• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Depth error correction for projector-camera based consumer depth cameras

    2018-07-13 06:59:26HirotakeYamazoeHiroshiHabeIkuhisaMitsugamiandYasushiYagi
    Computational Visual Media 2018年2期

    Hirotake YamazoeHiroshi Habe,Ikuhisa Mitsugami,and Yasushi Yagi

    Abstract This paper proposes a depth measurement error model for consumer depth cameras such as the Microsoft Kinect,and a corresponding calibration method. These devices were originally designed as video game interfaces,and their output depth maps usually lack sufficient accuracy for 3D measurement.Models have been proposed to reduce these depth errors,but they only consider camera-related causes.Since the depth sensors are based on projectorcamera systems,we should also consider projectorrelated causes.Also,previous models require disparity observations,which are usually not output by such sensors,so cannot be employed in practice. We give an alternative error model for projector-camera based consumer depth cameras,based on their depth measurement algorithm,and intrinsic parameters of the camera and the projector;it does not need disparity values.We also give a corresponding new parameter estimation method which simply needs observation of a planar board.Our calibrated error model allows use of a consumer depth sensor as a 3D measuring device.Experimental results show the validity and effectiveness of the error model and calibration procedure.

    Keywords consumer depth camera; intrinsic calibration;projector;distortion

    1 Introduction

    Recently,various consumer depth cameras such as the Microsoft Kinect V1/V2,Asus Xtion,etc.have been released.Since such consumer depth sensors are inexpensive and easy to use,these devices are widely deployed in various fields for a wide variety of applications[1,2].

    These consumer depth cameras can be divided into two categories:(i)projector-camera based systems in which a projector casts a structured pattern onto the surface of a target object,and(ii)time-of- flight(ToF)sensors that measure the time taken for light to travel from a source to an object and back to a sensor.ToF sensors generally give more accurate depths than projector-camera based ones,which are,however,still useful because of their simplicity and low cost.

    Since projector-camera based devices include cameras and a projector,output errors may be caused in errors in determining the intrinsic parameters.As long as such devices are used as human interfaces for video games,such errors are unimportant. For example,even when a Kinect V1 captures a planar object,the resultant depth maps have errors(see Fig.1,left)as also reported elsewhere[3,4]. Thus,in this paper,we focus on projector-camera based consumer depth cameras and propose a depth error correction method based on their depth measurement algorithm. Various intrinsic calibration methods have already been proposed for Kinect and other projector-camera based depth cameras[3–11].Smisek et al.[3]and Herrera et al.[4]proposed calibration and depth correction methods for Kinect that reduce the depth observation errors. Raposo et al.[6]extended Herrera et al.’s method to improve stability and speed. However,their methods only considered distortion due to the infrared (IR) cameras.Since projector-camera based depth sensors include cameras and a projector,we should also consider projector-related sources of error.

    We previously proposed a depth error model for Kinect including projector-related distortion[5].Darwish et al.[8]also proposed a calibration algorithm that considers both camera and projectorrelated parameters for Kinect.However,these methods as well as other previous methods require disparity observations,and these are not generally provided by such sensors.Thus,methods that require disparity observations cannot be employed in practice for error compensation for data from existing commercial sensors.

    Some researchers employ non-parametric models for depth correction but a calibration board needs to be shown perpendicular to the sensor[9,11],or ground truth data obtained by simultaneous localization and mapping(SLAM)are required[12,13].Jin et al.[10]proposed a calibration method using cuboids,but,their method is also based on disparity observations.Other researchers proposed error distribution models for Kinect[14,15],but this research did not focus on error compensation.

    To provide straightforward procedures for calibration and error compensation for depth data,including previously captured data,our method introduces a parametric error model that considers(i)both camera and projector distortion,and(ii)errors in the parameters used to convert disparity observations to actual disparity.To estimate the parameters in the error model,we propose a simple method that resembles the common color camera calibration method[16]. Having placed a planar calibration board in front of the depth camera and captured a set of images,our method efficiently optimizes the parameters allowing us to reduce the depth measurement errors(see Fig.1,right).Our compensation model only requires depth data,without the need for disparity observations.Thus we can apply our error compensation to any depth data captured by projector-camera based depth cameras.

    We note that the calibration method introduced in this paper is designed for Kinect because it is the most common projector-camera based depth sensor.However,it potentially generally more useful because it is based on a principle common to other projectorcamera based depth sensors.

    Section 2 describes the measurement algorithm used by Kinect,and Section 3 describes our parametric error model and parameter estimation.Section 4 shows experimental results demonstrating the effectiveness of our proposed method,while Section 5 summarizes our paper.

    Fig.1 Left: observation errors in Kinect output. Right:compensated values using our method.

    2 Depth error model

    2.1 Depth measurement by Kinect

    Since our method is based on the measurement algorithm used by the Kinect,we first outline this algorithm and this depth sensor,which consists of an IR camera and an IR projector.The IR projector projects special fixed patterns(speckle patterns)on the target observed by the IR camera.By comparing the observed and reference patterns captured in advance,Kinect estimates depth information for the target.The reference patterns are observations made by the IR camera when the IR projector casts the speckle pattern on the reference plane Π0[17](see Fig.2).

    wherewis the baseline distance between the camera and the projector,fis the focal length of the IR camera(and the IR projector),andZ0is the distance between the reference plane Π0and the Kinect.

    Fig.2 Depth measurement by Kinect.

    ThenXi,which is the 3D position of pointQi,can be calculated as

    wherexccandyccare the IR camera’s principal points andZiis the depth of pointQi.

    Kinect does not output disparity values,but only normalized observationsδ′ifrom 0 to 2047(inKinect disparity units:kdu)[17],whereδi=mδ′i+n.The driver software for Kinect(Kinect for Windows SDK and OpenNI)uses these to calculate and output depth valuesZibased on the following equation:

    The disparity between the camera and projectordican be expressed as follows:

    Note that recent versions of the driver software do not support output of disparitiesδi′,so these are generally unobtainable.Instead,we propose a method to calibrate and compensate the depth data obtained by Kinect that does not require either the disparity or normalized disparity observations.

    2.2 Depth error model

    The depth measurement model described above holds only in an ideal case.In practice,when Kinect observes a planar target,the output depth maps have errors,as previously noted[3,4](see Fig.1).To be able to compensate for them,we consider not only camera distortion but also the projector distortion in our model.

    2.2.1Distortion parameters

    A well-known lens distortion model is

    We assume the same distortion model can be used for the projector:

    wherexpiandpiare the ideal and distorted 2D positions,andupigives the normalized coordinates ofxpi.[xpc,ypc]Tis the principal point of the projector,andkp1andkp2are the distortion parameters of the IR projector.

    We now consider patternP(xpi)projected in the direction of pointxpi(see Fig.3).However,because of projector distortion,patternP(xpi)is actually projected in the direction of pointpi,patternP(xpi)is actually projected onto position

    2.2.2Proposed error model

    Fig.3 Proposed error model.

    whereαandβare parameters for compensating errors inf,w,Z0,m,andn.A detailed derivation of Eq.(10)is shown in Appendix A.Thus,the ideal disparitydican be expressed as follows:

    By introducingαandβ,we can compensate for errors in the parameters in Eq.(5)without observing the normalized disparity itself.Therefore,we calibrate not only the distortion parameters of the camera and the projector but alsoαandβallowing us to compensate for errors in these values.In the next section,we describe parameter estimation for this error model.

    3 Algorithm

    3.1 Overview

    In consumer depth sensors,since the projection patterns cannot be controlled,we cannot directly estimate the projector’s distortion parameters.Instead,we estimate the error model parameters using the process flow shown in Fig.4.

    First,we obtainNIR images and corresponding depth data for a calibration board(of known size and pattern)in arbitrary poses and positions.This lets us perform intrinsic calibration of the IR camera by Zhang’s method[16].As described in the previous section,we model the depth errors based on Eq.(11),and ideal disparitydiand observed disparityiare required.Here,we assume that the poses and positions of the board estimated by intrinsic camera calibration are ideal depth values,and calculate ideal disparitydifrom these poses and positions.The observed disparity values can be calculated from the observed depth values.Next we estimate the error model parameters by minimizing Eq.(11)based ondiandi.Table 1 summarizes the notation used in the following.

    Fig.4 Process flow.

    3.2 Camera calibration

    First,intrinsic calibration of the IR camera is performed using theNimages captured by the IR cameras,using Zhang’s method[16].For camera calibration,Xk,x(j)bk,the size of the chessboard,and the number of checker patterns on the chessboard should be given.Zhang’s method can estimate the focal length(f),the principal point(ucc,vcc),and the camera distortion parameters(kc={kc1,kc2}).The disparity differences caused by the camera lensdistortion may be considered. Letk′cbe camera the distortion parameter,and∈′cbe disparity error caused byk′c.Thenkcand∈ccan be expressed as follows:

    Table 1 Notation

    In addition,we can obtain the board’s poses and positions in each imagej: (R(j),t(j)). This information is used in the following processes.

    3.3 Projector calibration and disparity compensation parameter estimation

    Next,we estimate the distortion parameters for the projector and the disparity conversion parameters.To do so,we use the relations in Eq.(13)to give the following equation:

    Fig.5 Relationship between 2D and 3D observations.

    and we employ the approximate undistorted model[18].

    Based on the above equations,we can estimate?kc,kp,α,andβby minimization as below:h

    whereApare intrinsic parameters of the projector.Using Eq.(7),we can obtain the following equation:

    We then estimate the optimal values of∈pi(andkp1,kp2),α,andβby minimizing Eq.(19)from these initial values.

    3.4 Depth compensation using calibration results

    Finally,we describe the compensation process for the depth data obtained from the depth sensors.

    4 Experiments

    We performed the following experiments to confirm the validity of our proposed error model and error compensation.In the experiment,we used a Kinect for Xbox(Device 1,abbreviated Dev.1,etc.),a Kinect for Windows(Device 2),and an ASUS Xtion Pro(Device 3);all of these devices are based on the same Primesense measurement algorithm[20].We compared the compensated results using the following three models and the observed raw data:

    (a)our proposed method;

    (b)model considering camera distortion and conversion parameters(without∈p);

    (c)model considering only camera distortion errors(with ?∈c);

    (d)no compensation,i.e.,observed raw data.

    We captured 12 observations of the chessboard in different arbitrary poses and positions in the experiments.The distances between the board and the device were about 500–1300 mm.A leave-oneout method was used for evaluating the validity of the proposed error model:one observation was used for evaluation and the remaining observations were used for estimating error model parameters.From the observations,we manually obtained the 2D positions of the chessboard corners(54 points per image).

    Table 2 shows the residual errors after the calibration phase,and Table 3 shows the errors in evaluations. Here,the errors were calculated as the averaged distances between the compensated(or observed)positions and ground truth positions of the chessboard corners.We used the 3D positions obtained from the color camera observations as the ground truth positions.

    These comparative results show that all three models can reduce errors compared to the uncompensated results,in both the calibration and evaluation phases.The errors compensated by(a)our proposed model were the lowest,followed by(b)the model that considered camera distortion and linear relations,and then(c)the model that considered only camera distortion.The number of parameters used in these models also has the same ordering:(a)has the most,followed by(b)and then(c).These results suggest that using all parameters considered in our proposed error model are helpful in improving the quality of the 3D depth data.

    After calibration,we evaluated the flatness of the compensated observations for the chessboard,measuring plane fitting errors within the chessboard regions.Table 4 shows comparative results for these plane fitting errors.

    These results show that the plane fitting errors in compensated observations from our proposed model(a)decreased,but on the other hand,typically for other methods(b)and(c),the plane fitting errors increased.These results suggest that all parameters considered in our proposed error model are required to improve the quality of the 3D depth data.

    Table 2 Comparison of averaged errors during calibration

    Table 3 Comparison of averaged errors in evaluation

    Next,we evaluated the method’s robustness to errors in the given baseline lengthw.Our method assumes the target device’s baseline length is that given in such articles as Ref.[19].However,if it is not given,we need to measure it ourselves.In such cases,the measured length may include errors.Thus,we evaluated the robustness to errors in the baseline lengthwof up to±2 mm.

    Table 5 shows the errors when the baseline includes errors.As can be seen,our proposed model can reduce errors between the compensated positions and the ground truth positions even when the given baseline length includes errors.This is because our model considers errors in the baseline lengthwas one of the parameters in Eq.(5).

    These experimental results,confirm that our proposed model can improve the quality of 3D depth data obtained by consumer depth cameras such as Kinect and Xtion.

    Table 4 Comparison of plane fitting errors in evaluation

    5 Summary

    In this paper,we have proposed and evaluated a depth error model for projector-camera based consumer depth cameras such as the Kinect,and an error compensation method based on calibration of the parameters involved.Since our method only requires depth data without disparity observations,we can apply it to any depth data captured by projector-camera based depth cameras such as the Kinect and Xtion. Our error model considers(i)both camera and projector distortion,and(ii)errors in the parameters used to convert from normalized disparity to depth data.The optimal model parameters can be estimated by showing a chessboard to the depth sensor using multiple arbitrary distances and poses.Experimental results show that the proposed error model can reduce depth measurement errors for both Kinect and Xtion by about 70%. Our proposed model has significant advantages when using a consumer depth camera as a 3D measuring device.

    Future work includes further investigation of the error model, improvement of the optimization approach for parameter estimation,and implementation of a calibration tool based on the proposed error model for various projectorcamera based depth cameras,such as the Intel RealSense and Occipital Structure Sensor,as well as the Microsoft Kinect.

    Table 5 Residual errors with varying baseline length errors

    Appendix A Derivation of Eq.(10)

    Considering errors in the parameters in Eq.(5),ican be expressed as follows:

    Acknowledgements

    This work was supported by the JST CREST“Behavior Understanding based on Intention-Gait Model”project.

    欧美区成人在线视频| 成年女人在线观看亚洲视频 | 激情 狠狠 欧美| 我要看日韩黄色一级片| 日本av手机在线免费观看| 国产成人福利小说| www.色视频.com| 国产极品天堂在线| 久久久午夜欧美精品| 精品熟女少妇av免费看| 成年版毛片免费区| 少妇高潮的动态图| 日本三级黄在线观看| 熟女人妻精品中文字幕| 午夜精品在线福利| 中文乱码字字幕精品一区二区三区 | 久久久久久伊人网av| 男人舔奶头视频| 两个人的视频大全免费| 美女黄网站色视频| 男女视频在线观看网站免费| 毛片女人毛片| 男人狂女人下面高潮的视频| 久久久久久久亚洲中文字幕| 最近中文字幕2019免费版| 婷婷色麻豆天堂久久| 亚洲综合色惰| av国产久精品久网站免费入址| 久久久久性生活片| a级一级毛片免费在线观看| 三级经典国产精品| 精品人妻视频免费看| 我的女老师完整版在线观看| 一二三四中文在线观看免费高清| 久久久久九九精品影院| 国产乱人偷精品视频| 看黄色毛片网站| 日韩av不卡免费在线播放| 亚洲精品自拍成人| 草草在线视频免费看| 3wmmmm亚洲av在线观看| 一级毛片久久久久久久久女| 亚洲人与动物交配视频| 精品99又大又爽又粗少妇毛片| 可以在线观看毛片的网站| 免费看光身美女| 天堂中文最新版在线下载 | 特级一级黄色大片| 欧美激情久久久久久爽电影| 久久久久久久国产电影| 99久久精品国产国产毛片| 国产精品美女特级片免费视频播放器| 国产精品国产三级国产专区5o| 人妻系列 视频| 午夜激情福利司机影院| 久久精品夜色国产| 亚洲精品乱码久久久v下载方式| 国产色爽女视频免费观看| 看黄色毛片网站| 亚洲在线自拍视频| 日本欧美国产在线视频| 国产亚洲最大av| 亚洲欧美日韩无卡精品| 三级国产精品欧美在线观看| 中文字幕久久专区| 99热6这里只有精品| 99九九线精品视频在线观看视频| 亚洲精品久久久久久婷婷小说| 人妻制服诱惑在线中文字幕| 夜夜爽夜夜爽视频| 五月天丁香电影| 国产亚洲午夜精品一区二区久久 | 丰满人妻一区二区三区视频av| 国产精品.久久久| 永久网站在线| 别揉我奶头 嗯啊视频| 亚洲婷婷狠狠爱综合网| 久久久久久久午夜电影| 校园人妻丝袜中文字幕| 成人漫画全彩无遮挡| 国精品久久久久久国模美| 亚洲精品国产av成人精品| 性色avwww在线观看| 一区二区三区四区激情视频| 2021少妇久久久久久久久久久| 在线免费十八禁| 久热久热在线精品观看| 精品亚洲乱码少妇综合久久| 国产午夜精品一二区理论片| 黄色日韩在线| 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 国产亚洲午夜精品一区二区久久 | 偷拍熟女少妇极品色| av国产久精品久网站免费入址| 水蜜桃什么品种好| 亚洲天堂国产精品一区在线| 人妻一区二区av| 又黄又爽又刺激的免费视频.| 亚洲精品456在线播放app| 亚洲人成网站在线播| 狠狠精品人妻久久久久久综合| 亚洲国产成人一精品久久久| 蜜桃久久精品国产亚洲av| 又爽又黄a免费视频| 伊人久久国产一区二区| 狠狠精品人妻久久久久久综合| 久久精品国产鲁丝片午夜精品| 丝瓜视频免费看黄片| 免费黄频网站在线观看国产| 啦啦啦韩国在线观看视频| kizo精华| 熟妇人妻不卡中文字幕| 天堂影院成人在线观看| 中文在线观看免费www的网站| 久久人人爽人人片av| 午夜爱爱视频在线播放| 亚洲国产精品成人综合色| 综合色av麻豆| 国产精品精品国产色婷婷| 舔av片在线| 欧美日韩视频高清一区二区三区二| 久久6这里有精品| 两个人视频免费观看高清| 18禁在线无遮挡免费观看视频| 精品久久久精品久久久| 亚洲精品国产av成人精品| 麻豆av噜噜一区二区三区| 51国产日韩欧美| 非洲黑人性xxxx精品又粗又长| 国产中年淑女户外野战色| av免费在线看不卡| 国产 一区精品| av在线观看视频网站免费| 少妇丰满av| 精华霜和精华液先用哪个| 亚洲精品成人久久久久久| 精品国产三级普通话版| 亚洲美女视频黄频| 黑人高潮一二区| 床上黄色一级片| 青春草亚洲视频在线观看| 视频中文字幕在线观看| 91在线精品国自产拍蜜月| 亚洲婷婷狠狠爱综合网| 午夜免费激情av| 婷婷色综合www| 久久久久九九精品影院| 国产免费视频播放在线视频 | 日韩精品有码人妻一区| 亚洲av免费在线观看| 国产精品日韩av在线免费观看| 欧美性感艳星| 六月丁香七月| 一区二区三区乱码不卡18| 好男人视频免费观看在线| 久久久久九九精品影院| 好男人在线观看高清免费视频| 精品欧美国产一区二区三| 国产精品嫩草影院av在线观看| 午夜福利在线观看吧| 一本一本综合久久| 国产片特级美女逼逼视频| 日本免费a在线| 国产精品精品国产色婷婷| 国产精品爽爽va在线观看网站| 欧美一区二区亚洲| 成人特级av手机在线观看| 国产黄片视频在线免费观看| 精品一区在线观看国产| 最近最新中文字幕免费大全7| 麻豆国产97在线/欧美| 啦啦啦中文免费视频观看日本| 嫩草影院精品99| 久久99热这里只频精品6学生| 午夜福利视频1000在线观看| 非洲黑人性xxxx精品又粗又长| 插阴视频在线观看视频| 国产精品国产三级国产av玫瑰| 少妇被粗大猛烈的视频| 久久精品人妻少妇| 亚洲成人中文字幕在线播放| 99久久精品热视频| 黑人高潮一二区| 国产精品三级大全| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放| 久久97久久精品| 欧美日韩国产mv在线观看视频 | 听说在线观看完整版免费高清| 99久久中文字幕三级久久日本| 高清日韩中文字幕在线| 亚洲精品乱久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 美女主播在线视频| 精品人妻偷拍中文字幕| 又黄又爽又刺激的免费视频.| 国产成人a∨麻豆精品| 精品熟女少妇av免费看| 亚洲在线观看片| 在现免费观看毛片| 国产精品久久视频播放| 欧美zozozo另类| 免费少妇av软件| 国产精品无大码| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 亚洲av电影不卡..在线观看| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 视频中文字幕在线观看| 亚洲av电影不卡..在线观看| 国产成人freesex在线| 午夜日本视频在线| 噜噜噜噜噜久久久久久91| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 网址你懂的国产日韩在线| av专区在线播放| 日韩精品青青久久久久久| 国产视频首页在线观看| 超碰97精品在线观看| 国产探花极品一区二区| 国产乱人视频| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 91狼人影院| 国产av在哪里看| 一级二级三级毛片免费看| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品 | 九九在线视频观看精品| 蜜臀久久99精品久久宅男| 综合色av麻豆| 三级毛片av免费| 日本三级黄在线观看| 啦啦啦韩国在线观看视频| 日韩,欧美,国产一区二区三区| 亚洲性久久影院| 天堂中文最新版在线下载 | 中文字幕制服av| 国产成人aa在线观看| 日本欧美国产在线视频| 亚洲国产色片| 亚洲精品影视一区二区三区av| 卡戴珊不雅视频在线播放| 久久99热这里只频精品6学生| 男人舔奶头视频| 男人舔奶头视频| 亚洲乱码一区二区免费版| 国产午夜福利久久久久久| 黄色日韩在线| 女人久久www免费人成看片| 免费看不卡的av| 伊人久久国产一区二区| 欧美97在线视频| 亚洲人与动物交配视频| 少妇猛男粗大的猛烈进出视频 | 日本熟妇午夜| 最近最新中文字幕大全电影3| 少妇人妻精品综合一区二区| 水蜜桃什么品种好| 午夜老司机福利剧场| 国产精品久久视频播放| 日日啪夜夜爽| 欧美+日韩+精品| 欧美日韩综合久久久久久| 精品国产三级普通话版| 综合色丁香网| 天堂俺去俺来也www色官网 | 国产大屁股一区二区在线视频| 国产一区二区三区综合在线观看 | 日本黄大片高清| 日本午夜av视频| 日韩成人av中文字幕在线观看| 简卡轻食公司| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆 | 国精品久久久久久国模美| 久热久热在线精品观看| 国产伦理片在线播放av一区| 国产一级毛片七仙女欲春2| 26uuu在线亚洲综合色| 国产一区二区亚洲精品在线观看| 国语对白做爰xxxⅹ性视频网站| 精品人妻一区二区三区麻豆| 大香蕉久久网| 亚洲av男天堂| 一本一本综合久久| 波多野结衣巨乳人妻| 国产日韩欧美在线精品| 一个人看的www免费观看视频| 久久这里只有精品中国| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久久免| 欧美+日韩+精品| 在线观看av片永久免费下载| 热99在线观看视频| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 日本黄大片高清| 国产精品爽爽va在线观看网站| 最近2019中文字幕mv第一页| 亚洲精品第二区| 国产又色又爽无遮挡免| 身体一侧抽搐| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 97超碰精品成人国产| 老司机影院毛片| xxx大片免费视频| 1000部很黄的大片| 最近最新中文字幕免费大全7| 欧美成人a在线观看| 内地一区二区视频在线| 国产伦在线观看视频一区| 国产精品国产三级专区第一集| 久久久久久久午夜电影| 51国产日韩欧美| 免费av观看视频| 亚洲av国产av综合av卡| 亚洲av成人精品一二三区| 色哟哟·www| 亚洲人与动物交配视频| 成人午夜精彩视频在线观看| 全区人妻精品视频| 精品人妻视频免费看| 国产亚洲午夜精品一区二区久久 | 人妻夜夜爽99麻豆av| 国内少妇人妻偷人精品xxx网站| 美女主播在线视频| 亚洲精品乱久久久久久| 国产成人福利小说| 亚洲av一区综合| 亚洲av免费高清在线观看| 超碰97精品在线观看| 国产成人精品一,二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲天堂国产精品一区在线| 亚洲不卡免费看| 伦精品一区二区三区| 亚洲在久久综合| 一级毛片黄色毛片免费观看视频| 午夜福利高清视频| 国产三级在线视频| 九九在线视频观看精品| 在线免费观看的www视频| 99久久精品国产国产毛片| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 18禁在线播放成人免费| 少妇熟女欧美另类| 亚洲色图av天堂| 久久这里只有精品中国| 亚洲高清免费不卡视频| av在线老鸭窝| 神马国产精品三级电影在线观看| 免费观看性生交大片5| 免费黄网站久久成人精品| 久久久久国产网址| 久久这里只有精品中国| 18禁裸乳无遮挡免费网站照片| 国产成人午夜福利电影在线观看| eeuss影院久久| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 国产av码专区亚洲av| 男女边吃奶边做爰视频| 免费看av在线观看网站| 永久网站在线| 国产亚洲最大av| 国产精品伦人一区二区| 国产av码专区亚洲av| 久久久成人免费电影| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 成人毛片60女人毛片免费| 久久精品夜夜夜夜夜久久蜜豆| 大片免费播放器 马上看| 欧美成人午夜免费资源| 午夜福利在线观看免费完整高清在| 精品久久久久久电影网| 免费观看无遮挡的男女| 亚洲图色成人| 欧美激情久久久久久爽电影| 免费不卡的大黄色大毛片视频在线观看 | 久久久国产一区二区| 男人爽女人下面视频在线观看| 免费大片黄手机在线观看| 精品久久久久久电影网| 亚洲四区av| 免费人成在线观看视频色| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| av在线蜜桃| 国产精品不卡视频一区二区| 国产麻豆成人av免费视频| 国产成人午夜福利电影在线观看| 久久国产乱子免费精品| 久久久久精品性色| 午夜免费男女啪啪视频观看| 91久久精品电影网| 一级毛片我不卡| 久久久久久久久久成人| 丰满人妻一区二区三区视频av| 欧美3d第一页| 国产午夜福利久久久久久| 69人妻影院| 亚洲精品一区蜜桃| 街头女战士在线观看网站| 久久久久九九精品影院| 久久亚洲国产成人精品v| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 麻豆成人av视频| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 人体艺术视频欧美日本| 国产亚洲午夜精品一区二区久久 | 国产精品熟女久久久久浪| kizo精华| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 久久久久久九九精品二区国产| av又黄又爽大尺度在线免费看| 久久久久久久久久黄片| 久久人人爽人人片av| 九草在线视频观看| 国产精品三级大全| 婷婷色av中文字幕| av福利片在线观看| 最近视频中文字幕2019在线8| av在线老鸭窝| 国产爱豆传媒在线观看| xxx大片免费视频| 麻豆av噜噜一区二区三区| 国产免费一级a男人的天堂| 欧美日韩视频高清一区二区三区二| 黄色欧美视频在线观看| 免费播放大片免费观看视频在线观看| 午夜激情欧美在线| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 嫩草影院入口| 国产亚洲精品av在线| 日韩欧美三级三区| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 男女国产视频网站| 欧美成人午夜免费资源| 中文欧美无线码| 男插女下体视频免费在线播放| 国产精品麻豆人妻色哟哟久久 | 99久久九九国产精品国产免费| 22中文网久久字幕| 国产视频首页在线观看| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 深爱激情五月婷婷| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 久久综合国产亚洲精品| 在线观看人妻少妇| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 大陆偷拍与自拍| 亚洲av.av天堂| 99热这里只有是精品在线观看| 欧美人与善性xxx| 91久久精品国产一区二区三区| 中文字幕制服av| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| 精品人妻视频免费看| 国产视频内射| 亚洲精品aⅴ在线观看| 大香蕉97超碰在线| h日本视频在线播放| 免费观看性生交大片5| 成人一区二区视频在线观看| xxx大片免费视频| 午夜福利成人在线免费观看| 深夜a级毛片| 男人爽女人下面视频在线观看| 免费观看av网站的网址| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频 | 最近最新中文字幕免费大全7| 亚洲四区av| 国产精品1区2区在线观看.| 免费大片18禁| 高清视频免费观看一区二区 | 丝袜喷水一区| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 国产亚洲一区二区精品| h日本视频在线播放| 国产精品女同一区二区软件| 可以在线观看毛片的网站| 又大又黄又爽视频免费| 亚洲国产成人一精品久久久| 日韩人妻高清精品专区| 久久久久网色| 人人妻人人澡人人爽人人夜夜 | av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 高清午夜精品一区二区三区| 国产精品国产三级国产av玫瑰| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 亚洲av成人精品一二三区| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看| av国产久精品久网站免费入址| 欧美激情国产日韩精品一区| 搡老妇女老女人老熟妇| 成年女人在线观看亚洲视频 | 美女被艹到高潮喷水动态| www.色视频.com| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 亚洲精品影视一区二区三区av| 高清视频免费观看一区二区 | 乱码一卡2卡4卡精品| 久久99精品国语久久久| 18禁裸乳无遮挡免费网站照片| 99久久九九国产精品国产免费| 91久久精品国产一区二区三区| a级一级毛片免费在线观看| 日韩欧美三级三区| 亚洲图色成人| 国产亚洲5aaaaa淫片| 一本一本综合久久| 国产av码专区亚洲av| 免费观看无遮挡的男女| 天天一区二区日本电影三级| 亚州av有码| 精品一区二区三卡| 亚洲精品色激情综合| 午夜久久久久精精品| 日韩不卡一区二区三区视频在线| 狠狠精品人妻久久久久久综合| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| av在线播放精品| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月| 少妇熟女aⅴ在线视频| 最近视频中文字幕2019在线8| 日韩欧美一区视频在线观看 | 国产精品久久久久久久电影| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 青青草视频在线视频观看| 久久久久免费精品人妻一区二区| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 亚州av有码| 国产大屁股一区二区在线视频| 在线免费观看的www视频| 丝袜喷水一区| 国产黄a三级三级三级人| 午夜久久久久精精品| 国产精品国产三级国产av玫瑰| 亚洲av在线观看美女高潮| 99热网站在线观看| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 久久久久网色| 久久热精品热| 亚洲欧美一区二区三区国产| 久久久久久九九精品二区国产| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版 | 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 欧美xxxx黑人xx丫x性爽| 国产精品1区2区在线观看.| 欧美激情在线99| h日本视频在线播放| 国产免费视频播放在线视频 | 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 国产伦精品一区二区三区视频9| 日韩欧美国产在线观看| 亚洲国产av新网站| 在线观看人妻少妇| 亚洲一级一片aⅴ在线观看| 国产成人精品一,二区| 成人亚洲精品一区在线观看 | 国产单亲对白刺激| 国产精品无大码| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久| 中文字幕人妻熟人妻熟丝袜美| 国产成人91sexporn| 精品一区二区三卡| 亚洲国产欧美人成| 成人一区二区视频在线观看| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 舔av片在线| 国产综合懂色| 男女边吃奶边做爰视频|