• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NONNEGATIVITY OF SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL-ALGEBRAIC EQUATIONS?

    2018-07-23 08:41:16XiaoliDING丁小麗

    Xiaoli DING(丁小麗)

    Department of Mathematics,Xi’an Polytechnic University,Shaanxi 710048,China E-mail:dingding0605@126.com

    Yaolin JIANG(蔣耀林)

    Department of Mathematics,Xi’an Jiaotong University,Shaanxi 710049,China

    Abstract Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors.How to obtain the nonnegative solutions of the equations is an important scientific problem.As far as we known,the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied.In this article,we investigate the nonnegativity of solutions of the equations.Firstly,we discuss the existence of nonnegative solutions of the equations,and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly.The choice of initial iteration is critical and we give a method of finding it.Finally,we present an example to illustrate the efficiency of our method.

    Key words Fractional differential-algebraic equations;nonnegativity of solutions;waveform relaxation;monotone convergence

    1 Introduction

    Fractional calculus has been used widely to deal with some problems in fluid and continuum mechanics[1,2],viscoelastic and viscoplastic flow[3],epidemiological models[4,5],and circuit simulation with superconductor materials[6].The main advantage of fractional derivatives lies in that they are more suitable for describing memory and hereditary properties of various materials and process in comparison with classical integer-order derivative.In these years,various theory and numerical solutions to fractional differential equations were extensively investigated.For example,collocation methods were applied into solving fractional differential equations([7,8]).Gong et al[9]gave an efficient parallel solution for Caputo fractional reaction-diffusion equation with explicit method.The parallel solution is implemented with MPI parallel programming model.Stokes et al[10]proposed a method to accelerate the computation of the numerical solution of fractional differential equations.Xu et al[11]applied parareal method into solving time-fractional differential equations.Mohammed Al-Refai and Yuri Luchko gave maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives[12].

    The investigation of positive solutions of different classes of fractional differential equations is a relevant question in real world prolems.For example,some authors in[13,14]discussed the existence of positive solutions of nonlinear fractional differential equations.Some authors[15,16]investigated positive solutions of fractional differential equations with integral boundary conditions and multi-point boundary conditions,respectively.Li[17]discussed the nonexistence of positive solution for a semi-linear equation involing the fractional Laplcian in RN?.Wang et al[18]gave the existence of solutions for nonlinear fractional differential equations using monotone iterative method.In[19],Kaczorek discussed positive linear systems consisting of n subsystems with different orders,where the proposed system can be described by linear fractional differential-algebraic equations.However,as far as we known,nonnegativity of solutions of nonlinear fractional differential-algebraic equations is still not studied.

    In this article,we consider nonnegativity of solutions of nonlinear fractional differential algebraic equations using waveform relaxation(WR)algorithm.It is well known that the WR method is a dynamic iterative method.It was originally proposed to simulate large circuits in[20]and it was widely studied.Until now,the method has been applied into solving ordinary differential equations[21],differential-algebraic equations[22],functional differential equations[23],and fractional differential equations[24].As usual,the waveform sequence computed by the algorithm is not monotone.In this article,we identify the nonlinear fractional differential algebraic equations which satisfy certain Lipschitz conditions,such that if the initial iteration waveform is chosen properly,the waveform sequence converges to the nonnegative solution monotonically.

    This article is organized as follows.In Section 2,we present some notations,definitions,and assumptions.In Section 3,we firstly examine monotone dependency on initial conditions and inputs.Then,we state the main theorem on nonnegative solution.Finally,we give a method to choose the initial iteration.In Section 4,we present an example with numerical simulations to illustrate the waveform relaxation algorithm.

    2 Preliminaries

    In this section,we give some basic concepts and notations.

    Definition 2.1([26]) Let[a,b]be a finite interval on the real axis R.The Riemann-Liouville integraland the Riemann-Liouville fractional derivativeof order α>0 are defined by

    and respectively,where m?1< α ≤ m,m ∈ N+,and Γ(·)denotes the Gamma function.

    Of course,one has to impose some conditions on the function x such that the right hand sides are defined for almost all t∈ [a,b].For example,the fractional integralis defined for x∈L1(a,b).

    The Laplace transform of the Riemann-Liouville fractional derivative is given as follows:

    However,the practical applicability of the Riemann-Liouville fractional derivative is limited by the absence of the physical interpretation of the limit values of fractional derivatives at the low terminal t=0.The mentioned problem does not exist in the Caputo definition of the fractional derivative.

    Definition 2.2([26]) Let[a,b]be a finite interval on the real axis R,and let x∈The Caputo fractional derivativeof order α>0 is defined by

    The Laplace transform of the Caputo fractional derivative is given by

    Contrary to the Laplace transform of the Riemann-Liouville fractional derivative,only integer order derivatives of function x appear in the Laplace transform of the Caputo fractional derivative.Thus,it can be useful for solving applied problems leading to linear fractional differential equations with constant coefficients with accompanying initial conditions in traditional form.

    Particularly,the Riemann-Liouville fractional derivative and the Caputo fractional derivative are connected with the following relation

    Note that if x(i)(a)=0,i=0,1,···,m ? 1,thencoincides with

    In this article,we consider the following semi-explicit nonlinear fractional differential algebraic system with two continuous inputs u and e:

    In the following,we give sufficient conditions for the existence of nonnegative solutions of system(2.2)and construct a monotone waveform relaxation method to approximate the nonnegative solutions.For(2.2),the WR algorithm is described as

    Definition 2.3Forfor all i=1,2,···,n.For x(t),y(t):for all t∈[0,T].

    Definition 2.4A function h:Rn×Rm×R1→Rlis said to be globally Lipschitz continuous with respect to the first argument uniformly over the other arguments if there exists a constant L such that for all x,y∈Rn,e∈Rm,and t∈[0,T],kh(x,e,t)?h(y,e,t)kRl6 Lkx?ykRn,where k·kRland k·kRnare norms in Rland Rn,respectively.

    Definition 2.5A function h:Rn×Rm×R1→Rlis said to be monotone increasing with respect to the first argument if for each e∈Rmand t∈[0,T],h(x,e,t)6 h(y,e,t)when x 6 y,where x,y∈Rn.A function k:Rn×Rm×R1→Rlis said to be quasi-monotone increasing with respect to the first argument if for each i∈ {1,2,···,n},each e ∈ Rm,and t∈ [0,T],ki(x,e,t)6 ki(y,e,t)when x 6 y with xi=yi,where x,y∈Rn.

    Clearly,monotone increasing implies that quasi-monotone increasing.In fact,quasi-monotone increasing for functions is a key property used in proving the monotone convergence of iterative waveforms.This concept was carefully stated in[27].

    In this article,except Theorem 3.2 of Section 3,we always assume that the functions F and G satisfy the following assumptions 1 and 2.

    Assumption 1For all t ∈ [0,T],the function F(·,·,·,·,·,t)is globally Lipschitz continuous with respect to each of the first four arguments with Lipschitz constants Li(i=1,2,3,4),respectively,uniformly over the other arguments.Likewise,for all t∈[0,T],the function G(·,·,·,·,t)is globally Lipschitz continuous with respect to each of the first three arguments with Lipschitz constants Li(i=5,6,7),respectively,uniformly over the other arguments.

    Assumption 2For all t ∈ [0,T],the function F(·,·,·,·,·,t)is quasi-monotone increasing with respect to the first arguments,and it is monotone increasing with respect to the each of the other four arguments.Likewise,for all t ∈ [0,T],the function G(·,·,·,·,t)is monotone increasing with respect to the each of the first four arguments.

    Finally,we state an existence condition of solutions of system(2.2).This existence condition can be carried out by the approach in[24]with a careful modification on its proof.So,we omit the proof in this article.

    Theorem 2.1Assume that for all t ∈ [0,T],the functions f(·,·,·,t)and g(·,·,·,t)are globally Lipschitz continuous with respect to each of the first two arguments with Lipschitz constantsand(i=1,2),respectively,uniformly over the other arguments,that is,for any u∈Rp,e∈Rq,xi∈Rn1,and yi∈Rn2(i=1,2,3,4),

    and

    Similarly,we give a convergence condition for the WR algorithm(2.3).

    Theorem 2.2Assume that the functions F and G satisfy Assumption 1.If L7<1,then the iteration sequence{z(k)}produced by the WR algorithm(2.3)converges uniformly to the unique solution[x(t)T,y(t)T]Tof system(2.2)on[0,T].

    3 Monotone Waveform Relaxation Method

    3.1 Monotone dependency on initial conditions and inputs

    We examine the monotone dependency properties on initial iteration and inputs for system(2.2)for any fixed k ∈ {0,1,2,···.}.These properties are useful to show the monotone convergence of the relaxation sequence based on system(2.2).For the sake of clarity,we consider the following nonlinear fractional differential-algebraic system for system(2.2)for some fixed k:

    For system(3.1),let the inputs e1:[0,T]→ Rm1and e2:[0,T]→ Rm2be two given continuous functions.Then,we establish the following lemma.

    Lemma 3.1Assume that for eachon t ∈ [0,T]when x>0,xi=0,and y>0.And assume that in system(3.1),on t∈ [0,T]when x>0.Then,the solution z(t)of system(3.1)satisfies z(t)>0 on[0,T]if the initial values subject to Mx0>0,and y(0)>0,where

    ProofWe apply contradiction to show the statement.Suppose that there exist t?>0 and some subscript l such that(Mx)l(t?)<0 or yl(t?)<0.Becauseis Lipschitz continuous with respect to x,system(3.1)has a unique solution and the solution depends continuously on the initial value and the right-hand continuous disturbance([26]).

    Thus,there exists δ>0 such that the following system

    We denote z(t)=[x(t)T,y(t)T]T=[z1(t),z2(t),···,zn1(t),zn1+1(t),···,zn(t)],where n=n1+n2.Let K={k:zk(t)<0 for some t>0}and tk=inf{t>0:zk(t)<0}for k∈K.By continuity,zk(tk)=0 for each k∈K.Now,let r be the smallest integer such that tr=min{tk}.We have z(t)>0 for t 6 trin which zr(tr)=0.

    Let r ∈ {1,2,···,n1}.When t 6 tr,it has x(t)>0,x(tr)=0,and x(t)<0 for t∈ (tr,tr+?],? is some positive constant.Then,by the Hadamard lemma(see[28],p.17),x(t)leads to the representation x(t)=(tr?t)h(t),with h(t)∈C1([0,tr]),h(t)>0 for t∈[0,tr],and h(t)6 0 for t∈ [tr,tr+ ?].

    Then,it has

    where

    and

    As h(t)is continuous on[0,tr]and the function

    is of one sign and integrable on the interval[0,tr],the mean value theorem yields the following representation with a ξ,0< ξ

    It follows from the last representation that

    Because the function h is continuous and non-positive on[0,tr],the limitexists and is non-negative.

    Now,we consider the auxiliary functionthat is of one sign and integrable on the interval[tr,tr+?t].Because the function h is continuous on[tr,tr+?t],the mean value theorem applied to the integral I2yields the following representation with a ζ,tr<ζ

    Thus,we get the following representation

    On the basis of the relations(3.3)and(3.4),we can obtain

    Furthermore,by relation(2.1),we can obtain

    Let r∈ {n1+1,n2+2,···,n}.Then,yl(tr)=0,that is,Gl(x(tr),e2(tr),tr)+δ=0.This is impossible because x(tr)>0.This completes the proof of this lemma. ?

    In the following,we will discuss that for some fixed k,the iteration waveform at each iteration in the WR algorithm is monotonically dependent on the previous iterative waveform and input functions.For this aim,let,where x(k)(0)=x0is a solution of system(2.3)with given continuous input functions u,e,and the previous iterationAnd letwhereis a solution of system(2.3)with given continuous input functionsand the previous iterationLikewise,let z(t)=[x(t)T,y(t)T]T,where x(0)=x0is a solution of system(2.2)with given continuous input functions u and e.And letwhereis a solution of system(2.3)with given continuous input functions u and e.Under these conditions,we have the following result.

    Lemma 3.2Assume that the input functions in system(2.3)satisfy,and the(k?1)st iterations produced by the algorithm(2.3)satisfyingthen we haveon[0,T]if,and

    Likewise,assume that L7<1,and the input functions in system(2.2)satisfyandthen we haveon[0,T]if,and

    ProofThe two statements are analogous,so we consider the first.let η1(t)=x(k)(t) ?Then,η1(t)and η2(t)satisfy the following system:

    Clearly,the functions of the right-hand sides of system satisfy the conditions of Lemma 3.1,so,we can arrive at η1(t)>0,and η2(t)>0 for all t ∈ [0,T],that is,[Mx(k)(t),y(k)(t)]>on[0,T].

    By Theorem 2.2 and the first statement of this lemma,the second part is obvious.The proof of this lemma is completed. ?

    3.2 Convergence of monotone waveform relaxation

    On the basis of the above statements,we can establish the existence theorem(Theorem 3.3)of nonnegative solutions of system(2.2).And from Theorem 3.1,one can see that the nonnegative solution of system(2.2)can be approximated using the WR algorithm(2.3)if the choice of initial iteration is proper.

    Theorem 3.1Suppose L7<1.If the initial iteration[(x(0)(t))T,(y(0)(t))T]Tin(2.3)satisfies

    and

    then,for each k∈N,it has

    ProofFrom

    by Lemma 3.2,one can obtain relation(3.7)for each k by induction.On the other hand,as L7<1,by Lemma 3.2,the sequenceconverges to[(x(t))T,(y(t))T]Tas k→+∞uniformly and monotonically on[0,T].This function[(x(t))T,(y(t))T]Tsatisfies

    From Theorem 3.1,we know that as long as the initial iteration is chosen properly,namely,x(0)(t)6 x(1)(t)and y(0)(t)6 y(1)(t)on[0,T],then the iterative procedure will monotonically converge to the actual solution of system.

    3.3 Initial iterations

    The choice of initial iterations is crucial to ensure monotone convergence of the waveforms in the WR algorithm.In the following,we present a choice to deal with this matter.In this subsection,we denote kxk∞=max{|xi|:i=1,2,···,n}for x ∈ Rn.

    For any given input functions u and e,we assume that

    and

    for xi∈ Rn1and yi∈ Rn2(i=1,2),where h1(·,·,·,·,t),and h2(·,·,·,t)are nondecreasing functions for any t∈[0,T].

    Now,we need to assume that the following simple two-dimension fractional differential algebraic system has a positive solution w(t)=[w1(t),w2(t)]T:

    where x0is the given initial value and y0=g(x0,y0,e(0),0)in system(2.2).

    We define

    and

    Let

    and

    where t∈[0,T]and l=1,2.It is obvious that

    and

    Lemma 3.3Ifsatisfies

    ProofFirst,we define a sequencesuch that it satisfies

    and

    Thirdly,we need to prove that the sequenceconverges toas k→+∞on[0,T].In fact,we have

    and

    On the basis of the above relations,we have the following inequality

    where the operator Rcis defined by

    By[25],we have ρ(Rc)=0.Thus,we can derive ρ(R)=0,where

    This completes the proof of this lemma.

    The previous result says that if x(0)(t)is chosen as β1(t)and y(0)(t)is chosen as γ1(t),then x(0)(t)6 x(1)(t),and y(0)(t)6 y(1)(t)on[0,T].Thus,by Lemma 3.3 and Theorem 3.1,we can easily establish the following important result.

    Theorem 3.2Suppose L7<1,and let z(t)=[x(t)T,y(t)T]T,where x(0)=x0is a solution of system(2.2)with given continuous input functions u and e.Let the sequence{z(k)(t)}be defined by the WR algorithm(2.3)with initial iteration z(0)(t)=ρ1(t),where ρ1(t)is defined by(3.9).Then,the sequence{z(k)(t)}converges to the unique solution z(t)on[0,T],and the solution z satisfies that z(t)>0 for all t∈[0,T].

    4 Example

    In this section,we give a simple example to con firm the monotone convergence properties of the WR algorithm for fractional differential-algebraic equations.In the processing of the numerical computation,the Caputo fractional derivative is computed by the implicit finite difference approximation:

    where xk=x(tk),and

    The time-step h is adopted as 0.2,and the error is defined bywhere x(k)is obtained by the WR algorithm,x is the true solution,and k·k denotes the 2-norm in Rn.

    Example 4.1Consider the following fractional differential-algebraic system:

    Its WR algorithm is described as

    One can see that the functions of the right-hand side in(4.2)satisfy Assumptions 1 and 2.Therefore,the sequenceobtained by equation(4.2)converges uniformly and monotonically to the solution of equation(4.1).From Figure 1,one can see that the nonnegative solution can be approximated by a monotone waveform sequence.The experiment results agree with the theory analysis.

    Figure 1 Monotone waveforms of x1in system(4.1)

    The errors are given in Table 1.

    Table 1 The relative errors for the different iterative numbers

    Appendix

    Hadamard’s lemmaAny smooth function f in a starlike neighborhood of a point z is representable in the form

    where giare smooth functions.

    In fact,by Hadamard’s lemma,any smooth function f(x)is representable in the form f(x)=f(x0)+(x?x0)g(x),where f(x0)=0,and g(x)is a smooth function.

    在线观看www视频免费| 亚洲一码二码三码区别大吗| 午夜免费观看性视频| 老女人水多毛片| 在线亚洲精品国产二区图片欧美| www日本在线高清视频| 有码 亚洲区| 久久久久久人人人人人| 日韩免费高清中文字幕av| 综合色丁香网| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 美女福利国产在线| 丝袜美足系列| 亚洲伊人色综图| 深夜精品福利| 美女主播在线视频| 亚洲成人手机| videos熟女内射| 伦理电影大哥的女人| 一区在线观看完整版| 成人18禁高潮啪啪吃奶动态图| 五月天丁香电影| tube8黄色片| 日韩熟女老妇一区二区性免费视频| 男女边摸边吃奶| 亚洲天堂av无毛| 精品国产一区二区三区四区第35| 一本久久精品| 女性被躁到高潮视频| 久久精品久久久久久久性| 国产一级毛片在线| 高清在线视频一区二区三区| 婷婷色av中文字幕| 极品少妇高潮喷水抽搐| 国产精品久久久av美女十八| 亚洲丝袜综合中文字幕| 97超碰精品成人国产| 免费在线观看完整版高清| 女性生殖器流出的白浆| av.在线天堂| 国产精品.久久久| 久久久国产精品麻豆| 国产精品.久久久| 国产男女超爽视频在线观看| 中文字幕人妻丝袜制服| 母亲3免费完整高清在线观看 | 亚洲国产欧美日韩在线播放| freevideosex欧美| 亚洲精品一二三| 90打野战视频偷拍视频| 免费观看在线日韩| 亚洲精品,欧美精品| 日本色播在线视频| 黑人高潮一二区| 国产视频首页在线观看| 国产成人精品婷婷| 最近最新中文字幕免费大全7| 777米奇影视久久| 久久影院123| 王馨瑶露胸无遮挡在线观看| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 久久这里只有精品19| 日日摸夜夜添夜夜爱| 婷婷成人精品国产| 日韩,欧美,国产一区二区三区| av免费观看日本| 日本爱情动作片www.在线观看| 成人二区视频| 大香蕉久久网| 日本vs欧美在线观看视频| 9191精品国产免费久久| 欧美97在线视频| 男女下面插进去视频免费观看 | 极品少妇高潮喷水抽搐| 国产精品久久久久久久电影| 你懂的网址亚洲精品在线观看| 精品国产露脸久久av麻豆| 久久久久精品性色| 秋霞在线观看毛片| 夜夜骑夜夜射夜夜干| 欧美另类一区| 国产片特级美女逼逼视频| 国产亚洲精品第一综合不卡 | 成人免费观看视频高清| 精品少妇黑人巨大在线播放| 欧美激情极品国产一区二区三区 | 又黄又粗又硬又大视频| 麻豆精品久久久久久蜜桃| 国产欧美日韩一区二区三区在线| 欧美精品高潮呻吟av久久| 寂寞人妻少妇视频99o| 日产精品乱码卡一卡2卡三| 成人免费观看视频高清| 最近最新中文字幕大全免费视频 | 视频区图区小说| 国产男人的电影天堂91| 亚洲欧洲日产国产| 在线观看免费高清a一片| a 毛片基地| 久久久久国产精品人妻一区二区| 女的被弄到高潮叫床怎么办| 亚洲中文av在线| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 一级片免费观看大全| 国产视频首页在线观看| av线在线观看网站| av网站免费在线观看视频| 一级毛片电影观看| 超碰97精品在线观看| 五月开心婷婷网| 国产成人免费观看mmmm| a级毛色黄片| 日本黄色日本黄色录像| 精品久久蜜臀av无| 好男人视频免费观看在线| 国产精品一区www在线观看| 中文字幕精品免费在线观看视频 | 国国产精品蜜臀av免费| 水蜜桃什么品种好| 久久久久久人妻| 国产一区二区激情短视频 | 日韩一区二区视频免费看| 免费看光身美女| 国产精品一国产av| 免费大片18禁| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 亚洲精品自拍成人| 久久久国产一区二区| 午夜福利影视在线免费观看| 国产精品蜜桃在线观看| 亚洲欧美色中文字幕在线| 亚洲三级黄色毛片| 亚洲成av片中文字幕在线观看 | 久久精品熟女亚洲av麻豆精品| 边亲边吃奶的免费视频| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 国产一区二区在线观看日韩| 亚洲欧美清纯卡通| 国产毛片在线视频| 十分钟在线观看高清视频www| a级毛片黄视频| 久久亚洲国产成人精品v| 日本午夜av视频| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 国产一区二区三区av在线| 久久午夜福利片| 丁香六月天网| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国产 一区精品| 性色avwww在线观看| 在线观看免费视频网站a站| 国产精品一国产av| 精品卡一卡二卡四卡免费| 成年av动漫网址| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 在线观看免费高清a一片| 激情视频va一区二区三区| 人妻 亚洲 视频| 狠狠婷婷综合久久久久久88av| 中文字幕制服av| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 69精品国产乱码久久久| 人人澡人人妻人| 国产精品蜜桃在线观看| 亚洲精品一二三| 香蕉丝袜av| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 天天影视国产精品| 免费高清在线观看日韩| 街头女战士在线观看网站| 激情五月婷婷亚洲| av不卡在线播放| 在线亚洲精品国产二区图片欧美| av有码第一页| 2018国产大陆天天弄谢| 中文字幕免费在线视频6| 99热6这里只有精品| 免费在线观看完整版高清| 国产成人91sexporn| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 丰满乱子伦码专区| 日本91视频免费播放| 亚洲精品视频女| 热re99久久国产66热| 国产av一区二区精品久久| 国产极品粉嫩免费观看在线| 建设人人有责人人尽责人人享有的| 成人亚洲欧美一区二区av| 欧美另类一区| 亚洲国产精品国产精品| 午夜av观看不卡| 亚洲精品国产av成人精品| 97超碰精品成人国产| 久久久久久伊人网av| 99热全是精品| 香蕉丝袜av| 天堂8中文在线网| 少妇精品久久久久久久| 成人国产麻豆网| 9热在线视频观看99| 国产欧美亚洲国产| 在线观看国产h片| 日日啪夜夜爽| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 不卡视频在线观看欧美| 激情五月婷婷亚洲| 日韩视频在线欧美| 少妇人妻久久综合中文| 国产精品蜜桃在线观看| 国产精品 国内视频| 国产免费视频播放在线视频| 国产毛片在线视频| 一级毛片电影观看| 亚洲国产看品久久| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 18禁国产床啪视频网站| 在线观看三级黄色| 丁香六月天网| 草草在线视频免费看| 2021少妇久久久久久久久久久| 国产xxxxx性猛交| 亚洲av欧美aⅴ国产| 有码 亚洲区| 五月天丁香电影| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 久久青草综合色| 高清毛片免费看| 一级,二级,三级黄色视频| 成人无遮挡网站| 国产成人一区二区在线| √禁漫天堂资源中文www| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 一区二区三区乱码不卡18| 国产探花极品一区二区| 久久ye,这里只有精品| videos熟女内射| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 男的添女的下面高潮视频| 大片免费播放器 马上看| 亚洲,欧美精品.| 大码成人一级视频| 高清在线视频一区二区三区| 国产国语露脸激情在线看| 日韩一区二区三区影片| 亚洲精品自拍成人| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 天美传媒精品一区二区| 午夜福利,免费看| 黑人高潮一二区| 建设人人有责人人尽责人人享有的| 黄色配什么色好看| 日韩大片免费观看网站| 精品久久久精品久久久| 欧美精品高潮呻吟av久久| 亚洲第一区二区三区不卡| 一级片'在线观看视频| 欧美精品亚洲一区二区| 捣出白浆h1v1| av福利片在线| 亚洲国产最新在线播放| 老女人水多毛片| 亚洲一码二码三码区别大吗| 丰满乱子伦码专区| 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 精品第一国产精品| 亚洲欧美成人精品一区二区| 日韩一区二区视频免费看| 国产一区二区激情短视频 | 久久久精品免费免费高清| 极品人妻少妇av视频| 久久久精品区二区三区| 国产精品偷伦视频观看了| 国产 精品1| 午夜福利在线观看免费完整高清在| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 国产精品一区www在线观看| 久久亚洲国产成人精品v| 亚洲国产精品专区欧美| 自线自在国产av| av免费观看日本| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 毛片一级片免费看久久久久| 精品人妻熟女毛片av久久网站| 在线观看国产h片| 午夜免费观看性视频| 亚洲国产欧美在线一区| 国产精品久久久av美女十八| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 亚洲精品国产av蜜桃| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看 | 亚洲情色 制服丝袜| 久久久精品免费免费高清| 国产亚洲欧美精品永久| 男人添女人高潮全过程视频| 黑人高潮一二区| 亚洲三级黄色毛片| 最近中文字幕2019免费版| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 国产av码专区亚洲av| 丰满乱子伦码专区| 久久精品久久久久久噜噜老黄| 日韩欧美精品免费久久| 精品人妻在线不人妻| 免费在线观看黄色视频的| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 精品一区二区三卡| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 色婷婷av一区二区三区视频| 国产亚洲av片在线观看秒播厂| 久久这里只有精品19| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 老女人水多毛片| 最近最新中文字幕免费大全7| 久久人人97超碰香蕉20202| 日本与韩国留学比较| 久久精品国产综合久久久 | 成人二区视频| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 日韩大片免费观看网站| av在线播放精品| 免费少妇av软件| 蜜臀久久99精品久久宅男| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 老女人水多毛片| 一本色道久久久久久精品综合| 91成人精品电影| 亚洲综合色惰| 国产免费又黄又爽又色| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 久久热在线av| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 夫妻性生交免费视频一级片| 一本大道久久a久久精品| 天堂中文最新版在线下载| 在现免费观看毛片| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 亚洲欧美色中文字幕在线| 22中文网久久字幕| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 999精品在线视频| 一区在线观看完整版| 三上悠亚av全集在线观看| 少妇人妻 视频| 高清在线视频一区二区三区| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 色哟哟·www| 自线自在国产av| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精| 免费观看在线日韩| 成人国语在线视频| 男男h啪啪无遮挡| av线在线观看网站| 国产高清不卡午夜福利| 男女高潮啪啪啪动态图| 国产乱人偷精品视频| 亚洲av中文av极速乱| 中文字幕精品免费在线观看视频 | av天堂久久9| 深夜精品福利| 卡戴珊不雅视频在线播放| 90打野战视频偷拍视频| 亚洲av免费高清在线观看| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| av免费观看日本| 日韩制服丝袜自拍偷拍| 国产男人的电影天堂91| 18禁国产床啪视频网站| 国产免费视频播放在线视频| 免费高清在线观看日韩| 黄色怎么调成土黄色| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| 精品久久久精品久久久| 在线天堂中文资源库| 成人18禁高潮啪啪吃奶动态图| 丝袜喷水一区| 日韩中字成人| 少妇熟女欧美另类| 精品熟女少妇av免费看| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 大片电影免费在线观看免费| 蜜桃在线观看..| av国产精品久久久久影院| 国产高清不卡午夜福利| 国产精品一区www在线观看| 久久99精品国语久久久| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片| 欧美变态另类bdsm刘玥| 最近中文字幕高清免费大全6| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 亚洲激情五月婷婷啪啪| 中文字幕制服av| 亚洲一级一片aⅴ在线观看| 亚洲国产看品久久| 在线观看美女被高潮喷水网站| 久久久国产精品麻豆| 高清欧美精品videossex| 亚洲av欧美aⅴ国产| 在线观看www视频免费| 少妇人妻 视频| 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av| 日韩,欧美,国产一区二区三区| 午夜老司机福利剧场| 男的添女的下面高潮视频| 久久久精品区二区三区| 亚洲国产精品专区欧美| 80岁老熟妇乱子伦牲交| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 最近2019中文字幕mv第一页| 国产精品99久久99久久久不卡 | 亚洲在久久综合| 精品卡一卡二卡四卡免费| 亚洲一码二码三码区别大吗| 亚洲av综合色区一区| 日韩制服骚丝袜av| 一区二区日韩欧美中文字幕 | 午夜免费观看性视频| 天美传媒精品一区二区| 日本免费在线观看一区| 亚洲精品第二区| 日韩伦理黄色片| 国产精品麻豆人妻色哟哟久久| 国产亚洲最大av| 少妇高潮的动态图| 老司机影院成人| av在线观看视频网站免费| 丝瓜视频免费看黄片| 国产男人的电影天堂91| 99re6热这里在线精品视频| 午夜老司机福利剧场| a级毛片在线看网站| 女的被弄到高潮叫床怎么办| 欧美精品国产亚洲| 亚洲精品美女久久久久99蜜臀 | freevideosex欧美| 国产深夜福利视频在线观看| 国产激情久久老熟女| 免费看光身美女| 国产亚洲精品久久久com| 一区二区三区精品91| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 美女中出高潮动态图| 国产片内射在线| 另类亚洲欧美激情| 丰满迷人的少妇在线观看| 亚洲成av片中文字幕在线观看 | 国产麻豆69| 免费看av在线观看网站| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲婷婷狠狠爱综合网| 波野结衣二区三区在线| 春色校园在线视频观看| 视频在线观看一区二区三区| 国产在线一区二区三区精| 黑人猛操日本美女一级片| 在线天堂中文资源库| 五月天丁香电影| 波多野结衣一区麻豆| 天天影视国产精品| 看免费av毛片| 国产免费一级a男人的天堂| 欧美丝袜亚洲另类| 成人国产av品久久久| 日韩一区二区三区影片| 精品一区二区免费观看| 国产午夜精品一二区理论片| 男男h啪啪无遮挡| 22中文网久久字幕| 九九爱精品视频在线观看| 夫妻午夜视频| 亚洲人成77777在线视频| 黄色视频在线播放观看不卡| 国产国语露脸激情在线看| 精品人妻在线不人妻| 男男h啪啪无遮挡| 亚洲精品乱码久久久久久按摩| 亚洲图色成人| www.熟女人妻精品国产 | 久久久久精品性色| 国产极品粉嫩免费观看在线| 成人午夜精彩视频在线观看| 国产免费一区二区三区四区乱码| 2022亚洲国产成人精品| 91成人精品电影| 人人澡人人妻人| 国产成人精品久久久久久| 国产精品久久久久久久久免| 自拍欧美九色日韩亚洲蝌蚪91| 久久鲁丝午夜福利片| 国产精品一区www在线观看| 人人妻人人澡人人看| 巨乳人妻的诱惑在线观看| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| 亚洲综合色网址| 国产精品久久久av美女十八| 国产成人91sexporn| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕免费大全7| videos熟女内射| 成人国语在线视频| 极品少妇高潮喷水抽搐| 日韩三级伦理在线观看| 成年动漫av网址| 男女国产视频网站| 亚洲久久久国产精品| 国产综合精华液| 亚洲成av片中文字幕在线观看 | 亚洲天堂av无毛| 99久久人妻综合| 永久网站在线| 黄片播放在线免费| 国产成人精品福利久久| 成人无遮挡网站| 边亲边吃奶的免费视频| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 欧美bdsm另类| 天天躁夜夜躁狠狠躁躁| 看非洲黑人一级黄片| 国产深夜福利视频在线观看| 成人国语在线视频| 美女中出高潮动态图| 久久久国产一区二区| 国产午夜精品一二区理论片| 亚洲 欧美一区二区三区| 女人久久www免费人成看片| 亚洲成人手机| av.在线天堂| 99热6这里只有精品| 全区人妻精品视频| 精品一区二区三区四区五区乱码 | 丝袜在线中文字幕| 一区二区av电影网| 久久久久久久亚洲中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产高清三级在线| 国产国拍精品亚洲av在线观看| 亚洲,欧美精品.| 亚洲成人手机| 赤兔流量卡办理| av免费观看日本| 啦啦啦啦在线视频资源| 欧美日韩精品成人综合77777| 欧美3d第一页|