久久久久久久久久久大奶| 好看av亚洲va欧美ⅴa在| 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| 久久国产精品男人的天堂亚洲| 国产精品秋霞免费鲁丝片| 亚洲精品中文字幕在线视频| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 淫秽高清视频在线观看| 免费在线观看日本一区| 宅男免费午夜| 多毛熟女@视频| 国产xxxxx性猛交| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 免费观看人在逋| 午夜日韩欧美国产| 黄色视频不卡| 黄色a级毛片大全视频| 精品人妻在线不人妻| 99久久综合精品五月天人人| 涩涩av久久男人的天堂| 国产国语露脸激情在线看| 国产99白浆流出| 99riav亚洲国产免费| 97人妻天天添夜夜摸| 最近最新中文字幕大全免费视频| 国产亚洲精品一区二区www| 成人免费观看视频高清| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 性欧美人与动物交配| ponron亚洲| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区mp4| 亚洲av熟女| 超碰成人久久| av在线天堂中文字幕| 一区二区三区国产精品乱码| 久久精品影院6| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影 | 少妇的丰满在线观看| 精品人妻1区二区| 国产成人av教育| 久久久久久人人人人人| 男人操女人黄网站| 色哟哟哟哟哟哟| 香蕉国产在线看| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片 | 久久久久精品国产欧美久久久| 国产高清激情床上av| 日本一区二区免费在线视频| 国产欧美日韩一区二区三区在线| 欧美人与性动交α欧美精品济南到| 亚洲电影在线观看av| 两性夫妻黄色片| 亚洲中文字幕一区二区三区有码在线看 | 一级毛片女人18水好多| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 久久人妻av系列| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 88av欧美| 脱女人内裤的视频| 欧美激情极品国产一区二区三区| 黄色毛片三级朝国网站| 国产一区二区在线av高清观看| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区 | 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 99久久综合精品五月天人人| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲国产一区二区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 男女午夜视频在线观看| 国产97色在线日韩免费| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 最好的美女福利视频网| 中文字幕色久视频| 99re在线观看精品视频| 亚洲欧美精品综合久久99| 精品一品国产午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 中文字幕久久专区| videosex国产| 一本综合久久免费| 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| 一本久久中文字幕| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色 | 男人舔女人的私密视频| 精品无人区乱码1区二区| 久久国产乱子伦精品免费另类| 精品午夜福利视频在线观看一区| 国产高清激情床上av| 久久国产精品人妻蜜桃| 日韩三级视频一区二区三区| 久久精品国产综合久久久|