• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sufficient Conditions of the Same State Order Induced by Coherence?

    2018-08-02 07:35:28FuGangZhang張福剛andYongMingLi李永明
    Communications in Theoretical Physics 2018年8期

    Fu-Gang Zhang(張福剛)and Yong-Ming Li(李永明),2,?

    1School of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China

    2College of Computer Science,Shaanxi Normal University,Xi’an 710119 China

    AbstractIn this paper,we study coherence-induced state ordering with Tsallis relative entropy of coherence,relative entropy of coherence and l1norm of coherence,and give the sufficient conditions of the same state order induced by above coherence measures.First,we show that the above measures give the same ordering for single-qubit states in some special cases.Second,we consider some special states in a d-dimensional quantum system.We show that the above measures generate the same ordering for these special states.Finally,we discuss dynamics of coherence-induced state ordering under Markovian channels.We find amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness.

    Key words:Tsallis relative entropy of coherence,relative entropy of coherence,l1norm of coherence,coherence-induced state ordering

    1 Introduction

    Quantum coherence is one of the most important physical resources in quantum mechanics,which can be used in quantum optics.[1]quantum information and quantum computation,[2]thermodynamics,[3?4]and low temperature thermodynamics.[5?7]Many efforts have been made in quantifying the coherence of quantum states.[8]The authors of Ref.[9]have proposed a rigorous framework to quantify coherence.The framework gives four conditions that any proper measure of the coherence must satisfy.Based on this framework,one can de fine suitable measures with respect to the prescribed orthonormal basis.The relative entropy of coherence and the l1norm of coherence[10]have been proved to satisfy all four conditions.Recently,the author of Ref.[10]has proposed Tsallis relative entropy of coherence.The author has proved Tsallis relative entropy of coherence satisfies all conditions but monotonicity under incoherent selective measurements.Whereas,this coherence measure satisfies a generalized monotonicity for average coherence under subselection based on measurement.[10]In addition,various other coherence measures have also been discussed.[10?18]Many further discussions about quantum coherence have been aroused.[19?36]

    Up to now,many different coherence measures have been proposed based on different physical contexts.For the same state,different values of coherence will be obtained by different coherence measures.In this case,a very important question arises,whether these measures generate the same ordering. We say that two coherence measures Cmand Cngenerate the same ordering if they satisfy the condition Cm(ρ) ≤ Cm(σ)if and only if Cn(ρ) ≤ Cn(σ)for any density operators ρ and σ.We say a state ρ is a pure state if tr(ρ2)=tr(ρ)=1.If ρ is not pure,then we say it is a mixed state.References[19]and[20]have showed that the Tsallis relative entropy of coherence,relative entropy of coherence and the l1norm of coherence only generate the same ordering for singlequbit pure states.They do not give the same ordering for single-qubit mixed states or high dimension states even though high dimension pure states.

    Based on these discussions,some further questions will be put forward as follows.(i)In addition to singlequbit pure states,whether or not there exist other sets of states such that above coherence measures generate the same ordering.(ii)Given a quantum incoherent operator,whether or not coherence-induced state ordering will be changed.

    In the paper,we will try to resolve these two questions.Our discussion focuses on the Tsallis relative entropy of coherence,relative entropy of coherence and the l1norm of coherence.For question(i),we show that these three measures generate the same ordering for some particular sets of states,such as for some single-qubit states with a fixed mixedness or a fixed nz.For question(ii),we discuss dynamics of coherence-induced state ordering under Markovian channels,we show that amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness,but amplitude damping channel does not change the coherence-induced ordering for some single-qubit states with fixed valued nz.Other Markovian channels can be discussed by a similar method.

    This paper is organized as follows.In Sec.2,we briefly review some notions related to Tsallis relative entropy of coherence,relative entropy of coherence and l1norm of coherence.In Sec.3,we show that Tsallis relative entropy of coherence,relative entropy of coherence and l1norm of coherence generate the same ordering for single-qubit states with a fixed mixedness or a fixed length along the direction σz.In Sec.4,we show that they generate the same ordering for some particular sets of high dimensional states.In Sec.5,we discuss dynamics of coherence-induced ordering under Markovian channels.We summarize our results in Sec.6.

    2 Preliminaries

    In this section,we review some notions related to quantifying quantum coherence. Considering a finite dimensional Hilbert space H with d=dim(H).Let{|i?,i=1,2,...,d}be a particular basis of H.A state is called an incoherent state if and only if its density operator is diagonal in this basis,and the set of all the incoherent states is usually denoted as?.Baumgratz et al.[9]proposed that quantum coherence can be measured by a function C that maps a state ρ to a nonnegative real value,moreover,C must satisfy following properties:(C1)C(ρ) ≥ 0 and C(ρ)=0 if and only if ρ ∈ ?;(C2a)C(ρ) ≥ C(Φ(ρ)),where Φ is any incoherent completely positive and trace preserving maps;wherefor all Kiwithandfor any ensemble

    In accordance with the criterion,several coherence measures have been studied.It has been shown that l1norm of coherence and relative entropy of coherence satisfy these four conditions.[9]l1norm of coherence[9]is defined as

    here ρijare entries of ρ.The coherence measure de fined by the l1norm is based on the minimal distance of ρ to the set of incoherent states ?,with D being the l1norm,and 0≤ Cl1(ρ)≤ d?1.

    The relative entropy of coherence[9]is de fined as

    where S(ρ||σ)=tr(ρlogρ ? ρlogσ)is the quantum relative entropy,S(ρ)=tr(ρlogρ)is the von Neumann entropy,and∑in this paper,log has base 2.The coherence measure de fined by the relative entropy is based on the minimal distance of ρ to ?,with D being the relative entropy,and 0 ≤ Cr(ρ)≤ logd.

    For any α ∈ (0,1)?(1,2],Tsallis relative entropy of coherence,[10]denoted by Cα(ρ),is de fined as

    The author of Ref.[10]proved that Cαsatisfies the conditions of(C1),(C2a)and(C3)for all α∈(0,2],but it violates(C2b)in some situations.However,Cαsatisfies a generalized monotonicity for the average coherence under subselection based on measurement as the following form.[10]Tsallis relative entropy of coherence Cα(ρ)satisfies

    Rastegin gave an elegant mathematical analytical expression of Tsallis relative entropy of coherence.[10]Given α ∈ (0,1)∪(1,2],and a state ρ,the Tsallis relative entropy of coherence Cα(ρ)can be expressed as

    where

    For the given ρ and α,based on this coherence measure,the nearest incoherence state from ρ is the state

    Considering an interesting case α=2,

    It has been shown that Cl2does not satisfy the condition(C2b).[9]Although C2also violates the condition(C2b),it obeys a generalized monotonicity property Eq.(3).[10]

    For any state ρ,the mixedness based on normalized linear entropy[40]is given as

    In particular,when ρ is a single-qubit state,M(ρ)=2(1?tr(ρ2)).

    3 Single-Qubit States

    In this section,we consider a 2-dimensional quantum system.A general single-qubit state can be written as

    Substituting Eq.(8)into Eq.(6),we obtain the mixedness of single-qubit state ρ as follow

    According to the expression of mixedness,we find that the mixedness is only related to the length t.In the case of t=1,the state becomes a pure state.In Refs.[19]and[20],authors foundand Cαgive the same ordering states for all single-qubit pure states.Here,we generalize this result.We will show that these coherence measures also give the same ordering for all states with a fixed mixedness.

    By a routine calculation,we obtain the eigenvalues of ρ,

    Their norm eigenvectors are

    Relative entropy of coherence

    where h(x)= ?xlog(x)?(1?x)log(1?x).Tsallis relative entropy of coherence

    where

    According to Eq.(9),we know that all states with the same mixedness have the same length t.It is easy to find,for a fixed value t,Eqs.(13),(14),(15)are symmetric functions with respect to nz=0,in other words,these three coherence measurements depend on|nz|and t.Hence,here we only consider the case of nz∈[0,1].We give the following proposition.

    Propsition 1Given a fixed value t,and α ∈ [0,1)∪(1,2],Eqs.(13),(14),(15)are decreasing functions with respect to nz.

    ProofIt is obvious that Eq.(13)is a decreasing function with respect to nzfor nz∈[0,1].Since

    we have that Cr(ρ)is a decreasing function with respect to nzfor nz∈[0,1].

    Let

    we consider the derivation of the expression of Eq.(16),

    Due to t∈[0,1],we have u≥v≥0,then u+vnz≥u?vnzfor nz∈ [0,1],hence we have?r/?nz≤ 0 in the case of α ∈ (1,2],and ?r/?nz≥ 0 in the case of α ∈ [0,1).Substituting these results into Eq.(15),we have that Eq.(15)is a decreasing function with respect to nz. ?

    In the following,we discuss the ordering states for all single qubit states with a fixed mixedness.

    Theorem 1For any α ∈ [0,1)∪(1,2],the coherence measures Cl1,Cr,and Cαhave the same ordering for all single-qubit states with a fixed mixedness M.

    ProofLet ρ, σ be two single-qubit states with a fixed mixedness M.It is obvious that ρ,σ have the same value t by means of Eq.(9).According to Proposition 1,we have?

    Theorem 1 has shown that Cl1,Crand Cαhave the same ordering for all single qubit states with a fixed mixedness.It is quite natural that we will ask whether these coherence measures have the same ordering for all states with a fixed value nz.For all single qubit states with a fixed value nz,since it is very difficult to discuss the monotonicity of the expressions of Cαwith respect to t for any α∈[0,1)∪(1,2],then we only discuss the special situations of α=2,1/2 by analytical method.In fact,we find the result is also valid for other values α ∈ (0,1)∪(1,2]by numerical method.In Fig.1,we discuss the monotonicity of Cαwith respect to t when α =1/4,3/4,3/2 for fixed nz=1/4,1/2,3/4.We find the following result is valid in these situations.For the other situations,we can discuss them by a similar method.

    Fig.1 Three special Tsallis relative entropy of coherence C1/4,C3/4and C3/2are increasing functions with respect t for the fixed(a)nz=1/4,(b)nz=1/2,(c)nz=3/4.

    Proposition 2Given a fixed value nz,Eqs.(13),(14),(15)are increasing functions with respect to t,where α=1/2,2.

    ProofIt is obvious that Cl1(ρ)is an increasing function with respect to t.Since

    then

    Therefore,Cr(ρ)is an increasing function with respect to t.

    In order to discuss the monotonicity of C2and C1/2with respect to t,we first consider the monotonicity of r(Eq.(16))with respect to t when α=1/2,2.For convenience,let m=(1+t)/2,n=(1+nz)/2,it is obvious that 1/2≤m,n≤1.Substituting m,n into Eq.(16),and by a routine calculation,we have

    If m ≥ n,it is easy to findIf m ≤ n,we consider

    When α=1/2,by a routine calculation,we have

    Substituting above results into Eq.(15),we have

    Therefore,Eqs.(14)and(15)are increasing functions with respect to t for single qubit states with a fixed value nz.?

    On the basis of the above proposition,we discuss the ordering states for all single-qubit states with a fixed nz.

    Theorem 2For all single-qubit states with a fixed value nz,the coherence measures Cl1,Crand Cαhave the same ordering,where α=1/2,2.

    The proof is easy based on the Proposition 2.Theorem 2 gives another sufficient condition that these three coherence measures have the same ordering.For any two single-qubit states,if they have the same value nz,then Cl1,Crand Cα(α =1/2,2)take the same ordering for these two states.In fact,we find the above result is also valid for other α ∈ (0,1)∪(1,2]by numerical method in Fig.1.

    4 High-Dimensional States

    In this section,we consider quantum states in a ddimensional quantum system.In Refs.[19]and[20],authors have shown that these coherence measures do not generate the same ordering for all states in a d-dimensional quantum system.Here,we show that they will generate the same ordering when we restrict to some special cases.

    4.1 Pure States

    We show these coherence measures generate the same ordering for some special pure states in a d-dimensional quantum system.We first introduce the notion of Shurconcave function.[41]For two vectorsandwe say thatis majorized bydenote it byif the rearrangement of the components ofandy1≥ y2≥ ···≥ yn,satisfieswhere k∈{1,2,...,n}.We say two vectorsandsatisfy majorization relation ifThe function F:Rn→ R,is called Schur-convex ifimpliesFunction F is called Schur-concave if ?F is Schur-convex.

    Lemma 1[41]Letbe a real value function,where A?Rdis permutation-invariant,and assume that the first partial derivatives of F exist in A.Then F is Schur-convex if and only if the inequalityholds on for each i,j∈{1,...,d}.Function F is Schur-concave if the inequality is reversed.

    According to above lemma,it is easy to show the following proposition.

    Proposition 3Equations(18),(19),(20)are Schurconcave functions,where α ∈ (0,1)∪ (1,2].

    According to the above proposition,we can easily obtain the following theorem.

    Theorem 3Let S be a set of pure states in a ddimensional quantum system(d∈Z+and d≥3),if any two pure states

    satisfy majorization relation,then Cl1,Cr,Cαhave the same ordering for all states in S.

    Theorem 3 gives a sufficient condition whether these coherence measures generate the same ordering for a set of pure states in a d-dimensional quantum system.But the following example will show that the inverse result does not hold.Two qutrit pure states are given as follows,

    It is easy to calculate that

    So

    4.2 X States

    Quantum states having “X”-structure are referred to as X states.Consider an n-qubit X state given by

    It is easy to calculate that eigenvalues of ρ are λ1=and their eigenvectors areSubstituting the eigenvalues and eigenvectors into the Eqs.(1),(2),and(4),we have l1norm of coherence

    Relative entropy of coherence

    Tsallis relative entropy of coherence

    where

    Substituting ρ into Eq.(6),we obtain the mixedness of the X state M(ρ)=p.Due to Eqs.(22),(23),(24)depend on|a|and|b|,we could assume a,b are nonnegative real number.Since|a|+|b|=1,then we have a,b∈[0,1].We assume a≤b,then a∈[0,1/2],otherwise,we can swap the roles of a and b if a≥b.

    Proposition 4Given a fixed value p,Eqs.(22),(23),(24)have the same monotonicity with respect to a for a∈[0,1/2].

    According to Eq.(22),it is obvious that0 for a∈[0,1/2].We consider the derivation of Crwith respect to a,

    then it follows that Cl1,Crare decreasing functions with respect to a.

    Before considering the monotonicity of Cα(Eq.(25)),we first consider the monotonicity of r with respect to a,

    It is easy to show

    hence, ?r/?a ≥ 0 for α ∈ (1,2],and ?r/?a ≤ 0 for α∈[0,1).Substituting these results into Eq.(24),we obtain ?Cα/?a ≥ 0 for α ∈ [0,1) ∪ (1,2]. Therefore,Cαis an increasing function with respect to a for any α∈(0,1)∪(1,2].

    In the following,we will show that the result of Theorem 1 is also valid for all n-qubit X states with the fixed mixedness.

    Theorem 4For all n-qubit X states with a fixed mixedness M=p,coherence measures Cl1,Cr,and Cαwill take the same ordering,where α ∈ (0,1)∪(1,2].

    5 Dynamics of Coherence Ordering Under Markovian Channels

    In this section,we discuss dynamics of coherenceinduced ordering under Markovian channels for singlequbit states.Here,we only consider amplitude damping channel.In fact,we can consider other Markovian channels by a similar method.Amplitude damping channel(ADC)can be characterized by the Kraus’operators

    The state ε(ρ)can be represented by the form Eq.(8).The parameters are

    Substituting these parameters into Eqs.(13),(14),(15),we obtain

    where

    In accordance with Eq.(26),the amplitude damping channel does not change the coherence ordering induced by the l1norm of coherence for the single-qubit states.In the following,we will use the numerical method to discuss dynamics of coherence ordering with Crand Cαunder the amplitude damping channels for single-qubit states.

    Let p=1/2,considering a special case of α=2,For the other case,similar discussions can be made.As presented in Figs.2 and 3,we know Cr(ε(ρ))and C2(ε(ρ))are not monotonic functions with respect to nzfor a fixed valued t.By Theorem 1,we know amplitude damping channel changes the coherence-induced ordering by Cror C2for all states with fixed mixedness.As presented in Fig.4,Cr(ε(ρ))and C2(ε(ρ))are increasing functions with respect to t for any fixed nz.By Theorem 2,we know that amplitude damping channel does not change the coherence-induced ordering by Cror C2for all single qubit states with fixed valued nz.

    Fig.2 For fixed p=1/2,Cr(ε(ρ))are not monotone function with respect nzfor fixed(a)t=1/4,(b)t=1/2,(c)t=3/4,whererepresents Cr(ε(ρ)).

    Fig.3 For fixed p=1/2,C2(ε(ρ))are not monotone function with respect nzfor fixed(a)t=1/4,(b)t=1/2,(c)t=3/4,whererepresents C2(ε(ρ)).

    Fig.4 For fixed p=1/2,the variation of Cr(ε(ρ))and C2(ε(ρ))with respect to t and nzunder phase damping channel,whererepresents represents C2(ε(ρ)).

    6 Conclusion

    In this paper,we studied coherence-induced state ordering with Tsallis relative entropy of coherence,relative entropy of coherence and l1norm of coherence.First,we showed that these three measures give the same ordering for single-qubit states with a fixed mixedness or a fixed nz.Second,we considered some special cases of high dimensional states.We showed that these three measures generate the same ordering for the set of high dimensional pure states if any two states of the set satisfy majorization relation.Moreover,these three measures generate the same ordering for all X states with a fixed mixedness.Finally,we discussed dynamics of coherence-induced ordering under Markovian channels.We found the amplitude damping channel changes the coherence-induced ordering for single-qubit states with fixed mixedness.We can consider other Markovian channels by a similar method.

    There are many further discussions need to be solved.For the other coherence measures,we can discuss their sufficient conditions of the same state order induced by coherence.We only considered dynamics of coherenceinduced ordering under special Markovian channels.Dynamic of coherence-induced ordering under any incoherent operator[9](Strictly incoherent operation and Maximally incoherent operation[31])is also an interesting subject for future work.

    久久精品国产自在天天线| 日本欧美视频一区| 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 男人和女人高潮做爰伦理| 久久久久网色| 五月伊人婷婷丁香| 久久人妻熟女aⅴ| 亚洲成人av在线免费| 精品少妇黑人巨大在线播放| 免费看不卡的av| 国产伦精品一区二区三区四那| 极品少妇高潮喷水抽搐| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 夜夜爽夜夜爽视频| 久久婷婷青草| 亚洲国产精品999| 国产精品人妻久久久久久| 夜夜骑夜夜射夜夜干| 一级毛片我不卡| 大香蕉97超碰在线| 中文字幕制服av| av在线老鸭窝| 人人妻人人爽人人添夜夜欢视频 | 国产白丝娇喘喷水9色精品| 精品少妇黑人巨大在线播放| 男女免费视频国产| 一区在线观看完整版| 亚洲国产欧美在线一区| 中国国产av一级| 午夜激情久久久久久久| 丰满乱子伦码专区| 在线观看免费高清a一片| 国产精品久久久久成人av| 亚洲精品日本国产第一区| 国产精品久久久久久精品电影小说 | 国产成人a∨麻豆精品| 一本久久精品| 亚洲精品第二区| 国产日韩欧美亚洲二区| 97超碰精品成人国产| 精品少妇黑人巨大在线播放| 一级毛片黄色毛片免费观看视频| 高清黄色对白视频在线免费看 | 天天躁夜夜躁狠狠久久av| 日日啪夜夜撸| 黄片wwwwww| 在线观看一区二区三区| av免费在线看不卡| 五月玫瑰六月丁香| 色哟哟·www| 亚洲国产精品一区三区| 久久人人爽av亚洲精品天堂 | 成人亚洲精品一区在线观看 | 高清不卡的av网站| 国产久久久一区二区三区| 在线精品无人区一区二区三 | 亚洲人成网站在线播| 欧美日本视频| 这个男人来自地球电影免费观看 | 大码成人一级视频| 免费观看的影片在线观看| 精品亚洲乱码少妇综合久久| 久久人妻熟女aⅴ| 精品午夜福利在线看| 六月丁香七月| 老女人水多毛片| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| 一区二区三区免费毛片| 黄色欧美视频在线观看| 男女边摸边吃奶| 精品久久国产蜜桃| a级毛色黄片| 亚洲人成网站在线观看播放| 在线观看免费日韩欧美大片 | 精品久久国产蜜桃| 国产亚洲一区二区精品| 欧美人与善性xxx| 国产 一区精品| 亚洲国产欧美人成| 国产无遮挡羞羞视频在线观看| 国产欧美日韩精品一区二区| 日日啪夜夜撸| 亚洲av二区三区四区| 亚洲一区二区三区欧美精品| 少妇的逼好多水| 中文字幕精品免费在线观看视频 | 激情 狠狠 欧美| 久久人人爽人人片av| 久久婷婷青草| 男女边摸边吃奶| 我要看日韩黄色一级片| 成年免费大片在线观看| 久久久久国产网址| 亚洲欧美日韩无卡精品| 免费大片18禁| 国产久久久一区二区三区| 老司机影院毛片| av免费在线看不卡| 国产淫片久久久久久久久| 夜夜爽夜夜爽视频| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 男人和女人高潮做爰伦理| 联通29元200g的流量卡| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| 日韩一区二区三区影片| 成人免费观看视频高清| 2018国产大陆天天弄谢| 狂野欧美白嫩少妇大欣赏| 91精品一卡2卡3卡4卡| 亚洲精品,欧美精品| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 成人高潮视频无遮挡免费网站| 日韩中字成人| 一本久久精品| 蜜桃在线观看..| 在线观看免费日韩欧美大片 | 搡老乐熟女国产| 天堂俺去俺来也www色官网| 伊人久久精品亚洲午夜| 色婷婷av一区二区三区视频| 国产美女午夜福利| 小蜜桃在线观看免费完整版高清| 少妇人妻 视频| 午夜福利影视在线免费观看| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 在线观看美女被高潮喷水网站| 婷婷色av中文字幕| 久久久久久久久久人人人人人人| 黑人猛操日本美女一级片| 久久精品国产亚洲网站| 成人免费观看视频高清| 国产精品人妻久久久影院| kizo精华| 日韩伦理黄色片| 春色校园在线视频观看| 伦精品一区二区三区| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 精品酒店卫生间| 色婷婷av一区二区三区视频| 在现免费观看毛片| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 国产黄频视频在线观看| 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 制服丝袜香蕉在线| 久久99热这里只频精品6学生| 高清毛片免费看| 国产精品久久久久久久电影| 有码 亚洲区| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| av国产免费在线观看| 亚洲成人手机| 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 中文字幕精品免费在线观看视频 | 在线观看免费高清a一片| tube8黄色片| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂 | 夫妻午夜视频| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站 | 搡老乐熟女国产| 亚洲精品国产av蜜桃| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美 | 国产成人精品福利久久| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 一级片'在线观看视频| 久久精品夜色国产| 高清午夜精品一区二区三区| 久久ye,这里只有精品| 国产爽快片一区二区三区| 日本免费在线观看一区| 国产黄片视频在线免费观看| 日韩一区二区视频免费看| av免费观看日本| 亚洲综合精品二区| 人人妻人人爽人人添夜夜欢视频 | 在线观看国产h片| 91精品国产九色| 黄色配什么色好看| 色哟哟·www| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 国产精品无大码| av在线老鸭窝| 国产欧美日韩一区二区三区在线 | 久久久国产一区二区| av国产久精品久网站免费入址| 亚洲图色成人| 色网站视频免费| 国产黄频视频在线观看| 亚洲精品国产成人久久av| av女优亚洲男人天堂| 高清毛片免费看| 九九在线视频观看精品| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 亚洲人成网站在线播| 亚洲精品一二三| 久久热精品热| 一本—道久久a久久精品蜜桃钙片| 国产人妻一区二区三区在| 日本欧美视频一区| 成人毛片a级毛片在线播放| 国产精品成人在线| 久久久久久久精品精品| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 最近中文字幕2019免费版| 亚洲欧美成人综合另类久久久| 国产亚洲精品久久久com| 免费在线观看成人毛片| av专区在线播放| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 亚洲aⅴ乱码一区二区在线播放| 97精品久久久久久久久久精品| 久久婷婷青草| 亚洲av国产av综合av卡| 我要看日韩黄色一级片| 国语对白做爰xxxⅹ性视频网站| 大又大粗又爽又黄少妇毛片口| 色综合色国产| 亚洲美女视频黄频| 黑人猛操日本美女一级片| 五月天丁香电影| 国产久久久一区二区三区| 国产精品国产av在线观看| 在线观看免费日韩欧美大片 | 国产成人freesex在线| 久久久久久九九精品二区国产| 亚洲内射少妇av| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 午夜福利高清视频| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 极品教师在线视频| 看免费成人av毛片| 日韩不卡一区二区三区视频在线| 久久99热这里只频精品6学生| 亚洲av综合色区一区| 久久国产精品大桥未久av | 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 午夜福利影视在线免费观看| 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| 日本午夜av视频| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| tube8黄色片| 欧美日韩综合久久久久久| 黑人高潮一二区| 亚洲成人手机| 99久久人妻综合| 久久女婷五月综合色啪小说| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 国产v大片淫在线免费观看| 在线播放无遮挡| 深夜a级毛片| a 毛片基地| av天堂中文字幕网| 美女福利国产在线 | 国产精品国产三级国产av玫瑰| 波野结衣二区三区在线| 日本av手机在线免费观看| 久久这里有精品视频免费| 久久久久久久久大av| 欧美丝袜亚洲另类| 天天躁夜夜躁狠狠久久av| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 免费观看无遮挡的男女| 国产一区二区三区综合在线观看 | 岛国毛片在线播放| 国产精品一区二区在线不卡| 国产av一区二区精品久久 | 国产欧美日韩一区二区三区在线 | 成人毛片a级毛片在线播放| 18禁裸乳无遮挡免费网站照片| 十八禁网站网址无遮挡 | 国产视频内射| 久久久午夜欧美精品| 免费观看的影片在线观看| 三级经典国产精品| 国产高清有码在线观看视频| 99国产精品免费福利视频| 精品久久久久久久久av| 国产日韩欧美在线精品| 成人国产麻豆网| 国产视频内射| 只有这里有精品99| 欧美丝袜亚洲另类| 免费人妻精品一区二区三区视频| 欧美xxxx性猛交bbbb| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| 久久av网站| 亚洲内射少妇av| 国产色爽女视频免费观看| 少妇人妻 视频| 美女视频免费永久观看网站| 久久国产乱子免费精品| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| 婷婷色av中文字幕| 少妇人妻一区二区三区视频| 免费看av在线观看网站| 国产真实伦视频高清在线观看| 久久久久国产精品人妻一区二区| 1000部很黄的大片| 精品人妻熟女av久视频| 男女免费视频国产| 婷婷色综合www| 久久国产精品大桥未久av | 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 汤姆久久久久久久影院中文字幕| 人妻系列 视频| 中文字幕av成人在线电影| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 亚洲高清免费不卡视频| 黄色一级大片看看| 久久精品久久精品一区二区三区| 亚洲久久久国产精品| 18禁在线播放成人免费| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 日韩av免费高清视频| 男女无遮挡免费网站观看| 中国三级夫妇交换| 在线观看人妻少妇| 国产精品一及| 亚洲人成网站高清观看| 一边亲一边摸免费视频| 美女中出高潮动态图| 精品午夜福利在线看| 久久久a久久爽久久v久久| 亚洲国产精品专区欧美| 国产 一区 欧美 日韩| 日日撸夜夜添| 亚洲国产毛片av蜜桃av| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 欧美精品国产亚洲| 黄色欧美视频在线观看| 丰满乱子伦码专区| 中文资源天堂在线| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 久久99热这里只频精品6学生| 亚洲在久久综合| 人人妻人人添人人爽欧美一区卜 | 麻豆国产97在线/欧美| 日韩电影二区| 精品久久国产蜜桃| 欧美高清成人免费视频www| 国产亚洲最大av| 国产精品国产av在线观看| 精品一区在线观看国产| 97超碰精品成人国产| 亚洲国产精品一区三区| 日韩国内少妇激情av| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 亚洲成人手机| 日本免费在线观看一区| 乱系列少妇在线播放| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 亚洲真实伦在线观看| 国产乱来视频区| av播播在线观看一区| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| videos熟女内射| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 人妻 亚洲 视频| 日韩强制内射视频| 在线精品无人区一区二区三 | 午夜福利在线观看免费完整高清在| 一区二区三区乱码不卡18| 免费观看av网站的网址| 黄色视频在线播放观看不卡| 国产午夜精品久久久久久一区二区三区| 国产无遮挡羞羞视频在线观看| 一区在线观看完整版| 国产欧美日韩一区二区三区在线 | 精华霜和精华液先用哪个| 亚洲av不卡在线观看| 日韩精品有码人妻一区| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 插阴视频在线观看视频| 男女免费视频国产| 少妇熟女欧美另类| 26uuu在线亚洲综合色| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 精品视频人人做人人爽| 久久影院123| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 最近手机中文字幕大全| 国产永久视频网站| 三级国产精品片| 日本午夜av视频| 蜜桃久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 中文字幕久久专区| 国产高清国产精品国产三级 | 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 51国产日韩欧美| 国产极品天堂在线| 中文字幕制服av| 亚洲国产精品专区欧美| 久久精品熟女亚洲av麻豆精品| 午夜免费鲁丝| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 亚洲色图av天堂| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 免费av中文字幕在线| 欧美人与善性xxx| 男男h啪啪无遮挡| 亚洲电影在线观看av| 欧美精品亚洲一区二区| 久久国产乱子免费精品| 少妇精品久久久久久久| 国产视频首页在线观看| 精品酒店卫生间| 夜夜骑夜夜射夜夜干| 男人舔奶头视频| 如何舔出高潮| 丰满人妻一区二区三区视频av| 99热这里只有是精品50| 激情 狠狠 欧美| 三级经典国产精品| 久久久久网色| 久久99蜜桃精品久久| 熟妇人妻不卡中文字幕| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| 亚洲,一卡二卡三卡| 全区人妻精品视频| 国产 精品1| 国产 一区精品| 又爽又黄a免费视频| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 免费看av在线观看网站| 亚洲精品乱久久久久久| 日韩在线高清观看一区二区三区| 91精品国产国语对白视频| 在线天堂最新版资源| 99热全是精品| 婷婷色综合大香蕉| 丝袜喷水一区| 国产精品精品国产色婷婷| 成人免费观看视频高清| 一本一本综合久久| 91aial.com中文字幕在线观看| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 亚洲在久久综合| 亚洲va在线va天堂va国产| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 亚洲av福利一区| 人妻一区二区av| 午夜福利影视在线免费观看| 日日啪夜夜撸| 亚洲精品一区蜜桃| 激情五月婷婷亚洲| 看十八女毛片水多多多| 女性被躁到高潮视频| 亚洲真实伦在线观看| 老熟女久久久| 成人影院久久| 夫妻性生交免费视频一级片| a 毛片基地| 视频区图区小说| 欧美一级a爱片免费观看看| 一级毛片久久久久久久久女| 国产av码专区亚洲av| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 日韩一区二区视频免费看| 亚洲,一卡二卡三卡| 国产高潮美女av| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲精华国产精华液的使用体验| 久久午夜福利片| 欧美精品人与动牲交sv欧美| 亚洲精品国产av蜜桃| 啦啦啦在线观看免费高清www| 日本黄色日本黄色录像| 日韩亚洲欧美综合| 亚洲成人中文字幕在线播放| 精品久久久噜噜| av在线播放精品| 我的老师免费观看完整版| 美女高潮的动态| 一本色道久久久久久精品综合| 欧美+日韩+精品| 国产亚洲精品久久久com| 亚洲美女黄色视频免费看| 国产免费又黄又爽又色| 色视频在线一区二区三区| 天堂中文最新版在线下载| 亚洲av综合色区一区| 国产亚洲91精品色在线| 亚洲在久久综合| 色婷婷久久久亚洲欧美| 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| 高清不卡的av网站| 国产永久视频网站| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 韩国av在线不卡| 国产精品一及| 久久久久久久久久成人| 国产淫片久久久久久久久| 日韩伦理黄色片| 日韩欧美一区视频在线观看 | av线在线观看网站| 亚洲精品国产成人久久av| 久久久久久久久久人人人人人人| 美女高潮的动态| 精品午夜福利在线看| 久久鲁丝午夜福利片| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 久久久欧美国产精品| 亚洲aⅴ乱码一区二区在线播放| 日韩av在线免费看完整版不卡| 亚洲美女搞黄在线观看| 国国产精品蜜臀av免费| 亚洲色图av天堂| 建设人人有责人人尽责人人享有的 | 91在线精品国自产拍蜜月| 纵有疾风起免费观看全集完整版| 久久久久久人妻| 搡老乐熟女国产| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| 91久久精品国产一区二区三区| 最近中文字幕2019免费版| av女优亚洲男人天堂| www.色视频.com| 18+在线观看网站| 毛片女人毛片| 欧美日韩精品成人综合77777| 国产精品国产av在线观看| 亚洲四区av| 少妇丰满av| 尾随美女入室| 下体分泌物呈黄色| 色吧在线观看| 精品酒店卫生间| 韩国高清视频一区二区三区| 大码成人一级视频| 欧美最新免费一区二区三区| 婷婷色av中文字幕| 久久久精品94久久精品| 午夜福利在线观看免费完整高清在|