• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic texture exemplar extraction based on global and local textureness measures

    2018-07-13 06:59:32HuisiWuXiaomengLyuandZhenkunWen
    Computational Visual Media 2018年2期

    Huisi Wu,Xiaomeng Lyu,and Zhenkun Wen

    Abstract Texture synthesis is widely used for modeling the appearance of virtual objects.However,traditional texture synthesis techniques emphasize creation of optimal target textures,and pay insufficient attention to choice of suitable input texture exemplars.Currently,obtaining texture exemplars from natural images is a labor intensive task for the artists,requiring careful photography and significant postprocessing.In this paper,we present an automatic texture exemplar extraction method based on global and local textureness measures.To improve the efficiency of dominant texture identification,we first perform Poisson disk sampling to randomly and uniformly crop patches from a natural image.For global textureness assessment,we use a GIST descriptor to distinguish textured patches from non-textured patches,in conjunction with SVM prediction.To identify real texture exemplars consisting solely of the dominant texture,we further measure the local textureness of a patch by extracting and matching the local structure(using binary Gabor pattern(BGP))and dominant color features(using color histograms)between a patch and its sub-regions.Finally,we obtain optimal texture exemplars by scoring and ranking extracted patches using these global and local textureness measures.We evaluate our method on a variety of images with different kinds of textures.A convincing visual comparison with textures manually selected by an artist and a statistical study demonstrate its effectiveness.

    Keywords texture exemplar extraction;textureness;GIST descriptor;binary Gabor pattern(BGP)

    1 Introduction

    In the booming virtual reality industry,texture synthesis techniques play an important role in modeling and providing visual textures.For example,texture synthesis is heavily used in generating backgrounds for virtual reality scenes.In particular,exemplar-based texture synthesis is popular as it can quickly generate impressive textures of arbitrary sizes and shapes from a small exemplar,as shown in Fig.1(a).Various exemplar-based texture synthesis algorithms[1–3]have been proposed in the last two decades,and encouraging improvements in both quality and efficiency of exemplar-based texture synthesis have been presented.Currently,it is easy to generate a texture with desired variation in scale or shape using existing exemplar-based texture synthesis techniques.However,the quality of the input texture exemplar has a strong impact on the final texture synthesis results.Without suitable high-quality texture exemplars as input,users cannot easily obtain a high-quality texture result.Unfortunately,automatically creating texture exemplars(see Fig.1(b))from natural images is still a labor intensive task for artists,requiring careful photography,cropping,and significant postprocessing.

    Fig.1 Texture synthesis and exemplar extraction.

    Most traditional exemplar-based texture synthesis techniques emphasize optimality of generated textures(they should be seamless in color,match in gradient and feature domains,etc.)and efficiency.They typically pay insufficient attention to obtaining ideal exemplars from natural images,and little work on automatic texture exemplar extraction is reported in the literature[4,5].Although several algorithms have been proposed for extracting dominant textures from an image[6–8],automatic texture exemplar extraction systems for synthesis applications are still lacking.Artists typically can only acquire exemplars manually by a process of image cropping and careful post-processing,which is both labor intensive and tedious,especially when many exemplars are needed to create complex virtual scenes.

    In this paper,we present an automatic texture exemplar extraction method based on global and local textureness measures.Our method first performs Poisson disk sampling to efficiently perform dominant texture identification,randomly and uniformly cropping a number of patches from a natural image.For global textureness assessment,we employ SVM prediction(trained on the UIUC database)on the cropped patches to differentiate textured patches from non-textured patches,based on GIST descriptors.We further measure the local textureness of a patch by extracting and matching the local structure(using BGP)and dominant color features(using a color histogram).This allows identification of suitable texture exemplars consisting solely of the dominant texture.The final optimal texture exemplars are obtained based on both global and local textureness measures by scoring and ranking the extracted patches.

    We evaluate our method on a variety of images with different kinds of textures.A visual comparison with textures manually selected by an artist and a statistical study demonstrate its effectiveness.

    2 Related work

    In the last two decades,a number of texture synthesis methods[9–12]have been presented for texture synthesis,relying on optimizing the target texturing effect(it should be seamless in color or gradient domains).Turk[13]gave a sophisticated algorithm to synthesize a texture on a geometric model,which may have irregular deformations on the surface.Liu et al.[14]proposed a user-assisted texture synthesis method based on modeling the target geometry deformation,lighting,and color with a set of near regular lattices,allowing texture synthesis with varying effects. Karthlkeyani et al.[15]paid more attention to the regularity of the synthesized target textures,controling the regularity of the appearance of the target texture using simple parametric models. Lin et al.[16]provided a survey which analyzed the regularity of textures and proposed a classification algorithm to distinguish regular from irregular textures.

    More recently,several researchers have considered evaluating the quality of different texture synthesis methods,and explored optimal combinations of existing methods.As a result,target texture-driven methods are still the most popular research direction for texture synthesis.Noting that existing methods often break boundary structure continuity between adjacent patches,Wu and Yu[10]developed an algorithm to maintain boundary structures by feature matching and alignment. Latif-Amet et al.[17]detected defects encountered in textile images and optimized results based on wavelet theory and cooccurrence matrices.Dai et al.[18]evaluated the quality of a texture based on a set of target texture properties.

    Unlike the above texture synthesis methods which mainly consider the output textures,other researchers have paid attention to extracting the dominant textures in an image.Lu et al.[6] first employed diffusion distance manifolds to identify the dominant textures in an input image,but their method is quite time-consuming,taking about 18 minutes to process an image of size 125×94.Wang and Hua[7]proposed a faster dominant texture extraction algorithm based on multi-scale hue–saturation–intensity histograms,but it may fail when the main colors in the dominant texture and the outliers are similar.Similarly,Lockerman et al.[4]proposed a fast iteration method using diffusion manifolds to locate textures in unconstrained images,requiring user input to specify the initial location and scale of the desired texture.In addition,Lockerman et al.[8]presented an unsupervised method for extracting good textures from natural images.Moritz et al.[5]suggested employing local histogram matching to extract textures from input photographs.However,these dominant texture extraction algorithms usually require the target textures to cover the majority of the image,as shown by the results in Refs.[5–8].As they mainly focus on extracting the dominant texture,optimal texture exemplar patches containing a number of textures are not always extracted as thefinal results.

    In this paper,we present a novel system to accurately extract optimal texture exemplars from natural images.Little existing work reports autoextraction of source texture exemplars.We emphasize the importance of the exemplar in example-based texture synthesis.

    3 Method

    3.1 Overview

    An overview of our system is given in Fig.2.To efficiently and uniformly crop the dominant texture,we first perform Poisson disk sampling[19]within the given image.To compute a global textureness measure,we perform GIST feature extraction based on the UIUC database[20],and train a linear vector collection(LVC)model using SVM to measure the global textureness for an image patch.Furthermore,we also extract the local structure(using BGP)and match dominant color features(using a color histogram)to measure the local textureness of a patch.Finally,real texture exemplars consisting solely of the dominant texture are identified by scoring and ranking both global and local textureness measures for each extract patch.

    3.2 Global textureness measure

    Given the cropped image patches,we perform scene classification to differentiate textured patches from non-textured patches,based on a global textureness measure.This is a high level measure in which each image patch is treated as a whole(at the patch level).We use GIST features[21]for patch classification.As they contain enough information to identify the scene in a low-dimensional representation of the image,GIST features can extract coarse information from images in a similar way to human vision.Specifically,GIST feature values are calculated using image convolution and mean low level feature values for patches,so obviously provide effective global features for a textureness measure.After computing the Fourier transform of the input image,we can obtain the GIST descriptor usingKGabor filters with different directions and scales.The final score of the GIST feature is the average result of image convolution.Detailed operation of GIST feature extraction is shown in Fig.3.

    Fig.2 System overview.

    Given an input imagef(x,y)with a resolution ofh×w,we convolve it with a Gabor filter withncchannels.The GIST feature vector is then obtained by cascading the eigenvectors as follows:

    wherencis the product of the number of different directions with the number of different scales of Gabor filters.cat()represents the cascade operator,g(x,y)represents the Gabor filters,and?is the convolution operation.

    We also train a linear SVM[22],which is a popular machine learning method for this texture classification in computer vision.We used the UIUC texture database and the 15-scene dataset to train a classifier to distinguish textures,using the GIST descriptors as features.We can use the SVM’s output to assess the global textureness for each image patch,as shown in Fig.3.

    3.3 Local textureness measure

    The GIST descriptor is useful for assessing global features,but lacks local information and color information.Thus,we define a local textureness measure to assess the locally detailed textureness for sub-regions(at pixel level)of each patch.For improved local features to measure the differences in local textureness,we apply BGP to extract structural texture features for each patch.BGP is a rotationally invariant texture representation scheme.As BGP uses differences between two regions instead of two individual pixels,it is much more robust than local binary pattern(LBP)[23].

    Firstly,we apply Gabor filters to the image patches to perform BGP feature extraction. 2D Gabor filters[24]measure characteristics in both space and frequency domains,so are well suited to describing local structural information which corresponds to spatial frequencies(scale),location,and direction.2D Gabor filters usually have even-symmetry and odd-symmetry,and can be expressed as

    Fig.3 Global textureness measure.

    wherex′=xcosθ+ysinθandy′=?xsinθ+ycosθ.λgives the frequency of the sinusoidal factor.σrepresents the width of the Gaussian envelope andγis the spatial aspect ratio.θis the normal to the parallel stripes of the Gabor function.Equations(2)and(3)allow us to choose different directions and scales for the Gabor filters to be convolved with the texture images.We useJGabor filters withJdifferent orientations expressed asg0,...,gJ?1.By applyingJGabor filters to the texture image,we obtain a response vectorr={rj}(j=0,...,J?1).

    The second step is binarization.A binary vector is written asb={bj}(j=0,...,J?1),wherebjis either 1 or 0.Based on the binary valuebjand a binomial factor 2j,a unique BGP can be used to describe the spatial structure of the texture image as follows:

    Using Eq.(4)results in 2Joutput values.To achieve rotation invariance,we adopt a scheme similar to LBP:we define rotationally-invariant BGP(Br)as

    where ROR(x,j)indicates a circular bitwise right shift ofxbyjbits.IfJ=8,this results in 36 different values.We illustrate the calculation in Fig.4.

    Local textureness is the texture property within a patch,and it describes the relationship between structure and color feature of sub-regions consisting to the whole image patch.Texture exemplar should have the similar structural and color information among each sub-region within the patch.To explain the relationship,we compared the whole image patch with its sub-regions.For the structural feature and color information of texture image,we perform BGP and color histogram to extract the whole structure and color features of the image patch.The next step is to segment the patch into a number of sub-patches and we also calculated BGP and color histogram for each sub-patch. Based on above BGP and color histogram in two levels of patches,we perform a similarity calculation on the local textureness measure.The process is as shown in Fig.5.

    We compute BGP feature similarity using cosine distance,which is invariant to the length of the vectors,and can be expressed as

    Fig.4 BGP feature extraction.

    wherexandyrepresent the BGP feature vectors.xiandyiare the components of the vectors.Cosine distances lie between 0 and 1.For two feature vectors with high similarity,the distance will be close to 1.To compute the structural texture similarity between the whole texture patch and each sub-patch,we calculate BGP feature similarity between the image patch and its sub-regions.We sum the BGP feature cosine distance for the image patch and each sub-patch as follows:

    whereSis the similarity distance for BGP features,Br(w)is the BGP feature for the whole image patch,andBr(p)is the BGP feature for each sub-patch.

    Fig.5 Local textureness measure.

    Corners and edges of the image may lack the desired texture,as illustrated in Fig.6.We thus apply texture defect detection in our textureness evaluation.By examining a large number of such texture exemplars,we found that all share a common deficiency in their color features.We thus calculate the distances between the color histograms of each sub-patch and the whole image patch,and overcome this problem based on color similarity filtering.If the color histogram distance is large between the whole patch and a sub-patch,we apply a penalty to the local textureness measure.We apply the chi-square measure to calculate the color histogram distance:

    whereCrepresents the color histogram similarity distance,Rw,Gw,Bwrepresent RGB color histograms for the whole image patch,andRp,Gp,Bpare the RGB color histograms of each sub-patch.

    3.4 Overall textureness evaluation

    Using the global textureness measure(see Section 3.2)and the local textureness measure(see Section 3.3),we formulate the overall texturenessTas

    Fig.6 Local color deficiencies in texture exemplars.

    whereGis the GIST feature score representing the global textureness of the cropped patches,and for the local textureness measure,andSandCrepresent the inner structure and color similarity between the overall patch and sub-patches.In our experiments,we found that equal weights forG,S,andCprovide optimal texture patches comprising the dominant textures in natural images,when finding patches with the highestTscores.

    4 Experiments

    We have implemented our automatic texture exemplar extraction method using MATLAB R2014a on Windows 10,and evaluated it using hundreds of natural images.

    Specifically,we applied our method to natural images collected from the Internet,to demonstrate its effectiveness in texture identification.Our datasets contain different kinds of textures with different resolutions.Typical examples and results are as shown in Fig.7.To standardize evaluation,all selected input images were resized to a resolution of 800×600.Then,a number of texture exemplars of size 128×128 were cropped based on Poisson disk sampling.For each input image,the five texture exemplars with the highestTscores were collected,as shown in Fig.7.From the results,we can see that our method provides excellent texture exemplars based on the given natural images;they always include the dominant textures in the input images.

    Fig.7 Patches chosen by our method and that of Dai et al.[18].

    We also compare our method with two state-ofthe-art methods for textureness evaluation.Firstly,we implemented the method proposed by Dai et al.[18]and compared its results with those of our method,as shown in Fig.7.Both our method and the competitor can extract desirable texture exemplars containing the dominant textures in the input images.Nevertheless,the results in Fig.7 indicate how our method outperforms the competitor in the scores for the extracted exemplars.As our method can filter out exemplars with deficiencies,better texture exemplars with less non-texture content can be obtained,resulting in higher scores.Dai et al.’s method does not avoid exemplars with deficiencies,e.g.,those lacking textured content in the corners.

    We have also compared our method with that of Lockerman et al.[4].Lockerman et al.’s method requires user input to specify the initial location and scale of the desired texture,and employs a fast iteration method using diffusion manifolds to locate textures from unconstrained images.We selected typical images from Lockerman’s web page,ran our method on them,and compared the results with Lockerman et al.’s.As shown in Fig.8 our method also outperforms Lockerman’s method in extracting optimal texture exemplars.Our method can extract several meaningful exemplars with different texture contents. As Lockerman et al.’s method mainly focuses on extracting textures for the dominant texture,smaller exemplars were extracted,which do not provide a meaningful exemplar for texture synthesis:optimal texture exemplar patches contain a number of textures.See Fig.8.More importantly,our method is automatic while Lockerman et al.’s method requires user input to specify the initial location and scale of the desired texture[4].

    Fig.8 Patches chosen by our method and that of Lockerman et al.[4].Input images and the results of Lockerman et al.’s method were obtained from http://graphics.cs.yale.edu/site/tr1483.

    In addition,we compared our method with textures manually selected by three artists.We instructed them to select a patch which is the best texture exemplar:see Fig.9.We treat this as ground-truth and compare it with our results.Figure 9 shows that our method can obtain desirable texture exemplars which are very close to the ground-truth.Due to random selection in Poisson sampling,our final results may be shifted by a few pixels,but they do not include non-textured content.

    We also randomly selected 100 natural images,and ran our method and Dai et al.’s method on them in turn.We then asked the artists to choose the satisfactory exemplars.The number of satisfactory exemplars for our method and Dai et al.’s method are plotted as a function of the total number of test images in Fig.10.Our method outperforms Dai et al.’s method,in that the artists choose more of our exemplars.

    To further evaluate the extracted texture exemplars,we created textures with varying resolutions for application in texture synthesis and replacement,as shown in Fig.11.The results in the fourth and fifth columns in Fig.11 demonstrate that our extracted texture exemplars can satisfy the requirements of real texture synthesis and replacement applications.

    Finally,we timed our method and the competitors’methods.For dominant texture extraction,Lu et al.[6]take 18 minutes to process a 125×94 image.Although Wang and Hua[7]and Moritz et al.[5]give real-time dominant texture extraction algorithms,they require the target textures to covering most of the image.Time for automatic texture exemplar extraction methods(Dai et al.’s and ours)was measured for 800×600 images,for each step of texture exemplar extraction.Table 1 gives these values in ms.As training is done off-line for both methods,we do not include it in Table 1.Timing for Dai et al.’s method includes GIST detection and SVM steps,while our method includes Poisson disk sampling,GIST,BGP,and SVM.We can see that both methods are very fast,and although two more steps are needed for our method,we can still achieve real-time performance.

    Fig.9 Patches chosen by our method and those chosen by artists.

    Fig.10 Statistical comparison between Dai et al.’s method and ours.

    5 Conclusions

    This paper has presented a novel method for automatic texture exemplar extraction based on global and local textureness measures. Unlike traditional methods for example-based texture analysis,our system pays more attention to automatic extraction of texture exemplars based on a textureness evaluation.Our global textureness measure uses SVM training and prediction based on GIST feature extraction from image patches which are uniformly cropped with Poisson disk sampling.Our local textureness measure considers structural and color similarity between patches and sub-patches based on BGP and color histograms.Our method has been validated using a variety of images with different kinds of textures.Comparisons with stateof-the-art methods and with artists’manual selections demonstrate its effectiveness.

    Fig.11 Applications of texture synthesis and replacements using our extracted texture exemplars.

    Table 1 Time(in ms)for our method and that of Dai et al.,for 800×600 images

    Acknowledgements

    This work was supported in part by grants from the National Natural Science Foundation of China (Nos. 61303101 and 61572328),the Shenzhen Research Foundation for Basic Research,China(Nos.JCYJ20150324140036846,JCYJ20170302153551588,CXZZ20140902160818443,CXZZ20140902102350474,CXZZ20150813151056544,JCYJ20150630105452814,JCYJ20160331114551175,and JCYJ20160608173051207),and the Startup Research Fund of Shenzhen University(No.2013-827-000009).

    插逼视频在线观看| 熟女人妻精品中文字幕| 久久久a久久爽久久v久久| 久久久久免费精品人妻一区二区| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 日韩国内少妇激情av| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 欧美性感艳星| 青春草国产在线视频| 午夜精品一区二区三区免费看| 久久久久国产网址| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| 成人午夜高清在线视频| 91久久精品国产一区二区成人| 国产精品精品国产色婷婷| 男女那种视频在线观看| 亚洲av在线观看美女高潮| 免费观看精品视频网站| 欧美变态另类bdsm刘玥| 特级一级黄色大片| 十八禁国产超污无遮挡网站| 中文字幕av在线有码专区| 国产一区二区三区综合在线观看 | 亚洲成人久久爱视频| 少妇熟女欧美另类| 久久99热6这里只有精品| 国产精品久久久久久久久免| 精品99又大又爽又粗少妇毛片| 91精品国产九色| 精品99又大又爽又粗少妇毛片| 又黄又爽又刺激的免费视频.| 亚洲在线自拍视频| 国产一区有黄有色的免费视频 | 午夜免费观看性视频| 亚洲在线自拍视频| 极品少妇高潮喷水抽搐| 久久久久久久国产电影| 国产精品国产三级国产专区5o| 狂野欧美白嫩少妇大欣赏| 国产综合懂色| 亚洲成人久久爱视频| 一级黄片播放器| 99热全是精品| 男女国产视频网站| 日韩欧美三级三区| 午夜激情久久久久久久| av在线天堂中文字幕| 99热6这里只有精品| 久久久精品免费免费高清| 麻豆久久精品国产亚洲av| 亚洲av成人av| 99热6这里只有精品| 免费av观看视频| 亚洲av国产av综合av卡| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 欧美激情久久久久久爽电影| 男人舔女人下体高潮全视频| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 一级片'在线观看视频| 精品欧美国产一区二区三| 99热这里只有是精品50| 亚洲精品自拍成人| 最近中文字幕高清免费大全6| 久热久热在线精品观看| 亚洲成色77777| 亚洲伊人久久精品综合| 精品久久久精品久久久| 久久这里有精品视频免费| 五月伊人婷婷丁香| 综合色丁香网| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 欧美日本视频| 亚洲国产色片| 美女高潮的动态| 久久久久久久久久久丰满| 国产精品99久久久久久久久| 你懂的网址亚洲精品在线观看| 成人毛片60女人毛片免费| 欧美精品一区二区大全| 久久久午夜欧美精品| 哪个播放器可以免费观看大片| 亚洲欧美成人综合另类久久久| 免费电影在线观看免费观看| 97在线视频观看| 天美传媒精品一区二区| videossex国产| 亚洲av免费高清在线观看| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看 | 精品国产露脸久久av麻豆 | 一级av片app| 岛国毛片在线播放| 亚洲自偷自拍三级| 人妻系列 视频| 久久久久免费精品人妻一区二区| 亚洲国产精品专区欧美| 久久久久精品性色| 高清视频免费观看一区二区 | 亚洲在线自拍视频| 日本与韩国留学比较| 综合色丁香网| 国产一区有黄有色的免费视频 | 美女cb高潮喷水在线观看| 国产日韩欧美在线精品| 国产黄频视频在线观看| 一区二区三区乱码不卡18| 国产日韩欧美在线精品| 欧美日韩在线观看h| 丝袜美腿在线中文| 国产色婷婷99| 午夜福利高清视频| 日本爱情动作片www.在线观看| 熟妇人妻不卡中文字幕| 22中文网久久字幕| 欧美激情在线99| 色尼玛亚洲综合影院| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 成人国产麻豆网| 午夜免费激情av| 国产探花在线观看一区二区| 亚洲精品成人久久久久久| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 黄片无遮挡物在线观看| 亚洲va在线va天堂va国产| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 成人无遮挡网站| 中文字幕久久专区| 欧美日韩精品成人综合77777| 好男人视频免费观看在线| 精品一区二区三卡| 久久精品国产自在天天线| 亚洲综合精品二区| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 亚洲国产精品成人综合色| 观看免费一级毛片| 哪个播放器可以免费观看大片| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 日日摸夜夜添夜夜爱| 一级爰片在线观看| 日韩中字成人| 国产精品美女特级片免费视频播放器| 大香蕉久久网| a级毛片免费高清观看在线播放| 国产一级毛片在线| 人妻夜夜爽99麻豆av| 99九九线精品视频在线观看视频| 国产精品麻豆人妻色哟哟久久 | 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 69人妻影院| 国产在视频线在精品| 午夜福利高清视频| 性插视频无遮挡在线免费观看| 亚洲在线观看片| 国产三级在线视频| 久久久色成人| 国产精品不卡视频一区二区| 日韩三级伦理在线观看| 国产精品国产三级国产专区5o| 亚洲成色77777| 国产亚洲午夜精品一区二区久久 | 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 晚上一个人看的免费电影| 插逼视频在线观看| 99九九线精品视频在线观看视频| 日韩视频在线欧美| 亚洲国产精品专区欧美| 国产乱来视频区| 九草在线视频观看| 舔av片在线| 亚洲精品乱码久久久v下载方式| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| kizo精华| 亚洲av.av天堂| 免费在线观看成人毛片| 高清午夜精品一区二区三区| 国产高清国产精品国产三级 | 国产中年淑女户外野战色| 国产成人精品福利久久| 久久精品综合一区二区三区| 国产亚洲av片在线观看秒播厂 | 亚洲国产色片| 亚洲av二区三区四区| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 日韩不卡一区二区三区视频在线| 久久97久久精品| 成人亚洲精品av一区二区| 99热这里只有是精品在线观看| kizo精华| 精品人妻视频免费看| 搡老妇女老女人老熟妇| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 中文欧美无线码| 最近视频中文字幕2019在线8| 免费黄色在线免费观看| 中文在线观看免费www的网站| 亚洲成色77777| 婷婷色综合大香蕉| 国产精品三级大全| 亚洲最大成人手机在线| 精品人妻一区二区三区麻豆| 久久久久国产网址| 美女主播在线视频| 99九九线精品视频在线观看视频| 人妻系列 视频| 国产探花在线观看一区二区| 九九在线视频观看精品| 日韩伦理黄色片| 观看美女的网站| 99热全是精品| 十八禁网站网址无遮挡 | 汤姆久久久久久久影院中文字幕 | 一级黄片播放器| 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 一级a做视频免费观看| 久久国内精品自在自线图片| 别揉我奶头 嗯啊视频| 岛国毛片在线播放| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 免费在线观看成人毛片| 综合色av麻豆| 国产在线一区二区三区精| 日韩人妻高清精品专区| 久久久久网色| .国产精品久久| 青春草亚洲视频在线观看| 欧美极品一区二区三区四区| 色综合色国产| 2021天堂中文幕一二区在线观| 亚洲av电影在线观看一区二区三区 | 大香蕉97超碰在线| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 久久久精品免费免费高清| 高清日韩中文字幕在线| 一级av片app| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文字字幕乱码综合| 精品一区二区免费观看| 中文字幕制服av| freevideosex欧美| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 免费观看的影片在线观看| 亚洲最大成人中文| 欧美性猛交╳xxx乱大交人| 精品久久久噜噜| 色综合亚洲欧美另类图片| 久久精品久久久久久久性| 欧美精品一区二区大全| 免费观看的影片在线观看| 精品酒店卫生间| 久久综合国产亚洲精品| 日韩成人伦理影院| 2021天堂中文幕一二区在线观| 久久精品久久精品一区二区三区| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 日韩一区二区三区影片| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看 | 又黄又爽又刺激的免费视频.| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 国产乱人偷精品视频| av网站免费在线观看视频 | 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| 国产69精品久久久久777片| www.av在线官网国产| 久久久成人免费电影| 日本欧美国产在线视频| 97超碰精品成人国产| 深夜a级毛片| 能在线免费看毛片的网站| 日韩电影二区| 男的添女的下面高潮视频| 亚洲国产欧美人成| 免费黄色在线免费观看| 精品酒店卫生间| 亚洲av福利一区| 麻豆乱淫一区二区| 九草在线视频观看| 一级片'在线观看视频| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 色视频www国产| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 亚洲精品aⅴ在线观看| 大香蕉97超碰在线| 三级国产精品欧美在线观看| 最近手机中文字幕大全| 欧美区成人在线视频| 男女视频在线观看网站免费| 黄色日韩在线| 久久午夜福利片| 看免费成人av毛片| 搡老妇女老女人老熟妇| 看免费成人av毛片| 国产黄色小视频在线观看| 夜夜爽夜夜爽视频| 亚洲欧美精品专区久久| 天天躁日日操中文字幕| av黄色大香蕉| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 少妇人妻精品综合一区二区| 成年版毛片免费区| 久久久久久久久久黄片| 国产视频内射| 亚洲经典国产精华液单| 一级a做视频免费观看| 高清毛片免费看| 久久99精品国语久久久| 亚洲综合精品二区| 国产伦理片在线播放av一区| 久久久久久久久大av| 非洲黑人性xxxx精品又粗又长| 国产精品.久久久| 日本猛色少妇xxxxx猛交久久| 欧美极品一区二区三区四区| 国产女主播在线喷水免费视频网站 | 久久99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 国产一区二区亚洲精品在线观看| 狠狠精品人妻久久久久久综合| 男人舔奶头视频| 一级二级三级毛片免费看| 国产亚洲av片在线观看秒播厂 | 亚洲av男天堂| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 亚洲av一区综合| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级专区第一集| 午夜免费激情av| av福利片在线观看| 国产成人福利小说| 精品久久久久久成人av| 91午夜精品亚洲一区二区三区| 性色avwww在线观看| 99热这里只有是精品50| 美女大奶头视频| 熟女人妻精品中文字幕| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 一级毛片我不卡| 99视频精品全部免费 在线| 一本久久精品| 国产女主播在线喷水免费视频网站 | 欧美人与善性xxx| 美女xxoo啪啪120秒动态图| 国产亚洲精品av在线| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 国产毛片a区久久久久| 日韩av在线大香蕉| 老司机影院毛片| 一本久久精品| ponron亚洲| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网 | 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 少妇人妻精品综合一区二区| 美女大奶头视频| 国产91av在线免费观看| 免费av毛片视频| 男女那种视频在线观看| 国产精品日韩av在线免费观看| 看黄色毛片网站| 一级毛片久久久久久久久女| 亚洲色图av天堂| 国模一区二区三区四区视频| 身体一侧抽搐| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 女的被弄到高潮叫床怎么办| 亚洲av男天堂| 亚洲丝袜综合中文字幕| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 国产老妇伦熟女老妇高清| 日韩av在线免费看完整版不卡| 建设人人有责人人尽责人人享有的 | 国产久久久一区二区三区| 国产成人免费观看mmmm| 国产欧美日韩精品一区二区| 嫩草影院精品99| 欧美激情国产日韩精品一区| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 国产精品美女特级片免费视频播放器| 中文欧美无线码| 成年av动漫网址| 99久久中文字幕三级久久日本| 中文字幕久久专区| 成人漫画全彩无遮挡| 国产成人freesex在线| 美女内射精品一级片tv| 国内精品美女久久久久久| 国产精品美女特级片免费视频播放器| 深夜a级毛片| 久久精品国产亚洲av天美| 久久久久久久久久黄片| 久久久欧美国产精品| 亚洲婷婷狠狠爱综合网| 免费观看av网站的网址| 能在线免费观看的黄片| 亚洲欧美精品专区久久| 亚洲不卡免费看| 亚洲精品色激情综合| av专区在线播放| 免费大片18禁| 人人妻人人澡人人爽人人夜夜 | 黄色日韩在线| 精品欧美国产一区二区三| 日日啪夜夜撸| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精华国产精华液的使用体验| 91在线精品国自产拍蜜月| 黄色一级大片看看| 亚洲va在线va天堂va国产| 久久热精品热| 嘟嘟电影网在线观看| 九九久久精品国产亚洲av麻豆| 成人美女网站在线观看视频| 男女国产视频网站| 欧美激情久久久久久爽电影| 国产亚洲av嫩草精品影院| 久久热精品热| 如何舔出高潮| 亚州av有码| 国产又色又爽无遮挡免| 免费观看无遮挡的男女| 国产免费福利视频在线观看| 久久人人爽人人片av| 少妇被粗大猛烈的视频| av在线老鸭窝| 国产高清国产精品国产三级 | 五月天丁香电影| 永久网站在线| 欧美xxxx黑人xx丫x性爽| 国产成人免费观看mmmm| 如何舔出高潮| av免费观看日本| 国产精品国产三级国产专区5o| 五月伊人婷婷丁香| 十八禁国产超污无遮挡网站| 搡老乐熟女国产| 一个人看的www免费观看视频| 五月天丁香电影| 中文欧美无线码| 天堂影院成人在线观看| 国产精品三级大全| 免费大片黄手机在线观看| 美女cb高潮喷水在线观看| 2022亚洲国产成人精品| 日本三级黄在线观看| 国产黄a三级三级三级人| 99re6热这里在线精品视频| 毛片一级片免费看久久久久| 三级国产精品欧美在线观看| 干丝袜人妻中文字幕| 美女国产视频在线观看| 国产午夜精品一二区理论片| 亚洲欧美日韩卡通动漫| 永久免费av网站大全| 亚洲一区高清亚洲精品| 一级毛片 在线播放| 日韩在线高清观看一区二区三区| 国产成人a∨麻豆精品| 纵有疾风起免费观看全集完整版 | 两个人的视频大全免费| 国产精品久久久久久久久免| 精品午夜福利在线看| 人人妻人人看人人澡| 欧美一区二区亚洲| 国产精品不卡视频一区二区| 国产精品精品国产色婷婷| 久久久国产一区二区| 国产成人精品一,二区| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| videos熟女内射| 国产av在哪里看| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| 欧美zozozo另类| 欧美三级亚洲精品| 成人av在线播放网站| 午夜福利在线观看免费完整高清在| 精品人妻熟女av久视频| 22中文网久久字幕| 久久精品夜色国产| 免费高清在线观看视频在线观看| 免费在线观看成人毛片| 亚洲欧美精品专区久久| 91精品国产九色| 亚洲欧美成人综合另类久久久| 国产久久久一区二区三区| www.色视频.com| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 美女被艹到高潮喷水动态| 狂野欧美激情性xxxx在线观看| 91狼人影院| 欧美激情在线99| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 国产爱豆传媒在线观看| 久久久久性生活片| 精品久久久久久久久亚洲| 久久精品国产鲁丝片午夜精品| 亚洲av免费在线观看| 成人一区二区视频在线观看| 欧美另类一区| 亚洲国产日韩欧美精品在线观看| 观看美女的网站| 国产黄片美女视频| 禁无遮挡网站| 天天躁夜夜躁狠狠久久av| 国产亚洲一区二区精品| 久久精品国产自在天天线| 老女人水多毛片| 日本爱情动作片www.在线观看| 一区二区三区高清视频在线| 色尼玛亚洲综合影院| 欧美性感艳星| 两个人的视频大全免费| 别揉我奶头 嗯啊视频| av在线天堂中文字幕| 亚洲欧美一区二区三区黑人 | 看非洲黑人一级黄片| 天堂av国产一区二区熟女人妻| 国产精品久久久久久av不卡| 久久99精品国语久久久| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 久久99精品国语久久久| 国产免费又黄又爽又色| 天天躁日日操中文字幕| 国产精品福利在线免费观看| 联通29元200g的流量卡| 好男人视频免费观看在线| 日本与韩国留学比较| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 色综合色国产| 亚洲国产欧美人成| 51国产日韩欧美| 只有这里有精品99| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 亚洲三级黄色毛片| 亚洲婷婷狠狠爱综合网| 国产一区二区三区av在线| 国产激情偷乱视频一区二区| av国产久精品久网站免费入址| 久久国产乱子免费精品| 赤兔流量卡办理| 免费观看的影片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色5月婷婷丁香| 人妻少妇偷人精品九色| 七月丁香在线播放| 免费大片黄手机在线观看| 免费在线观看成人毛片|