• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳包覆LiFe0.5Co0.5PO4固溶體正極材料的制備及其電化學(xué)性能

    2018-08-01 01:55:56鐘艷君吳振國(guó)郭孝東鐘本和王辛龍
    關(guān)鍵詞:振國(guó)固溶體四川大學(xué)

    鐘艷君 吳振國(guó) 田 海 郭孝東 鐘本和 王辛龍

    (四川大學(xué)化學(xué)工程學(xué)院,成都 610065)

    0 Introduction

    Lithium-ion batteries (LIBs)that can effectively store energy in the form of chemicals are now attracting the international community′s concern for applications in portable electronic devices and electrical vehicles[1-2].Cathode materials which determine the energy density of LIBs at one level have become a hot topic in recent years[3-5].LiFePO4,as the most famous member of the family of olivine-type lithium transition metal phosphates(LiMPO4,M=Fe,Mn,Co,Ni),is quite attractive for the cathodes of LIBs due to its good stability,low cost,and abundant in nature[6-9].However,its relatively low potential of 3.45 V(vs Li+/Li,as below)would restrict its further application because of the ever-increasing demand for efficient energy storage systems in hybrid electric vehicles and plugin hybrid electric vehicles.LiCoPO4also has been attracted much attention for its high working potential(4.8 V)at the stability limit of the carbonate-based liquid electrolytes and its small lattice volume change(~2%)during charge/discharge processes between the CoPO4and LiCoPO4compounds[10-12].Nevertheless,remarkable capacity fading caused by structure deterioration and electrolyte decomposition limit its practical application.Thus,it would be of momentous importance if it can combine the excellent cycling behaviour of LiFePO4and the high operation voltage of LiCoPO4.In fact,olivine solid solutions especially LiFe1-xMnxPO4has been investigated intensively in recent years[13-16].Inspired by this,the binary olivine LiFexCo1-xPO4compounds which are scarcely reported,would be worth studying.

    The electrochemicalperformances ofolivine LiMPO4are usually limited by the poor electronic conductivity and low Li-ion mobility.Various methods have been attempted to improve the battery performance of lithium iron phosphate.Among them,it is facile and efficient to composite the LiMPO4with carbon nanomaterials[17-19].Carbon nanomaterials usually serve as a conductive agent to improve the electrical conductivity while increasing the material porosity in which the solid-state diffusion distances are significantly shortened[20-23].According to our knowledge,the nanostructure and carbon coating effects about LiFexCo1-xPO4component seem to have received less attention among the few previous reports[24-26].Based on the previous reports,the carbon layer is more difficult to be coated on the surface of LiCoPO4thanother olivine-structured compounds like LiFePO4,which may be associated with the distinct surface features of LiCoPO4[27-28].This could make it more challenging to get a well carbon coated LiFexCo1-xPO4solid solution composite with full and homogeneous carbon coverage.As demonstrated in previous reports[29-31],it is easily obtain nanomaterials with desired carbon coating via rheological phase method,for it ensures improved quality of mixing and optimized element and particle size distributions.Besides,the heat and mass transfer between the solid particle and fluid can be carried out easily and quickly in the solid-liquid rheological mixture[32-34].In our previous works[29,35-37],we successfully used the rheological phase method to synthesize LiMn0.5Fe0.5PO4/C,Li3V2(PO4)3/C,LiFe0.5Mn0.3Co0.2PO4/C composites.

    In current study,we have reported the preparation of LiFe0.5Co0.5PO4/C(LFCP/C)composite by a facile rheological phase method and evaluated their electrochemical performances as cathode materials for LIBs.Based on the results from SEM and TEM,it is clearly proved that the LFCP/C sample synthesized via FeC2O4·2H2O exhibits smaller particles size,better dispersion and more favorable carbon coating effect than the one by FePO4·4H2O,thus leading to the more excellent Li-storage capability.

    1 Experimental

    1.1 Material syntheses

    The carbon decorated LiFe0.5Co0.5PO4/C(denoted as LFCP/C)samples were synthesized by rheological phase method.In a typical synthesis for 0.02 mol of LFCP/C product,stoichiometric amount of Li2CO3,FePO4·4H2O or FeC2O4·2H2O,CoCO3and NH4H2PO4as raw materials,2 g of stearic acid as carbon source,and 6 mL of ethylalcohol(AR)as grinding aid were used.After planetary ball milling at 500 r·min-1for 10 h,the obtained rheological mixture was preheated at 400℃for 5 h and then sintered at 600℃for 10 h in a tube furnace with argon as the shielding gas to yield the LFCP/C product.The LFCP/C composites via FePO4·4H2O and FeC2O4·2H2O are correspondingly labeled as LFCP/C-FP and LFCP/C-FO,respectively.

    1.2 Material characterization

    Powder X-ray diffraction (XRD)measurement was performed on Rigaku UltimaⅣdevice using Cu Kα radiation(λ=0.154 nm),operating at 35 kV×30 mA in range 2θ from 10°to 70°with the scanning speed of 5°·min-1for identification of phase asprepared LFCP/C materials.The particle morphology of the as-prepared compounds was characterized using a field emission scanning electron microscope(FESEM,S-4800)operated 15 kV.Transmission electron microscope(TEM,JEM-2100)operated 200 kV was further used to observe the morphology structure and carbon coating effect of the samples.An automated surface area analyzer (ASAP2020,Micromeritics)based on BET method using nitrogen adsorption-desorption isotherms was employed for specific surface area measurement.The carbon content of the synthesized composite was detected by Vario ELⅢElemental analyzer(Elementar Analysen Syetem GmbH).

    1.3 Electrochemical measurement

    The electrochemical performance was measured using CR2025 coin cells.The positive electrode was fabricated by a mixture of active material,carbon black(CB),and LA-133(a kind of water-soluble binder purchased from Chengdu Yin Di Le Power Technology Co.,Ltd.,China)with wactivematerial∶wCB∶wLA-133=80 ∶10 ∶10 mixed in water solution.The slurry was coated uniformly onto the aluminum foil and dried at 120℃for 12 h in a vacuum oven,and then punched in model and weighed.The coin cells were assembled in an argon-filled glove box using Li metal as the anode and porous polypropylene film (Celgard 2400)as the separator.The employed high-voltage electrolyte mainly consists a solution of 1 mol·L-1LiPF6in a solvent mixture of ethylene carbonate (EC)and dimethyl carbonate(DMC)(VEC∶VDMC=1∶1).The charge-discharge tests were galvanostatically performed between 2.5 and 5.0 V with various C-rates (1C=150 mA·g-1)on the battery test system (Neware BTS).The electrochemical impedance spectroscopy(EIS)was measured on a Zahner electrochemical workstation between 10 mHz to 100 kHz with the alternating current voltage(AC)voltage amplitude of 5 mV.All electrochemical tests were carried out at room temperature.

    2 Results and dissolution

    The XRD patterns of the as-prepared LFCP/C samples are presented in Fig.1.All diffraction characteristic peaks for the two samples are assigned to olivine structure in orthorhombic and Pnma(62)space group based on the standard XRD patterns of LiFePO4(PDF No.83-2092)and LiCoPO4(PDF No.85-0002).There are no impurities observed in the patterns,and the peak strength and peak position are very similar for the two samples,implying that high-purity products were obtained by both the Fe raw materials.Besides,good crystallinity can be inferred for the two samples as evidenced from the narrow and sharp peaks.Results based on elemental analyzer indicate that the residual carbon content for LFCP/C-FP and LFCP/CFO are 2.72%and 1.98%(w/w),respectively,while no carbon peak presented in the XRD patterns because of the relatively low content and the amorphous state.

    Fig.1 XRD patterns of LFCP/C samples

    Fig.2 SEM images of(a~c)LFCP/C-FP and(e~g)LFCP/C-FO;Statistics of particle size distribution of(d)LFCP/C-FP(based on(b))and(h)LFCP/C-FO(based on(f))

    Fig.2 shows the SEM images for LFCP/C-FO and LFCP/C-FP.As can be clearly observed from lowmagnification SEM images in Fig.2(a,e)which provide an overview of the morphology of the as-prepared products,LFCP/C-FO and LFCP/C-FP are composed of nanoparticles,while the particles seem more serious aggregation in LFCP/C-FP evidenced by some microsized aggregate in the image.According to the representative high-magnification SEM images in Fig.2(b,c,f,g),both of the samples show nanoparticle morphology but LFCP/C-FO seems more uniform with significantly smaller average particle size.The statistics of particle size distribution shown in Fig.2(d,h),which are respectively based on SEM images of Fig.2(b,f),also verified that LFCP/C-FO possesses a narrower particle size distribution and smaller average particle size of 146 nm than LFCP/C-PO.Furthermore,in the high-magnification SEM image of Fig.2(c)for LFCP/CFP,some flocculent carbon is visible scattered by particles,suggesting that some carbon has not been covered on the surface of particles.Unsurprisingly,as characterized by nitrogen adsorption-desorption analysis,LFCP/C-FO(44 m2·g-1)has a higher BET specific surface area than LFCP/C-FP(23 m2·g-1),which could mainly be associated with the smaller particle size and higher dispersity for the former.The fundamental cause for the structural feature of LFCP/C-FO may be derived from a lot of gas generated by FeC2O4·2H2O thermal decomposition in the calcination process.In general,a larger specific surface area can effectively increase the interface between electrode and electrolyte,thus enhancing an effective charge transfer across the interface[38].

    To further demonstrate the difference in particle morphology and carbon coating effect of the LFCP/C samples,Fig.3 gives the TEM and HRTEM images.Fig.3(a) shows the irregular shaped aggregate of LFCP/C-FP composed by nanoparticles with an inhomogeneous size distribution,and the serious adhesion phenomenon between particles can be observed.The surface of particle seems barely coated by carbon layer,and even some striking quilted carbon is disheveled around the particles,as shown in Fig.3(b).Only a small part of particles has been coated by the carbon layer effectively,such as the one shown in Fig.3(c),where a~2.0 nm thickness carbon layer is coated on the outer of particles.The lattice with d-spacing 0.301 nm and reconcilable with the lattice fringe values of(211)plane olivine structure were evident in Fig.3(c).Fig.3(d)shows LFCP/C-FO contains wellproportioned spherical or ellipsoidal particles,and the grain diameter is about 50~100 nm being coated by amorphous carbon.No stacked carbon can be observed in Fig.3(e),implying that the desired carbon coating effect has been realized in the LFCP/C-FO sample.Fig.3(f)shows that the particle is covered by a~2.5 nm thickness carbon layer,and there are different lattice spaces of 0.253,and 0.292 nm,corresponding to (131),and (200)atomic layers of LiFe0.5Co0.5PO4,respectively.These indicate that the particle has a well-ordered crystal structure.Previous researches have proven that fine carbon coating can increase the electronic conductivity of materials and buffer the mechanical damage of the active materials during the Li ion insertion/extraction process[39].With the above analysis,it can be inferred that the LFCP/C-FO may offer better electrochemical performances.

    Fig.3 TEM and HRTEM images of(a~c)LFCP/C-FP and(d~f)LFCP/C-FO

    Fig.4(a)displays galvanostatic charge/discharge voltage profiles at a current density of 0.05C between 2.5 and 5.0 V of the first and third cycles for the two cathode materials.The profiles present two reversible voltage plateaus around 3.5 and 4.8 V for the two LFCP/C samples,corresponding to the Fe3+/Fe2+and Co3+/Co2+redox,respectively.The first cycle charge and discharge profiles of LFCP/C-FP deliver specific capacities of 159.8 and 109.6 mAh·g-1,respectively,with coulombic efficiency of 68.6%.As a comparison,LFCP/C-FO exhibits higher charge capacity of 201.3 mAh·g-1and discharge capacity of 136.1 mAh·g-1,with coulombic efficiency of 67.6%.The capacity loss more than 30%in the initial cycle for the both electrodes is mainly attributed to the electrolyte decomposition and irreversible reaction associated to Co2+/Co3+,which is commonly observed for high-voltage materials like LiCoPO4[40-41].Then in the third cycle,the discharge capacity increased to 119.2 mAh·g-1for LFCP/C-FP and 139.9 mAh·g-1for LFCP/C-FO.In addition,the coulombic efficiency reaches a value of more than 90%at the 3rd cycle for both electrodes.Furthermore,as can be observed that from the charge/discharge voltage profiles,the platform length of near 4.8 V for LFCP/C-FP is somewhat shorter than that of LFCP/C-FO while the one of~3.4 V is similar,signifying that the lower capacity for LFCP/C-FP ought to be mainly ascribed to Co3+/Co2+redox reaction.This phenomenon could be associated with electrochemical activation process of LFCP/C electrodes.Fig.4(b)shows the differential capacity profiles of the 3rd cycle for the samples.There are two cathodic/anodic peaks positioned at about 3.49/3.46 V and 4.80/4.76 V identified as Fe3+/Fe2+and Co3+/Co2+redox couple,respectively,in accordance with the charge/discharge profiles.

    Rateperformancesofthetwoelectrodesat different rates are shown in Fig.5(a).A relatively higher discharge capacity was found for LFCP/C-FO than LFCP/C-FP at various discharge rates.Specifically,the LFCP/C-FO electrode delivers a reversible capacity of 137.5,129.5,114.1,100.0,86.7,73.9 and 57.6 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C respectively.As a comparison,the corresponding capacity for LFCP/C-FP is 115.8,105.5,92.7,85.5,72.0,61.3 and 42.2 mAh·g-1,respectively.When the current rate is set back to 0.1C after rate performances measurement,the capacity for LFCP/C-FO and LFCP/C-FP is 120.2 and 111.2 mAh·g-1,respectively.

    Fig.4 First and third charge/discharge curves at 0.05C(a)and the corresponding differential capacity curves in the third cycle(b)for both LiFe0.5Co0.5PO4/C electrodes

    Fig.5 Electrochemical behaviors of LiFe0.5Co0.5PO4/C electrodes:(a)Rate property and(b)cycling performance at 0.5C in the potential range of 2.5~5.0 V(vs Li+/Li)

    Fig.5(b)gives the comparison of cycling performance at 0.5C in the range of 2.5~5.0 V for the two LFCP/C electrodes.During the cycling process,the coulombic efficiency gradually increases and then steadily reaches a value higher than 98.0%,indicating the good reversibility of as-obtained LFCP/C samples.Remarkably,LFCP/C-FO shows slower capacity fading than the other one.It maintains 83.1 mAh·g-1after 100 cycles with 78.1%of capacity retention ratio,in contrast,only discharge capacity of 58.3 mAh·g-1and capacity retention ratio of 63.5%for LFCP-FP.These results demonstrate thatLFCP/C-FO has more excellent electrochemical performance,which can be associated with the smallerparticle size which shortens the diffusion distance Li+,and the uniform and full carbon coating layer which not only enhance the electronic conductivity,butalso actas a protective barrier for active materials from being severely corroded.

    Fig.6 (a)EIS profiles of LFCP/C-FP and LFCP/C-FO samples,the inset shows an equivalent circuit;(b)Relationship between Zreand ω-1/2at low frequency

    EIS tests were conducted to disclose the reasons for the better comprehensive electrochemical performances of LFCP/C-FO.Before the EIS tests,the cells were first charged and discharged for three cycles at 0.1C.Subsequently,the EIS tests were taken at the full discharge state of 2.5 V.Fig.6(a)gives the Nyquist plots for LFCP/C-FP and LFCP/C-FO.The small interrupt is corresponding to the solution impedance(Re).The semicircle can be assigned to the charge transfer impedance(Rct)in the high to medium frequency.The short quasi-straight line observed in the low frequency is related to the solid-state diffusion of Li+in the active materials,which is also called Warburg impedance (Zw).The Nyquist plots are fitted by using an equivalent circuit as inserted in Fig.6(a).A constant phase element(CPE)is placed to represent the double layer capacitance and passivation film capacitance[42].The calculated values of Reand Rctfor LFCP/C-FP and LFCP/C-FO are listed in the Table 1.It seems that the Revalue of LFCP/C-FO(5.83 Ω)is similar to that of LFCP/C-FP (6.17 Ω).The main difference between these two electrodes is the charge transfer resistant(Rct).The value of Rctfor LFCP/C-FO(48.75 Ω)is much lower than that of LFCP/C-FP (110.9 Ω),which can be attributed to the uniform and full carbon coating layer in the surfaces of primary particles.It reveals that on one side,the higher specific surface area is beneficial for the electrolyte to thoroughly contact with the particle surface,which will facilitate the Li+to travel from the electrolyte to the solid material.On the other side,there are still connected points between the primary particles (due to the formation of the secondary particles),resulting in a facile transfer of Li+and the electron in the solid active material[17,43].Thus,it is also one of the main reasons for the improved rate capability of LFCP/CFO.The lithium ion diffusion coefficient can becalculated according the following equations[44-45]:

    Table 1 Electrochemical kinetics parameters obtained from the equivalent circuit fitting of the EIS for the LFCP/C-FP and LFCP/C-FO electrodes

    Where D is the Li+diffusion coefficient(cm2·s-1),R is the gas constant(J·mol-1·K-1),T is the absolute temperature(K),A is the contact area of the electrode(m2),n is the number of the electrons per molecule,F is the Faraday constant(C·mol-1),C is the concentration of the lithium ion(mol·L-1),Zreis Li+diffusion resistance in the electrode material(the real part of cell impedance,Ω),ω is angular frequency,and the σ is the Warburg coefficient which is equal to the slope of the straight line as illustrated in Fig.6(b).The diffusion coefficient(Table 1)is calculated to be about 2.08×10-14cm2·s-1for LFCP/C-FP and 6.39 ×10-14cm2·s-1for LFCP/C-FO,respectively.Therefore,it is reasonable to conclude that the improvement of the electrochemical reaction activity and ion diffusion are responsible for remarkable rate performance and good cycle stability of the LFCP/C-FO sample.

    3 Conclusions

    In conclusion,LiFe0.5Co0.5PO4/C composites were prepared by a facile rheological phase method via two kinds of Fe sources of FePO4·4H2O and FeC2O4·2H2O,respectively.The as-obtained LiFe0.5Co0.5PO4/C composites can be indexed as the typical olivine structure without impurity phase.Benefiting from the smaller average particle size and better dispersibility,the specific surface area of LiFe0.5Co0.5PO4/C applying FeC2O4·2H2O is up to 44 m2·g-1,which implies a higher interfacial contact area between the active particles and the electrolyte,as well as an increase in its capacitance capability.Besides,it has fine carbon coating effect with a uniform and full carbon layer of~2.5 nm on the surface of nanoparticle,consequently resulting in enhanced electricalconductivity of materials and formation of a good protective layer between active material and electrolyte.Therefore,as cathode materials for LIBs,the sample via FeC2O4·2H2O as Fe reactant exhibits more excellent electrochemical properties,i.e.,a high capacity of 137.5 mAh·g-1at 0.1C and better cycle life.Based on this study,it is demonstrated that the great effect of Fe sources for the properties of LiFe0.5Co0.5PO4/C composites.This report would provide critical guidance for the preparation of LiFexCo1-xPO4solid solution materials.

    Acknowledgements:This work acknowledges the support of the Research Foundation for the Postdoctoral Program of Sichuan University(Grant No.2017SCU12018)and National key research projects(Grant No.2017YFB0307504).

    猜你喜歡
    振國(guó)固溶體四川大學(xué)
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    愛(ài)在拉薩
    無(wú)機(jī)非金屬材料中固溶體的應(yīng)用研究
    Bi2WxMo1-xO6固溶體制備及光催化降解有機(jī)廢水
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    無(wú)機(jī)非金屬材料中固溶體的實(shí)施
    四川水泥(2019年9期)2019-02-16 20:12:56
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    91久久精品电影网| 十八禁网站免费在线| 不卡一级毛片| 免费黄网站久久成人精品| 国产精品日韩av在线免费观看| 在线a可以看的网站| 亚洲无线观看免费| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 小蜜桃在线观看免费完整版高清| 久久久国产成人精品二区| 成人二区视频| 欧美中文日本在线观看视频| 成人性生交大片免费视频hd| 午夜精品久久久久久毛片777| 色播亚洲综合网| 欧美日韩乱码在线| 亚洲性夜色夜夜综合| 噜噜噜噜噜久久久久久91| 精华霜和精华液先用哪个| 国产真实伦视频高清在线观看 | 免费av毛片视频| 在线观看66精品国产| 国产视频一区二区在线看| 欧美潮喷喷水| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久久久| 久久久久国产精品人妻aⅴ院| 在线观看av片永久免费下载| 久久精品久久久久久噜噜老黄 | 日韩精品中文字幕看吧| 中文亚洲av片在线观看爽| 国产免费一级a男人的天堂| 亚洲美女黄片视频| 高清日韩中文字幕在线| 成年女人永久免费观看视频| 国产蜜桃级精品一区二区三区| 成人国产麻豆网| 九九久久精品国产亚洲av麻豆| 久久99热这里只有精品18| 97人妻精品一区二区三区麻豆| 亚洲成人中文字幕在线播放| 国产一区二区在线观看日韩| 午夜影院日韩av| 婷婷精品国产亚洲av在线| av.在线天堂| 一进一出抽搐gif免费好疼| 国产精品一区二区性色av| 夜夜看夜夜爽夜夜摸| 在线观看免费视频日本深夜| 国产亚洲精品久久久久久毛片| 日本成人三级电影网站| 亚洲国产高清在线一区二区三| 成年女人看的毛片在线观看| 亚洲专区中文字幕在线| 精华霜和精华液先用哪个| 国产伦精品一区二区三区视频9| 搡老岳熟女国产| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久精品电影| www.色视频.com| 亚洲一级一片aⅴ在线观看| 高清日韩中文字幕在线| 国产精品国产三级国产av玫瑰| 亚洲av美国av| 亚洲内射少妇av| 综合色av麻豆| 美女xxoo啪啪120秒动态图| 欧美zozozo另类| 国产精品久久视频播放| 午夜精品久久久久久毛片777| 国产综合懂色| 亚洲国产精品成人综合色| av国产免费在线观看| 久久香蕉精品热| 熟妇人妻久久中文字幕3abv| 日日摸夜夜添夜夜添av毛片 | 久久欧美精品欧美久久欧美| 午夜影院日韩av| 午夜福利18| 国产精品av视频在线免费观看| 丰满的人妻完整版| 亚洲av免费在线观看| 99热只有精品国产| 亚洲av成人av| 麻豆国产97在线/欧美| 九九热线精品视视频播放| 国产精品爽爽va在线观看网站| 黄色视频,在线免费观看| 日韩欧美免费精品| 丝袜美腿在线中文| 国内精品宾馆在线| 狂野欧美白嫩少妇大欣赏| 午夜激情欧美在线| 老司机福利观看| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3| 在线播放无遮挡| 波多野结衣巨乳人妻| 男女那种视频在线观看| 亚洲av中文字字幕乱码综合| 国产伦一二天堂av在线观看| 日韩,欧美,国产一区二区三区 | 人妻夜夜爽99麻豆av| av在线观看视频网站免费| 99久久精品热视频| 国产高清视频在线观看网站| 亚洲无线在线观看| 一级毛片久久久久久久久女| 美女xxoo啪啪120秒动态图| 国产精品一及| 国产私拍福利视频在线观看| 久久热精品热| 人人妻人人澡欧美一区二区| 久久国产乱子免费精品| 丰满的人妻完整版| 色哟哟·www| 亚洲黑人精品在线| 久99久视频精品免费| 精品人妻一区二区三区麻豆 | 亚洲人成伊人成综合网2020| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 久久这里只有精品中国| 色哟哟·www| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 少妇人妻精品综合一区二区 | 亚洲成人免费电影在线观看| 亚洲av中文av极速乱 | 国产精品久久久久久久久免| 亚洲男人的天堂狠狠| 久久久久久久亚洲中文字幕| 日韩欧美在线乱码| 日韩精品中文字幕看吧| 亚洲第一区二区三区不卡| 免费在线观看影片大全网站| 精品人妻1区二区| 精品久久久久久,| 国产精品一及| 九九热线精品视视频播放| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 级片在线观看| 国产欧美日韩精品一区二区| 午夜免费男女啪啪视频观看 | 欧美绝顶高潮抽搐喷水| 国产精品亚洲一级av第二区| 悠悠久久av| 成人国产麻豆网| 美女高潮喷水抽搐中文字幕| 我要看日韩黄色一级片| 午夜福利在线观看吧| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 成人一区二区视频在线观看| 日韩国内少妇激情av| 日本成人三级电影网站| 午夜免费成人在线视频| 3wmmmm亚洲av在线观看| 波多野结衣高清作品| 免费看美女性在线毛片视频| 国产高清有码在线观看视频| 欧美xxxx黑人xx丫x性爽| av女优亚洲男人天堂| 日本黄色片子视频| 国产色爽女视频免费观看| 亚洲精华国产精华液的使用体验 | 黄色女人牲交| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 午夜久久久久精精品| 亚洲不卡免费看| 美女cb高潮喷水在线观看| 99热只有精品国产| 久久国产乱子免费精品| 精品久久久久久久久亚洲 | 五月玫瑰六月丁香| 黄片wwwwww| 五月伊人婷婷丁香| 男人舔女人下体高潮全视频| 全区人妻精品视频| 国产精品野战在线观看| 少妇人妻精品综合一区二区 | 成人av在线播放网站| a级毛片a级免费在线| 欧美黑人欧美精品刺激| 亚洲成人中文字幕在线播放| av在线观看视频网站免费| 日本黄大片高清| 欧美三级亚洲精品| 伦理电影大哥的女人| 久久久久国产精品人妻aⅴ院| 国产乱人伦免费视频| 免费无遮挡裸体视频| 黄色日韩在线| 国产精品电影一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久人妻av系列| 干丝袜人妻中文字幕| 亚洲图色成人| 99热这里只有是精品50| 麻豆一二三区av精品| 黄色一级大片看看| 在线天堂最新版资源| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| 69人妻影院| 真人一进一出gif抽搐免费| 久久久色成人| av黄色大香蕉| 天天一区二区日本电影三级| 国产精品久久久久久亚洲av鲁大| 国产一区二区在线av高清观看| 国产精品久久视频播放| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 不卡一级毛片| 日本免费a在线| 亚洲天堂国产精品一区在线| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 国产亚洲精品av在线| 久久久久久伊人网av| 午夜激情欧美在线| 欧美日韩综合久久久久久 | 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 精品人妻一区二区三区麻豆 | 波多野结衣高清无吗| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看| 国产三级在线视频| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 亚洲精品色激情综合| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| 亚洲精品成人久久久久久| 亚洲四区av| 亚洲va日本ⅴa欧美va伊人久久| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 高清日韩中文字幕在线| 麻豆精品久久久久久蜜桃| 欧美日韩综合久久久久久 | 亚洲三级黄色毛片| www.色视频.com| 中文字幕精品亚洲无线码一区| 网址你懂的国产日韩在线| 欧美一区二区国产精品久久精品| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| 乱码一卡2卡4卡精品| 国产一区二区三区av在线 | 国产亚洲91精品色在线| 如何舔出高潮| 村上凉子中文字幕在线| 最近在线观看免费完整版| 看免费成人av毛片| 超碰av人人做人人爽久久| 精品久久久久久久久久免费视频| 黄片wwwwww| 少妇人妻精品综合一区二区 | 高清在线国产一区| 国产一区二区三区av在线 | 久久午夜福利片| 久久久久久久久中文| 免费av毛片视频| 亚洲成a人片在线一区二区| 日韩中文字幕欧美一区二区| 天美传媒精品一区二区| 在线播放无遮挡| 深夜精品福利| 国产大屁股一区二区在线视频| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 国产精品国产高清国产av| 久久久精品欧美日韩精品| 天堂网av新在线| 婷婷色综合大香蕉| 国产中年淑女户外野战色| 午夜福利在线观看免费完整高清在 | 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 精品福利观看| 观看美女的网站| 99精品在免费线老司机午夜| 国产精品人妻久久久影院| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 男人和女人高潮做爰伦理| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 国产aⅴ精品一区二区三区波| 欧美bdsm另类| 两人在一起打扑克的视频| 日韩欧美 国产精品| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久av| 高清在线国产一区| 美女免费视频网站| 日本撒尿小便嘘嘘汇集6| 国产女主播在线喷水免费视频网站 | 欧美成人a在线观看| 特级一级黄色大片| 91久久精品国产一区二区三区| 日本一本二区三区精品| 男人舔女人下体高潮全视频| 精品日产1卡2卡| 最好的美女福利视频网| 欧美色视频一区免费| 免费av不卡在线播放| 校园人妻丝袜中文字幕| netflix在线观看网站| 波多野结衣高清作品| 精品久久久久久久久久久久久| 国产真实伦视频高清在线观看 | 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免| 午夜福利18| 99热6这里只有精品| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 长腿黑丝高跟| 国产av麻豆久久久久久久| 在线免费观看的www视频| 直男gayav资源| 18禁黄网站禁片免费观看直播| 能在线免费观看的黄片| 身体一侧抽搐| 在现免费观看毛片| 欧美区成人在线视频| 99国产精品一区二区蜜桃av| 内射极品少妇av片p| 嫩草影院精品99| 人妻丰满熟妇av一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 久久久久精品国产欧美久久久| 日本 av在线| x7x7x7水蜜桃| 国产三级在线视频| 亚洲欧美激情综合另类| 在线天堂最新版资源| 亚洲五月天丁香| 不卡视频在线观看欧美| 亚洲熟妇熟女久久| 观看免费一级毛片| 男女做爰动态图高潮gif福利片| 欧美3d第一页| 精品人妻视频免费看| 三级毛片av免费| 久久热精品热| 国产精品一区www在线观看 | 免费看av在线观看网站| 日日啪夜夜撸| 热99re8久久精品国产| 91久久精品电影网| 国产精品嫩草影院av在线观看 | 中文字幕熟女人妻在线| 日日摸夜夜添夜夜添小说| 色哟哟·www| 免费观看精品视频网站| 欧美黑人欧美精品刺激| 老女人水多毛片| 久久久久久久久大av| 日本三级黄在线观看| 午夜a级毛片| 精品日产1卡2卡| 日本色播在线视频| 欧美色欧美亚洲另类二区| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 大型黄色视频在线免费观看| 99热6这里只有精品| 嫩草影视91久久| 乱系列少妇在线播放| 老熟妇仑乱视频hdxx| 亚洲va在线va天堂va国产| 国产精品国产高清国产av| 一区二区三区四区激情视频 | 国产成人a区在线观看| 我的女老师完整版在线观看| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片 | 真实男女啪啪啪动态图| 搡女人真爽免费视频火全软件 | 成人综合一区亚洲| 波多野结衣高清作品| 亚洲三级黄色毛片| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 哪里可以看免费的av片| 日日摸夜夜添夜夜添小说| 男女边吃奶边做爰视频| 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 欧美日韩国产亚洲二区| 午夜亚洲福利在线播放| 国产精品乱码一区二三区的特点| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 一夜夜www| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 亚洲av二区三区四区| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 可以在线观看的亚洲视频| 1000部很黄的大片| 精品一区二区三区视频在线| 亚洲 国产 在线| 在线免费观看不下载黄p国产 | 97超级碰碰碰精品色视频在线观看| 日本与韩国留学比较| 国产中年淑女户外野战色| 国产精品久久久久久亚洲av鲁大| 美女 人体艺术 gogo| 午夜免费成人在线视频| 两人在一起打扑克的视频| 国产真实伦视频高清在线观看 | 长腿黑丝高跟| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 免费大片18禁| 亚洲专区国产一区二区| 高清毛片免费观看视频网站| 大型黄色视频在线免费观看| 久久草成人影院| 国产伦精品一区二区三区视频9| 久久国产精品人妻蜜桃| 欧美性猛交黑人性爽| 在线观看舔阴道视频| 久久6这里有精品| 亚洲经典国产精华液单| 99在线视频只有这里精品首页| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 亚洲国产精品sss在线观看| 亚洲avbb在线观看| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 免费看美女性在线毛片视频| 老熟妇乱子伦视频在线观看| 在现免费观看毛片| 国产精品福利在线免费观看| 别揉我奶头 嗯啊视频| 国产精品一区二区三区四区久久| 91在线观看av| 99国产精品一区二区蜜桃av| 永久网站在线| 夜夜夜夜夜久久久久| 久久亚洲精品不卡| 日本一本二区三区精品| 噜噜噜噜噜久久久久久91| 黄色配什么色好看| 国产精华一区二区三区| 欧美又色又爽又黄视频| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看 | 麻豆av噜噜一区二区三区| 成人三级黄色视频| 99热这里只有是精品在线观看| 99久久久亚洲精品蜜臀av| 女人十人毛片免费观看3o分钟| 久久午夜亚洲精品久久| 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 国产探花极品一区二区| 亚洲最大成人av| 中文字幕久久专区| 免费av毛片视频| 免费黄网站久久成人精品| 12—13女人毛片做爰片一| 久99久视频精品免费| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| 国产一区二区三区在线臀色熟女| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 日韩欧美在线二视频| 身体一侧抽搐| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 亚洲三级黄色毛片| www.色视频.com| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 99久国产av精品| 欧美bdsm另类| 亚洲人成网站在线播| 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| 国产高潮美女av| 国产美女午夜福利| 男女啪啪激烈高潮av片| 国产精品一区www在线观看 | 中文字幕熟女人妻在线| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 亚洲经典国产精华液单| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 国产欧美日韩精品亚洲av| 日本一本二区三区精品| 久久亚洲精品不卡| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 如何舔出高潮| 久久精品久久久久久噜噜老黄 | 久久草成人影院| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 在线观看av片永久免费下载| 中亚洲国语对白在线视频| 色综合婷婷激情| 最好的美女福利视频网| 一个人免费在线观看电影| 欧美中文日本在线观看视频| 精品福利观看| 久久人人爽人人爽人人片va| 久久久久性生活片| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 国产高清有码在线观看视频| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 久久中文看片网| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 性色avwww在线观看| 亚洲最大成人中文| 淫秽高清视频在线观看| 亚洲在线观看片| 搡女人真爽免费视频火全软件 | 国产男人的电影天堂91| 免费一级毛片在线播放高清视频| 中文字幕熟女人妻在线| 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 国产精品人妻久久久久久| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 亚洲av第一区精品v没综合| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 国产午夜精品论理片| 午夜亚洲福利在线播放| 中国美白少妇内射xxxbb| 日韩强制内射视频| 波多野结衣巨乳人妻| 男女边吃奶边做爰视频| 男女那种视频在线观看| 国产高清激情床上av| 老女人水多毛片| 亚洲av免费在线观看| 国产高清三级在线| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 免费观看人在逋| 日本-黄色视频高清免费观看| 如何舔出高潮| 欧美性猛交黑人性爽| 夜夜看夜夜爽夜夜摸| 成熟少妇高潮喷水视频| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| 亚洲人与动物交配视频| 国产私拍福利视频在线观看| 日本熟妇午夜| 在线免费观看不下载黄p国产 | 国产在视频线在精品| 亚洲av成人av| 色5月婷婷丁香| 欧美黑人巨大hd| 亚洲第一区二区三区不卡| 桃红色精品国产亚洲av| 12—13女人毛片做爰片一| 熟女人妻精品中文字幕| 日韩精品青青久久久久久|