• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magic sheets:Visual cryptography with common shares

    2018-07-13 06:59:34NaokiKitaKazunoriMiyata
    Computational Visual Media 2018年2期

    Naoki KitaKazunori Miyata

    Abstract Visual cryptography(VC)is an encryption technique for hiding a secret image in distributed and shared images(referred to as shares).VC schemes are employed to encrypt multiple images as meaningless,noisy patterns or meaningful images.However,decrypting multiple secret images using a unique share is difficult with traditional VC.We propose an approach to hide multiple images in meaningful shares.We can decrypt multiple images simultaneously using a common share,which we refer to as a magic sheet. The magic sheet decrypts multiple secret images depending on a given share.The shares are printed on transparencies,and decryption is performed by physically superimposing the transparencies.We evaluate the proposed method using binary,grayscale,and color images.

    Keywords visual cryptography(VC);information hiding;secret sharing

    1 Introduction

    Visual cryptography(VC)is a secret sharing scheme in which secrets are hidden in distributed and shared images. The secrets can be decrypted successfully if shared images(hereafter calledshares)printed on transparencies are stacked(superimposed).Decryption can be performed by the human visual system:computational resources are not required for decryption. VC applications include secret message sharing,authentication and identification,and watermarking.To encrypt secrets securely,the secrets should be split and embedded into shares with high quality images.VC has been studied extensively by the cryptography community,as well as computer vision and computer graphics communities.

    In computer graphics,various approaches have been investigated for hiding images in a surface or display.In such approaches,a different image is displayed on the surface depending on the viewer’s perspective,or lighting conditions.Here the surface displays the hidden image itself or projects it onto a wall from an unstructured meaningless pattern or a different image shown on the surface.Such surprising behavior evokes a sense of wonder;therefore,the technique can be used in various entertainment applications.This is also true for a VC scheme(VCS).In other words,although VC is essentially a cryptography or steganography method,it can also be used in entertainment applications.

    We propose an approach we callmagic sheets,an approach to hiding multiple images in sheets.The proposed method is based on a(k,n)-VCS,where a secret can be decrypted by stacking anykout ofnimages,whereas anyk?1 or fewer images cannot decrypt the secret successfully.In traditional(k,n)-VCS the shares are meaningless,noise-like images.In extended(k,n)-VCS((k,n)-EVCS),shares are composed of meaningful images.Magic sheetstakes three share images{I1,Ic,I2}and two secret images{IS1,IS2}as input and computes three output share images{S1,Sc,S2}such thatIS1andIS2can be decrypted by stackingS1andScandScandS2,respectively.This is similar to a(2,2)-EVCS.However,in the proposed approach,the shareScis acommon shareused to decrypt either of two secrets,which differentiates our approach from conventional EVCS(see Fig.1).

    By printing the output shares on transparencies,we can physically decrypt secret images.This can be applied for various recreational purposes,such as cooperative games,in which a player with a share looks for a player with the other share to reveal secrets.

    The primary contributions of this study are as follows:

    ?an EVCS that uses a unique common share to decrypt multiple secret images by employing a bitwise AND-like operation;

    ?a demonstration of the effectiveness of the proposed method using binary,grayscale,and color images;

    ?a demonstration of decryption by superimposing shares printed on transparencies.

    Our aim is applications of VCS for entertainment purposes,i.e.,hiding and revealing images to evoke a sense of wonder.We do not focus on theoretical aspects,such as giving a security analysis of the proposed method.

    In the next section,we brie fly review VC methods and methods for hiding multiple images.

    Fig.1 Left:example of basic(2,2)-VCS.Middle:example of(2,2)-EVCS.Right:proposed EVCS with common shares.The share images(top row)are stacked(physically superimposed)to decrypt the secret images(bottom row).The proposed method can decrypt multiple images using a common share.Input images are 200×200 pixels and output images are 400×400 pixels.

    2 Related work

    2.1 Visual cryptography

    VC was first proposed by Naor and Shamir[1].VC is a secret sharing scheme[2]in which a secret is encrypted,shared,and decrypted by participants.Encryption and decryption are performed by a computer.Alternatively,in some VCSs,the human visual system is used to decrypt the encrypted secret.Typically,VC schemes require complex computations.In other words,with such schemes,the human eyes can decrypt secrets easily where decryption would be difficult for a computer.In typical secret sharing schemes,the secret is either numbers or text,and in VCSs,the secret is an image.

    In traditional VCSs,the inputs are binary images.However,methods that use grayscale or color input images have also been developed[3].In addition,more sophisticated approaches[4–6]that improve the visual quality of shares have been proposed.The traditional VCS,which encrypts only a single image,has been extended to handle multiple secrets using two circle shares and different rotation angles[7].Universal sharescan decrypt multiple images using a unique share[8,9].Among the various approaches,methods that employuniversal shares[8,9]are most closely related to our proposed approach:ourcommon shareis a type ofuniversal share. A comprehensive review of VCSs can be found in the literature[10].

    Such previous methods have limitations:they generate meaningless shares and are based on Boolean operations,such as exclusive or(XOR)and bit shift operations,making it difficult to decrypt secrets physically.In contrast,the proposed method can encrypt multiple secrets in meaningful,physically realizable shares,because it is based on the physical superimposition of shares printed on transparencies,which corresponds to an AND operation.

    2.2 Hiding multiple images

    Recently,various approaches have been proposed to hide visual information in 2D images or 3D objects.Mitra and Pauly[11]proposedshadow art,which casts multiple images of a sculpture onto walls.Baran et al.[12]proposed layered attenuators that cast different colored shadow images under specific lighting conditions.Alexa and Matusik[13]proposed a method to create relief surfaces whose diffuse re flection approximates given images under known directional illumination.ShadowPixare surfaces that display multiple images using self-shadowing[14].Inemerging images[15]andcamou flage images[16],one or more figures are embedded into a busy apparent background and remain imperceptible.Papas et al.[17]proposed themagic lens,a passive display device that exposes hidden messages and images from seemingly random and structured source images.Other interesting approaches to hiding images have also been proposed,e.g.,hiding patterns on a metallic substrate[18]and on a level line Moir[19].

    In most approaches,fabrication costs are significant because a high-resolution 3D printer or milling machine is required.In contrast,images produced by ourmagic sheetsmethod can be printed on inexpensive transparencies using consumer-grade printers.

    3 Background

    In this section,we brie fly describe the traditional(k,n)-VCS and the(k,n)-EVCS for binary,grayscale,and color images.

    3.1 (k,n)-VCS

    In(k,n)-VCS,a secret image is decomposed intonshares.The secret is decrypted by the human visual system ifkout ofnimages are physically superimposed;however,anyk?1 or fewer out of thenimages cannot decrypt the secret and there is no information leakage[1].Meaningless random dot patterns are used as shares in the traditional(k,n)-VCS.

    Meaningless shares in the traditional(k,n)-VCS can be extended to meaningful images.Note that we can construct a(k,n)-EVCS using meaningful shares.Traditional schemes are only used for binary images,while grayscale images can be converted to binary images by halftoning.In addition,many color VCSs have been proposed.By employing a subtractive color model,such as the CMY model,a color image can be decomposed into CMY images and the traditional EVCS can be applied to each C-,M-,or Y-channel image.The individual channel images are then merged into a single color image.The resulting shares are not of high quality,and more sophisticated approaches are available[5].Developing color EVCSs remains a challenging problem[10].

    3.2 Pixel representation

    Here,we describe pixel(block)representations in a VCS with a focus on the(2,2)-VCS.Each of the following patterns is used to represent a white or black pixel in the output share images.

    3.3 Example

    Construction of a(2,2)-VCS is described in Table 1.

    4 EVCS with common share

    4.1 Preliminaries

    In the proposed method,we use acommon shareto decrypt multiple(2,2)-EVCS images.One secret is decrypted by superimposing one share and the common share,and the other secret is decrypted by superimposing the other share and the common share.In this section,we describe the proposed EVCS with the common share approach.

    Table 1 Construction of(2,2)-VCS.An input white or black pixel p in a share image I1 or I2 is enco′ded as a block p′composed of 2×2 subpixels.The stacked result S S p representing a pixel color in a secret

    Table 1 Construction of(2,2)-VCS.An input white or black pixel p in a share image I1 or I2 is enco′ded as a block p′composed of 2×2 subpixels.The stacked result S S p representing a pixel color in a secret

    p Input I1 White Black White Black I p S=White Output S p′1Input I p2 White White Black Black Output S p′2Stacked:S p′S=S p′1 ?S p′2Input I p1 White White Black Black Output S p′I p S=Black1Input I p2 White Black White Black Output S p′2Stacked:S p′S=S p′1 ?S p′2

    4.2 Share combinations

    First,we compute all possible share combinations.We represent a share combination in the following tabular form:

    Here,the notation is the same as in Section 3.The top row represents a share combination comprising subpixelsp′of shareS1,common shareSc,shareS2,secretSS1,and secretSS2(in that order).For

    4.3 Algorithm

    Our method is given in Algorithm 1.Given input images(shareI1,common shareIc,shareI2,secretIS1,and secretIS2),we assignwhiteorblackto the corresponding output share imagesS1,Sc,andS2,whereI1,Ic,andI2have the same width and height,andS1,Sc,andS2have twice the width and height of the input.We simply apply the algorithm directly if the inputs are binary images.If the inputs are grayscale images,we first apply halftoning using Ostromoukhov’s error diffusion algorithm[20]to convert the images to binary images.We describe how to extend the method to color input images in Section 4.5.

    To assignwhiteorblackto the output images,we obtainwhiteorblackcolors from the input images.Since the output images are twice the size of the input images,an(x,y)pixel in an input image corresponds to an(x′,y′),2×2 pixel block in the output image.Then,a block color pattern is constructed from the input colors(see Algorithm 1,line 3).We select a valid combination randomly from the LUT by querying the pattern(line 4).Finally,thewhiteorblackblocks are assigned to each output image(lines 5–7).

    Fig.2 Number of possible share combinations for each share pattern.A share pattern is represented by five 0 or 1 digits(0 and 1 indicating

    Algorithm 1 EVCSWITHCOMMONSHARE 1:for y←0:height do 2: for x←0:width do 3: P←{I1(x,y),I c(x,y),I2(x,y),I S1(x,y),I S2(x,y)}4: C←RANDOMSELECT(LUT[P])5: for k∈{1,c,2}do 6: ASSIGNCOLOR(S k(x′,y′),C)7: end for 8: end for 9:end for 10:return S1,S c,S2

    4.4 Share optimization

    After computing EVCSWITHCOMMONSHARE,we improve the visual quality of the output shares by applying a share optimization algorithm[6].For each pixel block,we rearrange thewhiteandblackso that the resulting shares have better visual quality while the stacking results remain unchanged.The algorithm is described in detail in the Appendix.Results are shown in Fig.3.

    4.5 Extension to color images

    The method can be extended to a color EVCS.As described in Section 3,we decompose the given images into C-,M-,and Y-channel images.We then apply Ostromoukhov’s error diffusion method[20]to convert the images to halftone images.We have also tried using structure-aware error diffusion[21];but it did not show significant improvement.Therefore,we use Ostromoukhov’s method,which is simple and faster.Contrast-aware halftoning[22]or other stateof-the-art error diffusion approaches[23]could also be employed for faster and better image preparation.For color EVCS,although it is not obvious that the proposed method can be incorporated,we can improve the visual quality of the output shares using a more sophisticated approach[5].However,color EVCS remains a challenging and open problem[10].

    5 Results

    5.1 Outputs

    We have applied the proposed method to binary,grayscale,and color images.Results for binary images are shown in Fig.1.Figures 3 and 4 show results for grayscale images,and Figs.5,6,and 7 show color EVCS results.

    We generated output results and printed them on transparencies using a Canon ImageRUNNER ADVANCE C3330i printer(see Figs.6(bottom)and 8).To improve contrast,we printed each share on two transparencies and superimposed them.As shown in Figs.6(right)and 8,crosstalkis observable in the decrypted images due to the in fluence of the transmitted background light;however,the secret images are revealed successfully,and the secret text is readable.

    5.2 Visual evaluation

    Figure 3 compares the source input images and output images with and without optimization.As can be seen in the optimized Lena result,for example,optimization results in the structures being better preserved and textureless areas being smoother.Although the quality improvements are not always obvious,optimized results have higher quality both visually and in quantitative evaluations.

    Fig.3 Results of our proposed EVCS.Input images are 512×512 pixels while outputs are 1024×1024 pixels.Top:unoptimized results.Middle:optimized results.Bottom:close-ups of unoptimized and optimized S1.

    5.3 Numerical evaluation

    We followed previous approaches to quantitatively evaluate our results[6,21,22,24].We computed the mean structural similarity index measure(MSSIM)[25]and the peak signal-to-noise ratio(PSNR)to compare the input and output images with and without optimization.We measured the average MSSIM and PSNR over 10 runs.The color results were converted to grayscale images for evaluation.

    The MSSIM and PSNR results are shown in Tables 2 and 3,respectively.Since the algorithm outputs binary images,we first applied Gaussian bluring with a kernel size of 5×5 and compared the outputs to the input source images;the input source images were scaled to the same size as the output images.Generally,the results with optimization achieved higher MSSIM and PSNR values.

    Fig.4 EVCS results for grayscale images.The original images are 1200×750 pixels.The input images are shown in Fig.11(bottom)in the Appendix.

    Fig.5 Top:input images;original images are 463×680 pixels.Bottom:proposed color EVCS results;the two portraits on the right are the computed superimposition results of a common share and the corresponding share.

    Fig.6 Top:computed color EVCS results.Original images are 480×360 pixels.Bottom:output shares printed on transparencies.The two sheets on the right are the superimposition results of a common share and the corresponding share on the left.Input images are given in Fig.11(top)in the Appendix.

    Although both MSSIM and PSNR values were higher after optimization,in the case shown in Fig.1(binary image)in Tables 2 and 3,the visual quality was worse,due to information leakage,as can be seen in Fig.9:there is a tradeoffbetween visual quality and MSSIM and PSNR values.Such visual artifacts resulting from the optimization procedure were only observed for binary images;optimized grayscale and color images did not demonstrate such artifacts.This is because,in the binary case,the content of the images has no textures in these images consisting of black and white regions with boundaries.Therefore,in a share image,boundaries from the other image are noticeable in the textureless regions in the optimized share images.In contrast,we did not notice such information leakage in the optimized share images in grayscale and color image results(see Figs.4 and 7)because these images have textures and a more busy appearance than the binary images.

    Fig.7 EVCS results for color images.The original images are 1200×750 pixels.The input images are shown in Fig.11(bottom)in the Appendix.

    Fig.8 Output shares printed on transparencies.

    Table 2 MSSIM for original input shares and output shares with and without optimization.We applied Gaussian bluring with a kernel size of 5×5 to the output images and compared them to the source images

    Table 3 PSNR for original input shares and output shares with and without optimization.We applied Gaussian bluring with a kernel size of 5×5 to the output images and compared them to the source images

    However,as optimization is an optional process,we can simply omit this procedure when applying the proposed method to binary images,and only use optimization to improve visual quality for grayscale and color images. To improve optimization,a different objective function could be introduced in place of the current mean-squared-error and MSSIM-based function(see Eq.(1)in the Appendix).

    Fig.9 Information leakage in images after applying optimization to output shares for binary input images(see Fig.1(right)).

    5.4 Speed

    We measured computation time on an Intel Core i5,2.9 GHz personal computer with 16 GB RAM.We implemented our algorithms in C++using OpenCV.Computation of all possible share combinations to prepare the look-up table(LUT)(see Section 4)took approximately 0.5 ms.Table 4 summarizes the computation time for the EVCSWITHCOMMONSHARE procedure with and without optimization.As can be seen,the optimization process is computationally expensive as calculating the MSSIM for each loop is computationally expensive;it may not be worth the cost.

    Rather than using MSSIM,we could use another structural similarity measure;doing so will be the focus of future work.For color images,we simply compute EVCSWITHCOMMONSHARE for each CMY channel for color images,which can be parallelized,or we could employ a more sophisticated approach for a color EVCS.

    Table 4 Time taken for EVCSWITHCOMMONSHARE with and without optimization

    5.5 (2,n)-EVCS

    In Section 4,we described the proposed method for the(k,n)-EVCS wherek=2 andn=2.Due to its simplicity and scalability,it is straightforward to extend the proposed method to greaternvalues.Results of a(2,4)-EVCS and a(2,5)-EVCS computed by the proposed method are shown in Fig.10.

    6 Conclusions

    We have presentedmagic sheets,a VCS that uses common shares(a type of universal share).With the common shares,we can decrypt multiple secrets simultaneously depending on a given share.Magic sheetshides secret images in meaningful shares and can be applied to binary,grayscale,and color images.Since the proposed method is based on a bitwise AND-like operation,we can physically realize shares on transparencies and retrieve secrets by superimposing these shares.

    7 Future work

    In this study,we applied the proposed method to a pair of(2,2)-EVCSs for both grayscale and color images,and we demonstrated a(2,n)-EVCS,wheren>2.The proposed method can also be applied to pairs of general(k,n)-EVCSs.Although we employed 2×2 pixel expansion in the proposed method,it would be interesting to investigate an algorithm with no pixel expansion to achieve higher contrast while maintaining visual quality.In addition,the proposed method employs a simple optimization algorithm to improve the visual quality of the output shares,and this algorithm requires significant time.In future,we will investigate a faster approach.

    In the color EVCS,we can observe some information leakage in the result of stackingS1andS2,i.e.,S1?S2,in Fig.7.Currently we have focused on entertainment purposes of the proposed method,so did not focus on security aspects,but in future it is important to analyze such aspects quantitatively.

    Appendix

    Share optimization

    We minimize the following objective function:

    Fig.11 Top:input images for Fig.6.The original images are 240×180 pixels.Bottom:input images for Figs.4 and 7.The original images are 600×375 pixels.From left to right,share I1,common share I c,share I2,secret I S1,and secret I S2.

    whereEsandEcare structure and coherence terms,respectively,defined as follows.

    Here,pis the pixel location in inputIandp′is the corresponding block of subpixels in the output shareS.

    Structure term

    The structure termEscomprises a tone similarity term and a structure similarity term[6,24].Tone similarity is measured byG(Ipk,Sp′k),whereIpandSp′are a local region,which is one-half the size of the pixel expansion plus one-half the size of the Gaussian kernel.G(·,·)measures the mean-squared-error of the Gaussian-blurred input images.Here we use an 11×11 Gaussian kernel.We employ MSSIM[25]:

    Coherence term

    The coherence termEcsmooths noise in textureless areas[6].Here,pandqare pixel locations in the inputI,andp′andq′are the corresponding blocks of subpixels in the output shareS.N(p)is the set of eight connected neighbor pixels ofp.The exponential term is used to attenuate the energy as the difference betweenIpkandIqkincreases,whileβcontrols the attenuation rate(β=5).We useλ=0.01 to balance the structure and coherence terms inEtotal.

    Procedure

    The optimization procedure is given in Algorithm 2.We attempt to optimize the output image quality by rearrangingwhiteandblackpixels into blocks.To do so,we employ simulated annealing.The temperatureTis initialized toT0and is gradually reduced by cooling factorcuntilT<Tend.Here,T0=0.2 andc=0.95.At the beginning of the loop,the new arrangement ofwhiteandblackpixels in a block has higher probability of being accepted as a new arrangement even if the arrangement results in worse quality.This is helpful for us because we attempt to minimize error in local blocks:measuring global error in each loop is computationally expensive.

    Algorithm 2 Optimization procedure 1:T←T0 2:repeat 3: for all p∈I do 4: E old ← E(I p,S p′)5: C←RANDOMSELECT(LUT[SHARECOMB(p)])6: for k∈{1,c,2}do 7: REARRANGE(S p′k,C)8: end for 9: E new ← E(I p,S p′)10: ?E=E new?E old 11: Sample r∈[0,1]at random 12: if r<exp(min(0,??E/T))then 13: E old←E new 14: else 15: Undo rearrange S p′k,?k∈{1,c,2}16: end if 17: end for 18: T←c×T 19:until T<T end 20:return S1,S c,S2

    For each loop,we select a rearrangement candidate from the look-up table(LUT).Since we have already computed the share combination ofpin the EVCSWITHCOMMONSHARE procedure,we can retrieve the combination using SHARECOMB(p),and this combination is used as an LUT query to obtain a new arrangement. We calculate an objective function(see Eq.(1))for each local regionIpand the corresponding blockSp′before and after rearrangingSp′.Acceptance or rejection follows typical simulated annealing techniques.

    Acknowledgements

    We thank all reviewers for their helpful comments.This work was supported by JSPS KAKENHI Grant Nos.17J04232 and 16K12433.

    久久鲁丝午夜福利片| 亚洲精品国产av成人精品| 777久久人妻少妇嫩草av网站| 精品少妇一区二区三区视频日本电影 | 老鸭窝网址在线观看| 国产一区二区在线观看av| www.精华液| 久久国产亚洲av麻豆专区| 在线免费观看不下载黄p国产| 日本91视频免费播放| 欧美激情极品国产一区二区三区| 男人操女人黄网站| 精品第一国产精品| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 男的添女的下面高潮视频| 精品一区二区三区四区五区乱码 | 久久久久久久久久久久大奶| 日本猛色少妇xxxxx猛交久久| 美国免费a级毛片| 麻豆精品久久久久久蜜桃| 国产免费又黄又爽又色| 大陆偷拍与自拍| 哪个播放器可以免费观看大片| 国产精品三级大全| 欧美精品亚洲一区二区| 久热这里只有精品99| 中文字幕人妻丝袜制服| 性少妇av在线| 午夜老司机福利剧场| 蜜桃国产av成人99| 国产精品不卡视频一区二区| 在线观看免费日韩欧美大片| 中文字幕最新亚洲高清| 人妻系列 视频| 精品一品国产午夜福利视频| a级毛片在线看网站| 一级毛片 在线播放| 日日摸夜夜添夜夜爱| 亚洲五月色婷婷综合| 日韩视频在线欧美| 国产福利在线免费观看视频| 一边亲一边摸免费视频| 亚洲国产色片| 少妇的逼水好多| 国产熟女欧美一区二区| 亚洲av欧美aⅴ国产| 永久免费av网站大全| 亚洲三区欧美一区| 国产精品久久久久久精品电影小说| 国产精品国产三级国产专区5o| 黄网站色视频无遮挡免费观看| 亚洲美女搞黄在线观看| 人妻 亚洲 视频| 午夜福利,免费看| 在线天堂中文资源库| 亚洲人成77777在线视频| 亚洲欧美一区二区三区黑人 | 国产黄色免费在线视频| 汤姆久久久久久久影院中文字幕| 国产 一区精品| 日本av免费视频播放| 精品福利永久在线观看| 丝袜人妻中文字幕| 伊人亚洲综合成人网| 亚洲激情五月婷婷啪啪| 国产精品偷伦视频观看了| 五月伊人婷婷丁香| 亚洲美女视频黄频| 亚洲国产av影院在线观看| 一区二区av电影网| 日本vs欧美在线观看视频| 最近最新中文字幕免费大全7| 在线观看国产h片| 午夜激情av网站| 男人添女人高潮全过程视频| 日韩av在线免费看完整版不卡| 高清av免费在线| 中文乱码字字幕精品一区二区三区| 欧美97在线视频| 亚洲欧美一区二区三区黑人 | 日韩欧美一区视频在线观看| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 在线观看www视频免费| 国产精品不卡视频一区二区| 成人黄色视频免费在线看| 在线观看美女被高潮喷水网站| 日韩一区二区三区影片| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 精品少妇久久久久久888优播| videos熟女内射| 久久国产精品男人的天堂亚洲| 国产一区有黄有色的免费视频| 秋霞伦理黄片| 午夜免费男女啪啪视频观看| 日韩电影二区| 另类亚洲欧美激情| 高清视频免费观看一区二区| 亚洲第一青青草原| 五月开心婷婷网| 大陆偷拍与自拍| 亚洲av中文av极速乱| 国产精品一国产av| 各种免费的搞黄视频| 在线观看国产h片| 春色校园在线视频观看| 晚上一个人看的免费电影| 九草在线视频观看| 看非洲黑人一级黄片| 国产免费视频播放在线视频| 日本91视频免费播放| 亚洲欧美一区二区三区黑人 | 宅男免费午夜| 久久精品久久久久久噜噜老黄| av国产精品久久久久影院| 久热久热在线精品观看| 国产一区二区激情短视频 | 亚洲国产毛片av蜜桃av| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级| 18禁动态无遮挡网站| videosex国产| 亚洲国产av新网站| av不卡在线播放| 美女午夜性视频免费| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 婷婷成人精品国产| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 欧美人与性动交α欧美软件| 高清在线视频一区二区三区| 永久网站在线| 两个人看的免费小视频| 三上悠亚av全集在线观看| 美女高潮到喷水免费观看| 精品国产乱码久久久久久小说| 久久国产亚洲av麻豆专区| 日日啪夜夜爽| 永久免费av网站大全| 一边亲一边摸免费视频| 国产无遮挡羞羞视频在线观看| 亚洲男人天堂网一区| 两性夫妻黄色片| 亚洲,一卡二卡三卡| 999久久久国产精品视频| 日韩熟女老妇一区二区性免费视频| 免费在线观看黄色视频的| 午夜91福利影院| 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| av卡一久久| 在线观看一区二区三区激情| 国产精品无大码| 久久综合国产亚洲精品| 国产xxxxx性猛交| 边亲边吃奶的免费视频| 国产成人av激情在线播放| 一级黄片播放器| 日本黄色日本黄色录像| 日韩大片免费观看网站| 亚洲精品在线美女| 国产免费福利视频在线观看| 啦啦啦中文免费视频观看日本| 乱人伦中国视频| 成人毛片60女人毛片免费| 在线观看国产h片| 男人舔女人的私密视频| 男女啪啪激烈高潮av片| 国产精品欧美亚洲77777| 国产一级毛片在线| 国产女主播在线喷水免费视频网站| 中国国产av一级| 成年av动漫网址| 亚洲欧美精品自产自拍| 精品第一国产精品| 亚洲国产看品久久| 最新中文字幕久久久久| 久久精品夜色国产| 国产男女超爽视频在线观看| 亚洲内射少妇av| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 亚洲人成电影观看| av电影中文网址| 在线观看免费视频网站a站| 永久免费av网站大全| av又黄又爽大尺度在线免费看| 99久久综合免费| 精品视频人人做人人爽| 亚洲av中文av极速乱| 久久久久人妻精品一区果冻| 97人妻天天添夜夜摸| 久久狼人影院| 精品人妻偷拍中文字幕| 国产综合精华液| 精品第一国产精品| 久久狼人影院| 国产一区二区三区av在线| 久久久久人妻精品一区果冻| 国产一级毛片在线| 永久网站在线| 成人18禁高潮啪啪吃奶动态图| 建设人人有责人人尽责人人享有的| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 午夜福利视频精品| 少妇精品久久久久久久| 男的添女的下面高潮视频| 日韩av免费高清视频| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| 看非洲黑人一级黄片| 久久 成人 亚洲| 伊人久久大香线蕉亚洲五| 久久久久国产网址| 男女高潮啪啪啪动态图| 在线观看www视频免费| 国产精品二区激情视频| 一区二区av电影网| 国产精品久久久久久精品古装| 欧美av亚洲av综合av国产av | 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 一级毛片 在线播放| 久久精品国产综合久久久| 久久久国产欧美日韩av| 最近中文字幕2019免费版| 午夜福利网站1000一区二区三区| 成年人免费黄色播放视频| 99久国产av精品国产电影| 亚洲国产av影院在线观看| 亚洲欧洲精品一区二区精品久久久 | 交换朋友夫妻互换小说| 大陆偷拍与自拍| 国产男女超爽视频在线观看| 母亲3免费完整高清在线观看 | 国产精品 国内视频| 国产免费福利视频在线观看| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美一区二区三区久久| 99久久精品国产国产毛片| 狂野欧美激情性bbbbbb| 黄色 视频免费看| 一级爰片在线观看| 国产伦理片在线播放av一区| 老司机影院毛片| 1024视频免费在线观看| 久久久精品国产亚洲av高清涩受| 美女xxoo啪啪120秒动态图| 中文字幕精品免费在线观看视频| 久久精品国产a三级三级三级| 亚洲国产精品999| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 国产一区二区三区综合在线观看| 成人国产av品久久久| 久久影院123| 啦啦啦啦在线视频资源| 国产av精品麻豆| 成人国产av品久久久| 亚洲精品国产色婷婷电影| 少妇熟女欧美另类| 老司机影院毛片| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 亚洲久久久国产精品| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 大香蕉久久网| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品av麻豆狂野| 美国免费a级毛片| 亚洲精品国产色婷婷电影| a级毛片黄视频| 国产日韩欧美在线精品| 99国产精品免费福利视频| 一级片免费观看大全| 97在线视频观看| 午夜福利影视在线免费观看| 18禁观看日本| 在线天堂中文资源库| 午夜av观看不卡| 91久久精品国产一区二区三区| 中文乱码字字幕精品一区二区三区| 日韩视频在线欧美| 波野结衣二区三区在线| 亚洲精品,欧美精品| 有码 亚洲区| 久久精品夜色国产| 少妇精品久久久久久久| 亚洲人成77777在线视频| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 国产精品一二三区在线看| 免费看不卡的av| 一级,二级,三级黄色视频| 夫妻午夜视频| 人妻少妇偷人精品九色| 久久久久久人妻| 国产欧美亚洲国产| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡动漫免费视频| 在线 av 中文字幕| h视频一区二区三区| 午夜日本视频在线| 女人精品久久久久毛片| 好男人视频免费观看在线| 999精品在线视频| 一区福利在线观看| 国产男女超爽视频在线观看| 日本vs欧美在线观看视频| 国产av国产精品国产| 在现免费观看毛片| 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 狠狠婷婷综合久久久久久88av| 少妇人妻 视频| 黑人欧美特级aaaaaa片| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 亚洲,欧美,日韩| 伊人亚洲综合成人网| 捣出白浆h1v1| 免费女性裸体啪啪无遮挡网站| 中文字幕人妻熟女乱码| 久久久精品94久久精品| 麻豆乱淫一区二区| 午夜福利乱码中文字幕| 天天操日日干夜夜撸| 国产精品免费大片| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 国产97色在线日韩免费| 黄色毛片三级朝国网站| 99热全是精品| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 视频区图区小说| 天美传媒精品一区二区| 丰满饥渴人妻一区二区三| 久久这里有精品视频免费| 免费观看av网站的网址| 亚洲av成人精品一二三区| 国产成人a∨麻豆精品| 丝袜在线中文字幕| 在线观看免费视频网站a站| 看十八女毛片水多多多| 欧美人与性动交α欧美精品济南到 | 人妻系列 视频| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av | 精品少妇内射三级| 九色亚洲精品在线播放| 高清在线视频一区二区三区| 午夜福利在线免费观看网站| 免费在线观看黄色视频的| 中文字幕最新亚洲高清| 9热在线视频观看99| 婷婷色av中文字幕| 国产探花极品一区二区| 亚洲精品,欧美精品| 我的亚洲天堂| 婷婷成人精品国产| 成人免费观看视频高清| 亚洲天堂av无毛| 久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 久久精品人人爽人人爽视色| 少妇人妻久久综合中文| 中文乱码字字幕精品一区二区三区| tube8黄色片| 亚洲精品美女久久av网站| 成人毛片a级毛片在线播放| 七月丁香在线播放| 成人影院久久| 老司机影院成人| 青春草视频在线免费观看| 九草在线视频观看| 久久精品国产自在天天线| 啦啦啦在线免费观看视频4| a级毛片黄视频| 一级黄片播放器| 亚洲五月色婷婷综合| 久久婷婷青草| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 搡老乐熟女国产| 三级国产精品片| 免费黄频网站在线观看国产| 在线天堂最新版资源| 日本wwww免费看| av电影中文网址| 精品一区二区三卡| 大话2 男鬼变身卡| 亚洲综合色网址| 国产黄色视频一区二区在线观看| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 丝袜美腿诱惑在线| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 一级黄片播放器| 亚洲中文av在线| 毛片一级片免费看久久久久| 亚洲在久久综合| 男女边吃奶边做爰视频| 免费黄频网站在线观看国产| 国产精品无大码| 女人被躁到高潮嗷嗷叫费观| 亚洲美女黄色视频免费看| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久免费av| 中文字幕最新亚洲高清| 美女中出高潮动态图| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区 | 日韩伦理黄色片| 99热全是精品| 一级,二级,三级黄色视频| 免费日韩欧美在线观看| 伦理电影大哥的女人| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 人妻系列 视频| 狠狠婷婷综合久久久久久88av| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| av卡一久久| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 亚洲久久久国产精品| 亚洲国产av影院在线观看| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| freevideosex欧美| 国产高清国产精品国产三级| 狂野欧美激情性bbbbbb| 国产精品香港三级国产av潘金莲 | 电影成人av| 少妇的丰满在线观看| 国产 精品1| 久久狼人影院| 国产成人精品无人区| 国产视频首页在线观看| 国产成人欧美| 日韩一本色道免费dvd| 国产精品香港三级国产av潘金莲 | 婷婷色麻豆天堂久久| 日韩av免费高清视频| 麻豆精品久久久久久蜜桃| 深夜精品福利| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 丰满少妇做爰视频| 9热在线视频观看99| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 国产高清国产精品国产三级| 久久久久精品性色| h视频一区二区三区| 午夜日本视频在线| 久久久久久久精品精品| 亚洲五月色婷婷综合| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 另类精品久久| 欧美成人午夜精品| 高清视频免费观看一区二区| 观看av在线不卡| 久久久精品94久久精品| 成年人午夜在线观看视频| 亚洲国产精品999| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 国产不卡av网站在线观看| 日韩伦理黄色片| 久久久久网色| 捣出白浆h1v1| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 捣出白浆h1v1| 少妇被粗大猛烈的视频| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 中文字幕人妻熟女乱码| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 一区二区av电影网| 精品国产国语对白av| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 日本爱情动作片www.在线观看| 久久精品国产鲁丝片午夜精品| 最近中文字幕2019免费版| 日韩一卡2卡3卡4卡2021年| 欧美国产精品va在线观看不卡| 久久av网站| 久久久久精品久久久久真实原创| 欧美国产精品va在线观看不卡| 国产毛片在线视频| 美女主播在线视频| 日韩欧美精品免费久久| 一区福利在线观看| 哪个播放器可以免费观看大片| www日本在线高清视频| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 久久久久网色| 欧美老熟妇乱子伦牲交| 亚洲美女视频黄频| 在线 av 中文字幕| 欧美最新免费一区二区三区| 美国免费a级毛片| 人体艺术视频欧美日本| 一级a爱视频在线免费观看| 午夜福利网站1000一区二区三区| 久久久久网色| 中文天堂在线官网| 亚洲五月色婷婷综合| 亚洲精品视频女| av线在线观看网站| 成人国产av品久久久| 亚洲国产精品一区二区三区在线| 夜夜骑夜夜射夜夜干| 大话2 男鬼变身卡| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 免费观看a级毛片全部| 999久久久国产精品视频| 免费人妻精品一区二区三区视频| 97在线人人人人妻| 久久久久国产一级毛片高清牌| 美女中出高潮动态图| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 一本久久精品| 永久免费av网站大全| 侵犯人妻中文字幕一二三四区| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av天美| 亚洲成国产人片在线观看| 亚洲三级黄色毛片| 欧美少妇被猛烈插入视频| 亚洲人成网站在线观看播放| 99九九在线精品视频| 欧美xxⅹ黑人| 亚洲欧美一区二区三区国产| 青草久久国产| 三级国产精品片| 两性夫妻黄色片| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 日韩制服丝袜自拍偷拍| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 又黄又粗又硬又大视频| 香蕉国产在线看| 日韩制服丝袜自拍偷拍| 国产一区亚洲一区在线观看| 亚洲男人天堂网一区| 高清不卡的av网站| 99国产综合亚洲精品| 成年人午夜在线观看视频| 国产精品 国内视频| 高清在线视频一区二区三区| 一级片'在线观看视频| 久久久精品免费免费高清| av一本久久久久| 另类亚洲欧美激情| 综合色丁香网| 人人妻人人澡人人爽人人夜夜| 午夜福利影视在线免费观看| 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 亚洲国产精品一区三区| 夫妻性生交免费视频一级片| 亚洲一区中文字幕在线| 久久免费观看电影| 老女人水多毛片| 欧美另类一区| 亚洲国产日韩一区二区| 99久久综合免费| 久久精品亚洲av国产电影网| 日韩制服丝袜自拍偷拍| 又粗又硬又长又爽又黄的视频| 美女高潮到喷水免费观看| 我要看黄色一级片免费的| 男的添女的下面高潮视频| 国产无遮挡羞羞视频在线观看| 一边亲一边摸免费视频| 深夜精品福利| av国产久精品久网站免费入址| 国产熟女欧美一区二区| 欧美日韩亚洲高清精品|