• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2,4-二羥基苯甲酸輔助合成不同形貌二氧化鈰及其在NH3-SCR中的應(yīng)用

    2018-08-01 01:55:36周詩健
    關(guān)鍵詞:二氧化化工學(xué)院苯甲酸

    蘇 航 徐 蔓 周詩健 楊 福 孔 巖

    (南京工業(yè)大學(xué)化工學(xué)院,材料化學(xué)工程國家重點(diǎn)實(shí)驗(yàn)室,南京 210009)

    0 Introduction

    In recentdecades,metaloxideshave been intensely applied in the fields of catalysis[1-2],sensor[3-4],lithium-ion battery[5-6],etc.Particularly,metal oxides with controlled shapes have positive effect in heterogeneous catalysis system.Some related properties,such as the specific architecture and high surface area have important influence on the anchoring of the active sites and controlling the diffusion of reactants.With the well-defined morphologies,the researchers can not only adjust the required physicochemical properties but also improve the catalytic performance[7].Therefore,it is of great significance to explore facile and controllable routes for designing the desired structures.

    As well known,nitrogen oxides remain the major pollution source in the air,which could result in the formation of photochemical smog,ozone depletion and acid rain[8].These situations are directly harmful to ecological environment and human health.In order to address this dilemma,some effective approaches are expected.Fortunately,selective catalytic reduction of NO with NH3has been regarded as one of the considerable technologies for the abatement of NO(NH3-SCR),and the process can be described by the following equation:

    Besides,as one of the metal oxides,ceria(CeO2)has been continually focused owing to the highly oxygen storage capacity,enhanced metal dispersion and facile stabilization of the support[9-10].Meantime,CeO2can also serve as an outstanding component in the field of selective catalytic reduction of NO with NH3[11].However,the CeO2-based materials have been significantly demonstrated that the morphologies are closely associated with the physicochemical properties.Typically,for the pure CeO2,hollow ceria nanosphere with multiple shells exhibited distinguishable photocatalytic activity in water oxidation[12].With regard to the hybrid CeO2-based materials,core-shell Pd@CeO2nanostructures were found to exhibit excellent catalytic activity in NO reduction[13].Recently,in the system of NH3-SCR,Li et al.reported that the novel MnOx-CeO2nanosphere showed superior activity than the non-structured MnOx-CeO2catalyst[14].Hybrid multi-shell hollow structured CeO2-MnOxwas designed and found that this material displayed excellent catalytic activity compared to the traditional CeO2-MnOxnanoparticles or single-shell hollow spheres[15].Although great efforts have been achieved,there is still room for controllable synthesis of CeO2with specific morphologies and apply to NH3-SCR.

    To control the morphology of CeO2,some efficient methods,such as hydrothermal[16],polyol method[17],template method[18]and colloidal solution combustion[19]have been adopted.While,in consideration of the tunable reaction parameters,such as different temperatures and additives,the hydrothermal method could be considered as a promising route.Notably,benzoic acid compoundshavebeen achieved toprepare various polymers,pharmaceuticals and metal-organic framework particles (MOFs).Especially,Fan et al.[20]reported CuFe2O4@HKUST-1 heterostructureswith MOFs shell were constructed by 1,3,5-benzenetricarboxylic acid.Korpany et al.[21]explored a series of benzoic acid derivatives to fabricate surface functionalized iron oxide nanoparticles.Plentiful functional materials have opened a doorto discoverthe relationship between benzoic acid derivatives and nanomaterials.Therefore,choosing the appropriate method as wellas the suitable benzoic acid compounds play an important role in the synthesis of desirable nanoparticles.Whereas,to the best of our knowledge,it is still lack the research in controlling synthesis of nanocrystallines including CeO2by using benzoic acid derivatives.

    Herein,the rod-like and sheet-like CeO2were successfully synthesized with the assistant of 2,4-dihydroxybenzonic acid.The selected 2,4-dihydroxybenzonic acid could be completely dissolved in the reaction system to form a homogeneous solution.Timedependentand temperature-dependentexperiments were carried out to study the growth mechanism of the CeO2.Besides,the physicochemical properties of the CeO2were investigated.In addition,the catalytic activity of the as-prepared CeO2was evaluated in the system of NH3-SCR.

    1 Experimental

    The rod-like CeO2was synthesized via the hydrothermalmethod and the calcination procedure.Typically,2 mmol of Ce(NO3)3·6H2O and 3.5 mmol of 2,4-dihydroxybenzoic acid (DHBA)were dissolved in the mixed solution of 15.0 mL ethanol and 30.0 mL deionized water.Then 5.0 mL of sodium acetate solution (0.5 mol·L-1)was added dropwise into the mixed solution with stirring.The obtained homogeneous solution was transferred into a Teflon-lined autoclave and heated at 180℃for 24 h in an electric oven.Moreover,the autoclave was cooled to room temperature,the precipitate wascentrifuged and washed with deionized water for four times and dried at 60℃for 6 h.Then the precursor(Ce-Pre-1)was calcined in air atmosphere at 500℃with a heat ramp rate of 2℃·min-1for 4 h,and the calcined products were named as Ce-Cal-1.

    Instead,the sheet-like CeO2was obtained according to the similar process of rod-like CeO2by increasing the amount of DHBA to 5 mmol,and the hydrothermal products and the calcined products were labeled as Ce-Pre-2 and Ce-Cal-2,respectively.

    Time-dependent experiments for the precursors of Ce-Cal-1 and Ce-Cal-2 were carried out at different hydrothermal intervals of 3,6,10 and 21 h without changing other reaction parameters.The temperaturedependent experiments of Ce-Cal-2 were performed at 120,140 and 160℃,respectively.

    X-ray diffraction patterns (XRD)was used for characterizing the phase purity with a monochromatic Cu Kα radiation source (λ =0.154 178 nm)and operated at 40 kV and 100 mA in the range of 10°~80°.Field-emission scanning electron microscopy(FESEM)was performed on a Hitachi S4800 Field-Emission Scanning Electron Microscope and operated at 5 kV.High-resolution transmission electron microscopy(HRTEM)images were recorded on an EM-2010 EX microscope with the accelerating voltage at 200 kV.The N2adsorption-desorption isothermswere carried out in the relative pressure (P/P0)range from 0.01 to 0.99,and the surface area of samples were calculated by Brunauer-Emmet-Teller equation(BET).Temperature-programmed reduction under H2environment(H2-TPR)was carried out on a TP-5000 instrument.50 mg CeO2was pretreated under He-O2stream at 500℃for 1 h.After cooling down to room temperature,the catalyst was purged with 30 mL·min-1of He for 30 min to remove the excess O2.Then the flow of 5%H2-He was introduced into the sample with a flow rate of 30 mL·min-1and the temperature was raised to 950℃ at a rate of 10℃·min-1.The acidity of the CeO2was measured by NH3temperature programmed desorption (NH3-TPD)in the same instrument as the H2-TPR.Prior to TPD experiment,100 mg CeO2was pretreated at 300℃for 30 min and cooling to 50℃under argon flow.The sample was exposed to a flow of 2.500 g·L-1NH3/Ar(50 mL·min-1)at 100 ℃for 1 h,followed by argon purging for another 1 h.Then,the temperature was raised to 950℃in argon flow at the rate of 10℃·min-1.Thermogravimetry and differential scanning calorimetry (TG-DSC) was measured by a NETZSCH STA 409 instrument with a heating rate of 10℃·min-1under nitrogen atmosphere.Fourier transform infrared (FT-IR)spectra of the samples were obtained in the range of 4 000~500 cm-1with powders dispersed in KBr on Bruker VECTOR22 resolution.

    The catalytic conversion of NO was measured via a fixed-bed reactor with 0.2 g pure CeO2(40~60 mesh)as catalyst.The feed gas contained 500 mg·L-1NH3,500 mg·L-1NO,5%(V/V)O2,5%(V/V)H2O,with N2as the balance gas.The total flow rate of the feed gas was 200 mL·min-1,corresponding to a space velocity of 60 L·g-1·h-1.The concentration of NO was detected by an onlin e Thermo fisher IS10 FTIR spectrometer equipped with a 2 m path-length gas cell(250 mL).The NO conversion can be calculated by NO conversion=(cNO,in-cNO,out)/cNO,in×100%.

    2 Results and discussion

    Fig.1(a)and Fig.1(e)show the X-ray diffraction patterns(XRD)of Ce-Cal-1 and Ce-Cal-2.The diffraction peaks at ca.28.5°,32.9°,47.3°,56.2°,59.1°,69.4°,76.5°,78.7°are well indexed to the facecentered cubic CeO2(fcc-CeO2,PDF No.34-0394),implying the samples are not amorphous.Fig.1(b)depicts the typical rod-morphology of Ce-Cal-1 with the average width of 100~300 nm and the average length of 500 nm~1.5 μm.The TEM image in Fig.1(c)also reveals the rod-like profile of CeO2.Fig.1(d)presents the corresponding HRTEM image of Ce-Cal-1.As shown in Fig.1(d),the lattice fringe spacing of 0.27 and 0.31 nm correspond to (200)and(111)diffraction planes of CeO2,respectively.On the other hand,Ce-Cal-2 displays the sheet morphology with the thickness below 80 nm and the length can reach to 700 nm(Fig.1(f)and Fig.1(g)).Theobvious lattice fringe spacing of 0.31 nm in Fig.1(h)matches well with (111)diffraction plane of CeO2.In addition,the SAED profiles manifest the typical single crystal,and some defects of the resulted CeO2could be discovered(marked as green rectangles).Therefore,the rod-like and sheet-like CeO2are successfully synthesized in this case.

    Fig.1 XRD patterns(a,e),SEM images(b,f),TEM images(c,g),HRTEM images(d,h)with the corresponding SAED(inset)of Ce-Cal-1 and Ce-Cal-2,respectively

    Fig.2 N2adsorption-desorption isotherms(a,b),H2-TPR(c)and NH3-TPD profiles(d)of Ce-Cal-1 and Ce-Cal-2

    The N2adsorption-desorption isotherms of CeO2were measured and shown in Fig.2(a)and Fig.2(b).The BET surface areas of the Ce-Cal-1 and Ce-Cal-2 are calculated as about 61 m2·g-1and 68 m2·g-1,respectively.Temperature-programmed reduction under H2environment (H2-TPR)was tested to detect the redox property of the resulted CeO2(Fig.2(c)).Both the samples manifest the similar reduction peak positions,which are in good agreement with the pure ceria in other reports[22-23].To be specific,the α1 peak at the lower temperature between 250~600 ℃ could be attributed to the reduction of the absorbed surface oxygen species and the surface oxygen species of CeO2.The α2 peak in the range of 750~800 ℃ could be ascribed to the reduction of bulk oxygen.The H2consumption amount of Ce-Cal-1 at α1 is higher than that of Ce-Cal-2,which could be attributable to the abundant surface oxygen species in Ce-Cal-1(Table 1).Meantime,some differences of the bulk oxygen are also presented(α2),which may be connected with the different structures.Temperature-programmed desorption experiments of NH3(NH3-TPD)were examined to understand the acidity strength,and the results are presented in Fig.2(d).The desorbed β1 peak presents at the lower temperature of 300~570 ℃,corresponding to the desorption of physisorbed NH3and NH3at the weak acid sites[24].While the desorbed β2 peak ranging between 570 and 940℃is assigned to NH3absorbed at the strong acid sites[25].The desorbed peak positions of the acid sites are analogous with each other;however,the NH3amount of β1 and β2 in Ce-Cal-1 are higher than those in Ce-Cal-2,indicating that the Ce-Cal-1 could possess of more acid sites.Moreover,the acid amount of the strong acid sites in both Ce-Cal-1 and Ce-Cal-2 are higher than those in the weak acid sites.Therefore,the H2consumption and NH3desorption amount of Ce-Cal-1 are higher than those of Ce-Cal-2,possibly associating with the diverse shapes and differentexposed crystalline facets[26-27].Distinguishable physicochemical properties of the as-prepared rod-like and sheet-like CeO2can be discovered.

    To reveal the crystal phase and morphology evolution for the precursors of Ce-Cal-1 and Ce-Cal-2,time-dependentexperimentswere investigated.As displayed for the precursors of Ce-Cal-1(Fig.3(a)),the diffraction peaks of the samples can be well indexed to pure orthorhombic phase of CeOHCO3(PDF No.41-0013).However,with regard to the precursors of Ce-Cal-2(Fig.3(b)),the resulted precursors show the gradual phase transformation behaviors from orthorhombic phase (initial period)to hexagonal phase(final period).As expected,those products can be completely transformed into hexagonal phase of CeOHCO3(PDF No.32-0189)with the longer reaction time(21 and 24 h).It is noticeable that the mixed phases of orthorhombicand hexagonalareinvolved in the intermediate stages.

    Besides,representative SEM images of the precursors at different reaction intervals were examined.For the precursors of Ce-Cal-1,the SEM images display the simplex rod-like morphology from Fig.3(c)to Fig.3(g)without obvious morphology transformation.However,as depicted from Fig.3(h)to Fig.3(l),the product affords rod-like structure at initial 3 h,and then the rod particles partially dissolve and accompany with the presence of some apparently granular particles(6 and 10 h).Finally,more sheet-like particles emerge as the dominant state (21 and 24 h).It should be noted that when the reaction system is absence of DHBA,the hydrothermal product presents the pure phase of CeO2with irregular morphology (Fig.4).Those results indicate that the CeOHCO3with specific morphology fails to be obtained in this condition.

    Table 1 Quantitative analysis of H2-TPR and NH3-TPD

    Fig.3 XRD patterns of the precursors Ce-Cal-1(a)and Ce-Cal-2(b)at different hydrothermal intervals;SEM images for the precursors of Ce-Cal-1(c~g)and Ce-Cal-2(h~l)at different reaction intervals of 3,6,10,21 and 24 h,respectively

    Fig.4 XRD pattern(a)and SEM image(b)of the hydrothermal product synthesized without DHBA

    Temperature-dependentexperimentsbased on Ce-Cal-2 were carried out and the SEM images are shown in Fig.5.The sample obtained at 120℃exhibits the rod-like structure with the average width of 300~500 nm and the length below 3 μm.Moreover,those particles present the highly decentralized state withoutsignificantaggregation.However,as the temperature up to 140 and 160℃,the products exhibit the rod-like morphology with the state of aggregation.Obviously,the typical sheet-like morphology ofthe productcan be observed asthe temperature reaching to 180℃(Ce-Pre-2).This phenomenon indicates that a morphology reconstruction process could be triggered with the high temperature.

    Fig.5 SEM images of the hydrothermal products at 120℃(a,b),140℃(c)and 160℃(d)

    For investigating the inorganic species of Ce-Pre-1 and Ce-Pre-2,FT-IR was recorded and the results are displayed in Fig.6(a).The Ce-Pre-1 is taken as an example to illustrate.The peak at ca.3 461 cm-1could be due to the stretching vibration of O-H groups in the adsorbed water,and the bending mode of O-H at ca.1 638 cm-1could also be observed.The band at ca.1 561 cm-1should be attributable to the asymmetric stretching of CO2.Another sharp peak at ca.1 420 cm-1may be assigned to the stretching vibration of CO32-.Besides,in the region of 700~900 cm-1,the bands at ca.861 and ca.724 cm-1are correspondingly attributed to the deformation of CO32-and asymmetric vibration of CO2species,respectively.The peak at ca.594 cm-1could be ascribed to the Ce-O stretching band[28].Some of the characteristic peaks including the stretching vibration and bending mode of O-H,the asymmetric stretching of CO2and the stretching band of Ce-O in Ce-Pre-2 are similar to Ce-Pre-1,indicating the same component of the two samples(CeOHCO3).However,some difference can be found in the range of 1 400~1 500 cm-1and 700~900 cm-1,which could be due to the different crystal phases and morphologies of the CeOHCO3.In addition,the thermostability of Ce-Pre-1 and Ce-Pre-2 were analyzed by thermogravimetry and differential scanning calorimetry(TGDSC).As can be seen from Fig.6(b)and Fig.6(c),the curves manifest the weight loss between 240 and 300℃with the major exothermic peak.The weight loss of Ce-Pre-1 and Ce-Pre-2 are approximately 21.8%and 21.2%,respectively,which are close to the theoretical decomposition value of CeOHCO3to CeO2(20.7%).

    Fig.6 FT-IR spectra(a),TG-DSC curves(b,c)of Ce-Pre-1 and Ce-Pre-2

    Fig.7 Illustration for the possible morphology evolution process for the Ce-Cal-1 and Ce-Cal-2

    Based on the above-mentioned characterization and analysis,we tentatively propose that the DHBA could decompose into carbon species(CO32-).The OH-could also be produced by the hydrolysis of CO32-,CH3COO-under the hydrothermal condition.Thus,Ce3+could combine with OH-and CO32-to generate small granules with high surface energy.Meantime,the sustaining nucleation could be favorable to the growth of rod-like orthorhombic phase of CeOHCO3.It is noticeable that the rod-like CeOHCO3could exist as the stable product with 3.5 mmol of DHBA(Fig.7,Route 1).While theprocessofdissolution and recrystallization could be triggered with 5.0 mmol of DHBA,and rod-like CeOHCO3could dissolve and reconstruct to form the sheet-like hexagonal phase of CeOHCO3ultimately(Fig.7,Route 2).As reported,the defects of the crystals could induce the dissolution and recrystallization process for the formation of CeO2with nanosheet morphologies[29-30].However,in consideration of the different experiment conditions,the high content of the DHBA and high hydrothermal temperature could also play the important roles in this process.Furthermore,the as-prepared CeO2could preserve the rod-like and sheet-like morphologies after calcination.

    In this work,Ce-Cal-1 and Ce-Cal-2 are used as catalysts for eliminating NO with NH3.As shown in Fig.8,both of the samples present the similar trend of NO conversion from 100 to 400℃.With increasing the temperature to 350℃,Ce-Cal-1 shows the higher conversion about 69.2% compared with Ce-Cal-2(50.9%).According to the results of H2-TPR and NH3-TPD,this phenomenon could be due to that Ce-Cal-1 possesses of the higher redox ability and more acid amount.The obtained CeO2particles exhibit structuredependent catalytic activity for the catalytic reduction of NO.Besides,both the NO conversion of Ce-Cal-1 and Ce-Cal-2 are higher than the reported pure CeO2,indicating high catalytic activity of Ce-Cal-1[31].On the account of the catalytic results,the rod-like CeO2could be viewed as the optimized structure for the reaction.

    Fig.8 NO conversion of the Ce-Cal-1 and Ce-Cal-2

    3 Conclusions

    In summary,the rod-like and sheet-like CeOHCO3were successfully synthesized with the assistant of 2,4-dihydroxybenzonic acid.The rod-like orthorhombic phase of CeOHCO3was proposed as the stable product via the nucleation growth process,and the dissolution and recrystallization accompanied with the morphology evolution and phase transformation were supposed to the generation ofsheet-like hexagonalphase of CeOHCO3.The highly dispersed rod-like CeOHCO3could be obtained under the low hydrothermal temperature,while the state of aggregation and the transformation of morphology could be triggered by the high temperature.The obtained CeO2presented distinguishablestructure-dependentproperties,and the rod-like CeO2exhibited higher redox ability and moreacid amount.Moreover,the rod-like CeO2manifested the better catalytic activity in NH3-SCR.Furthermore,it is proposed that more benzoic acid compounds can be expected to fabricate metal oxides with desirable morphologies.

    猜你喜歡
    二氧化化工學(xué)院苯甲酸
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    基于二氧化釩相變實(shí)現(xiàn)動態(tài)可調(diào)的亞波長光學(xué)材料和器件(特邀)
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    離子交換樹脂催化合成苯甲酸甲酯
    云南化工(2020年11期)2021-01-14 00:50:52
    納米二氧化鈰改性水性氟碳涂料的研究
    含有苯甲酸的紅棗不能吃?
    百科知識(2016年22期)2016-12-24 21:07:25
    3,5-二氨基對氯苯甲酸異丁酯的合成研究
    《化工學(xué)報(bào)》贊助單位
    納米二氧化鈰的化學(xué)制備方法及應(yīng)用分析
    山西青年(2016年24期)2016-02-04 05:41:49
    免费看日本二区| 水蜜桃什么品种好| 国产精品av视频在线免费观看| 日韩国内少妇激情av| 99热这里只有是精品50| 99久国产av精品国产电影| 91久久精品国产一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲精品久久久久久婷婷小说| 国产精品一区二区三区四区免费观看| 丝袜喷水一区| 丝袜喷水一区| 精品一区二区三卡| 三级国产精品片| 91久久精品国产一区二区成人| 有码 亚洲区| 日本色播在线视频| 女人十人毛片免费观看3o分钟| 日韩欧美 国产精品| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩卡通动漫| 国产国拍精品亚洲av在线观看| 精华霜和精华液先用哪个| 中文天堂在线官网| 国产精品一二三区在线看| 国产精品久久久久久精品电影小说 | 你懂的网址亚洲精品在线观看| 大又大粗又爽又黄少妇毛片口| 热re99久久精品国产66热6| 嫩草影院新地址| 日本午夜av视频| 日本免费在线观看一区| 在线播放无遮挡| tube8黄色片| 午夜精品国产一区二区电影 | 99热这里只有是精品在线观看| 免费观看的影片在线观看| 男女国产视频网站| 中国三级夫妇交换| 亚洲熟女精品中文字幕| 在线观看av片永久免费下载| 欧美日本视频| 成人二区视频| 婷婷色av中文字幕| 久久久久国产精品人妻一区二区| 六月丁香七月| 校园人妻丝袜中文字幕| 777米奇影视久久| 国产精品国产三级国产av玫瑰| 亚洲成人中文字幕在线播放| 精品人妻偷拍中文字幕| 精品国产露脸久久av麻豆| 亚洲欧美成人精品一区二区| 国产大屁股一区二区在线视频| a级毛色黄片| 国产精品久久久久久精品电影小说 | 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 又爽又黄a免费视频| 最近的中文字幕免费完整| 亚洲综合精品二区| 亚洲精品一区蜜桃| 日韩成人av中文字幕在线观看| 在线观看免费高清a一片| 精品一区二区免费观看| 亚洲最大成人中文| 国产日韩欧美在线精品| 国产一区二区在线观看日韩| 国产永久视频网站| 人体艺术视频欧美日本| 国产毛片a区久久久久| 欧美老熟妇乱子伦牲交| 精品久久久噜噜| 精品人妻一区二区三区麻豆| 别揉我奶头 嗯啊视频| 女人被狂操c到高潮| 国产精品国产三级国产专区5o| 高清欧美精品videossex| 能在线免费看毛片的网站| 国产亚洲av嫩草精品影院| 欧美激情在线99| 免费大片18禁| 激情五月婷婷亚洲| 男女边吃奶边做爰视频| 又粗又硬又长又爽又黄的视频| 亚洲国产av新网站| 欧美日韩精品成人综合77777| 国产av不卡久久| videossex国产| 亚洲不卡免费看| 欧美+日韩+精品| 日本黄大片高清| 久久精品国产自在天天线| 黄色怎么调成土黄色| 青春草国产在线视频| 国产成人a区在线观看| 国产精品99久久久久久久久| 亚洲欧美成人精品一区二区| 成年女人在线观看亚洲视频 | 国产成人精品久久久久久| 特级一级黄色大片| 久久亚洲国产成人精品v| 白带黄色成豆腐渣| 午夜福利在线观看免费完整高清在| 22中文网久久字幕| 欧美精品人与动牲交sv欧美| 男女边摸边吃奶| 五月伊人婷婷丁香| 久久精品国产自在天天线| 亚洲天堂av无毛| 日本与韩国留学比较| 天天躁夜夜躁狠狠久久av| av在线蜜桃| 亚洲精品久久久久久婷婷小说| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩无卡精品| 只有这里有精品99| 亚洲av中文av极速乱| 日本午夜av视频| 一级毛片 在线播放| 日韩av免费高清视频| 舔av片在线| 偷拍熟女少妇极品色| 欧美zozozo另类| 一级毛片电影观看| 亚洲av电影在线观看一区二区三区 | 亚洲av免费在线观看| 亚洲欧美成人综合另类久久久| 欧美精品人与动牲交sv欧美| 久久99精品国语久久久| 少妇人妻一区二区三区视频| 黄片wwwwww| 国产精品无大码| 只有这里有精品99| 少妇人妻 视频| 中文精品一卡2卡3卡4更新| 精品久久久久久久久av| 听说在线观看完整版免费高清| 久久韩国三级中文字幕| 一级毛片我不卡| 婷婷色综合www| 中文乱码字字幕精品一区二区三区| 亚洲精品成人av观看孕妇| 人妻系列 视频| 国产爽快片一区二区三区| 真实男女啪啪啪动态图| 国产淫语在线视频| 青春草视频在线免费观看| 秋霞伦理黄片| 精品视频人人做人人爽| 91狼人影院| 亚洲国产日韩一区二区| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 欧美亚洲 丝袜 人妻 在线| 禁无遮挡网站| 能在线免费看毛片的网站| 亚洲精品国产av成人精品| 亚洲欧美中文字幕日韩二区| 欧美丝袜亚洲另类| 亚洲av不卡在线观看| 一级爰片在线观看| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 国产午夜精品久久久久久一区二区三区| 久久鲁丝午夜福利片| 天天一区二区日本电影三级| 99久国产av精品国产电影| 一级二级三级毛片免费看| 18禁在线播放成人免费| 色视频在线一区二区三区| 好男人视频免费观看在线| 国产精品嫩草影院av在线观看| 插阴视频在线观看视频| 亚洲成人久久爱视频| 蜜桃久久精品国产亚洲av| 精品久久久噜噜| 欧美老熟妇乱子伦牲交| 久久久久国产网址| 中文天堂在线官网| 汤姆久久久久久久影院中文字幕| 日韩欧美精品v在线| 久久99热这里只有精品18| 五月玫瑰六月丁香| 在线观看国产h片| 久久久精品欧美日韩精品| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的 | 波野结衣二区三区在线| 麻豆久久精品国产亚洲av| av免费观看日本| 国产国拍精品亚洲av在线观看| 综合色丁香网| 免费观看的影片在线观看| 国产美女午夜福利| 欧美成人精品欧美一级黄| 秋霞伦理黄片| 99精国产麻豆久久婷婷| 亚洲av国产av综合av卡| 最新中文字幕久久久久| 久久久久久久午夜电影| 一个人观看的视频www高清免费观看| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| tube8黄色片| 97超碰精品成人国产| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区| 国产亚洲91精品色在线| 18禁在线播放成人免费| 一级毛片我不卡| 欧美丝袜亚洲另类| 国产亚洲av片在线观看秒播厂| 欧美老熟妇乱子伦牲交| 你懂的网址亚洲精品在线观看| av播播在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久久久久人妻蜜臀av| 白带黄色成豆腐渣| 汤姆久久久久久久影院中文字幕| 最近最新中文字幕免费大全7| 少妇裸体淫交视频免费看高清| 在现免费观看毛片| 国产精品蜜桃在线观看| 精品久久久噜噜| 久久久久久久久久久免费av| 国产精品国产三级专区第一集| 欧美精品国产亚洲| 免费观看性生交大片5| 国产精品99久久99久久久不卡 | 国国产精品蜜臀av免费| 好男人视频免费观看在线| 青春草国产在线视频| 中文在线观看免费www的网站| 不卡视频在线观看欧美| 91久久精品电影网| 视频区图区小说| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 亚洲一区二区三区欧美精品 | 女人被狂操c到高潮| 黄色欧美视频在线观看| 国产白丝娇喘喷水9色精品| 国产精品无大码| 午夜亚洲福利在线播放| 国产综合精华液| 精品久久久精品久久久| a级毛色黄片| 人妻 亚洲 视频| 少妇的逼水好多| 夫妻性生交免费视频一级片| 国产探花极品一区二区| 国产高潮美女av| 97超视频在线观看视频| 欧美zozozo另类| 美女视频免费永久观看网站| 美女被艹到高潮喷水动态| 欧美区成人在线视频| 亚洲国产av新网站| 女人十人毛片免费观看3o分钟| 热re99久久精品国产66热6| 国产在视频线精品| 国产精品久久久久久精品电影小说 | 成人午夜精彩视频在线观看| 黄色视频在线播放观看不卡| 熟妇人妻不卡中文字幕| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 欧美潮喷喷水| 国内少妇人妻偷人精品xxx网站| 九九久久精品国产亚洲av麻豆| 少妇裸体淫交视频免费看高清| 水蜜桃什么品种好| 国产大屁股一区二区在线视频| 精品少妇黑人巨大在线播放| 亚洲精品亚洲一区二区| 日韩av免费高清视频| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区免费观看| 日韩欧美 国产精品| 久久久久久久久大av| 色播亚洲综合网| 免费看av在线观看网站| 在线精品无人区一区二区三 | 人人妻人人澡人人爽人人夜夜| 免费高清在线观看视频在线观看| 国产一区二区亚洲精品在线观看| 日韩免费高清中文字幕av| 日本三级黄在线观看| 日韩在线高清观看一区二区三区| 人妻夜夜爽99麻豆av| 欧美精品国产亚洲| 一本一本综合久久| 国产免费又黄又爽又色| 身体一侧抽搐| 又粗又硬又长又爽又黄的视频| 欧美成人a在线观看| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 亚洲人成网站在线播| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影 | 国产精品国产三级专区第一集| 久久久久久久午夜电影| 最近的中文字幕免费完整| 夜夜爽夜夜爽视频| 国产爱豆传媒在线观看| 国产精品三级大全| 久久人人爽人人片av| av在线亚洲专区| 黄片无遮挡物在线观看| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| 亚洲av二区三区四区| www.色视频.com| 男插女下体视频免费在线播放| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| 精品久久久久久电影网| 欧美成人a在线观看| 成人亚洲精品av一区二区| 九草在线视频观看| 又大又黄又爽视频免费| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 欧美xxⅹ黑人| 久久久久久国产a免费观看| 国产精品嫩草影院av在线观看| tube8黄色片| 夜夜看夜夜爽夜夜摸| 午夜激情久久久久久久| 国产成人aa在线观看| 亚洲三级黄色毛片| 欧美精品一区二区大全| 日本猛色少妇xxxxx猛交久久| 精品一区二区三区视频在线| 男人添女人高潮全过程视频| 身体一侧抽搐| 国产亚洲91精品色在线| 国产淫片久久久久久久久| 国产日韩欧美在线精品| 国产精品久久久久久久电影| 日日撸夜夜添| 久久午夜福利片| 国产日韩欧美在线精品| 在线a可以看的网站| 深夜a级毛片| 欧美激情在线99| 国产久久久一区二区三区| av天堂中文字幕网| 黑人高潮一二区| 韩国av在线不卡| 免费看光身美女| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 免费人成在线观看视频色| 只有这里有精品99| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 乱码一卡2卡4卡精品| 永久免费av网站大全| 欧美少妇被猛烈插入视频| 亚洲精品中文字幕在线视频 | 日本色播在线视频| 天天躁日日操中文字幕| 高清视频免费观看一区二区| 亚洲欧美精品专区久久| 丝袜美腿在线中文| av线在线观看网站| 边亲边吃奶的免费视频| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 欧美zozozo另类| 亚洲无线观看免费| 九色成人免费人妻av| 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 干丝袜人妻中文字幕| 我的老师免费观看完整版| 国产欧美另类精品又又久久亚洲欧美| 亚洲av.av天堂| 久久久久九九精品影院| 日韩电影二区| 美女主播在线视频| 99久久精品国产国产毛片| 久久久精品免费免费高清| 街头女战士在线观看网站| 精品久久久久久久末码| 午夜精品一区二区三区免费看| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| 真实男女啪啪啪动态图| 久久99精品国语久久久| 国模一区二区三区四区视频| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 国模一区二区三区四区视频| 久久精品熟女亚洲av麻豆精品| 亚洲真实伦在线观看| av在线播放精品| 国产探花在线观看一区二区| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说 | 在线观看国产h片| 又爽又黄a免费视频| 汤姆久久久久久久影院中文字幕| 欧美xxxx黑人xx丫x性爽| 免费看不卡的av| 国产精品av视频在线免费观看| 久久久久精品性色| 五月开心婷婷网| 国产成人福利小说| 欧美极品一区二区三区四区| 只有这里有精品99| 97精品久久久久久久久久精品| 国产成人精品久久久久久| 性色avwww在线观看| 夫妻性生交免费视频一级片| 女人十人毛片免费观看3o分钟| 十八禁网站网址无遮挡 | 欧美日韩一区二区视频在线观看视频在线 | 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 国产高清不卡午夜福利| 亚洲精品国产成人久久av| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 热99国产精品久久久久久7| 免费不卡的大黄色大毛片视频在线观看| 99久久精品国产国产毛片| 伦精品一区二区三区| xxx大片免费视频| 亚洲精品国产av蜜桃| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 赤兔流量卡办理| www.色视频.com| 麻豆乱淫一区二区| av.在线天堂| 69av精品久久久久久| 波多野结衣巨乳人妻| 99热网站在线观看| 男人狂女人下面高潮的视频| 午夜福利高清视频| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 一本色道久久久久久精品综合| 一级av片app| 天天躁夜夜躁狠狠久久av| 嫩草影院入口| 国产伦理片在线播放av一区| 亚洲av福利一区| 国产爽快片一区二区三区| freevideosex欧美| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 国产在线一区二区三区精| 深夜a级毛片| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃 | 秋霞伦理黄片| 国产精品久久久久久精品电影| 如何舔出高潮| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 国产探花极品一区二区| 久久久精品94久久精品| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲| 久久久久国产精品人妻一区二区| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 免费av观看视频| 2018国产大陆天天弄谢| 直男gayav资源| av免费观看日本| 一级黄片播放器| 国产成人精品久久久久久| 男男h啪啪无遮挡| 在线精品无人区一区二区三 | 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 亚洲天堂av无毛| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 日韩欧美精品免费久久| 国产成人freesex在线| 99九九线精品视频在线观看视频| 国产色婷婷99| 国产精品一及| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 亚洲成色77777| 久久99热这里只频精品6学生| 伦精品一区二区三区| 99热网站在线观看| 久久久久久久国产电影| 国产黄频视频在线观看| 国产精品99久久99久久久不卡 | 亚洲av不卡在线观看| 国产极品天堂在线| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 亚洲最大成人手机在线| 国产av码专区亚洲av| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 看十八女毛片水多多多| 69人妻影院| 伦精品一区二区三区| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 九色成人免费人妻av| 精品久久久噜噜| 国产精品一及| 新久久久久国产一级毛片| 草草在线视频免费看| 午夜精品国产一区二区电影 | 少妇人妻 视频| 成年av动漫网址| 日韩伦理黄色片| 中文字幕亚洲精品专区| 国产午夜精品久久久久久一区二区三区| 人妻系列 视频| 日本与韩国留学比较| 成年免费大片在线观看| 免费看a级黄色片| 成年免费大片在线观看| 亚洲一区二区三区欧美精品 | 寂寞人妻少妇视频99o| 大香蕉97超碰在线| 欧美日韩一区二区视频在线观看视频在线 | 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 午夜激情久久久久久久| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 亚洲av福利一区| 波多野结衣巨乳人妻| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说 | av在线老鸭窝| 少妇的逼好多水| av在线亚洲专区| 国产成人a∨麻豆精品| 插逼视频在线观看| 简卡轻食公司| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 欧美97在线视频| 国产精品女同一区二区软件| 大陆偷拍与自拍| 国产精品一区www在线观看| 亚洲欧美日韩无卡精品| 国产乱人偷精品视频| 午夜激情久久久久久久| 18+在线观看网站| 国产av国产精品国产| 欧美三级亚洲精品| 欧美日韩国产mv在线观看视频 | 肉色欧美久久久久久久蜜桃 | 亚洲欧美日韩东京热| 亚洲最大成人手机在线| 免费看a级黄色片| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 国产一区二区三区综合在线观看 | 中国国产av一级| 久久女婷五月综合色啪小说 | 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 欧美区成人在线视频| 国产黄色视频一区二区在线观看| 中文欧美无线码| 直男gayav资源| xxx大片免费视频| 亚洲精华国产精华液的使用体验| av在线天堂中文字幕| 久久鲁丝午夜福利片| 97热精品久久久久久| 国产免费一级a男人的天堂| 国产人妻一区二区三区在| 亚洲一区二区三区欧美精品 | 亚洲一区二区三区欧美精品 | 午夜福利高清视频| 国产乱来视频区| 视频区图区小说|