• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rare Bird Sparse Recognition via Part-Based Gist Feature Fusion and Regularized Intraclass Dictionary Learning

    2018-07-12 10:54:54JixinLiuNingSunXiaofeiLiGuangHanHaigenYangandQuansenSun
    Computers Materials&Continua 2018年6期

    Jixin Liu , Ning Sun , Xiaofei Li Guang Han Haigen Yangand Quansen Sun

    Abstract:Rare bird has long been considered an important in the field of airport security,biological conservation, environmental monitoring, and so on. With the development and popularization of IOT-based video surveillance, all day and weather unattended bird monitoring becomes possible. However, the current mainstream bird recognition methods are mostly based on deep learning. These will be appropriate for big data applications,but the training sample size for rare bird is usually very short. Therefore, this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning. There are two achievements in our work: (1) after the part localization with selective search, the gist feature of all bird image parts will be fused as data description; (2) the fused gist feature needs to be learned through our proposed intraclass dictionary learning with regularized K-singular value decomposition.According to above two innovations, the rare bird sparse recognition will be implemented by solving one l1-norm optimization. In the experiment with Caltech-UCSD Birds-200-2011 dataset, results show the proposed method can have better recognition performance than other SR methods for rare bird task with small sample size.

    Keywords:Rare bird, sparse recognition, part detection, gist feature fusion, regularized intraclass dictionary learning.

    1 Introduction

    In the research field of bird monitoring and preservation, rare bird is undoubtedly one of the most valuable topic. However, it is also the most difficult to implement regulations.The reason is that, unlike human face or action, bird behavior is complicated and uncontrollable. In other words, the traditional manual observation can not be suitable for bird object, let alone use for rare bird. With the gradual popularization of the IOT(Internet of Things)-based video surveillance, all day and weather unattended bird monitoring becomes possible. Due to the above, new requirements for rare bird intelligent identification have been put forward.

    As one application of pattern recognition, bird recognition has always been focused by researchers in the field of airport security, biological conservation, environmental monitoring, and so on. At present, for bird recognition, most achievements look at the aspect of audio data [Evangelista, Priolli, Silla Jr. et al. (2014); Ventura, Oliveira, Ganchev et al. (2015); Boulmaiz, Messadeg, Doghmane et al. (2016); Raghuram, Chavan, Belur et al.(2016); Chakraborty, Mukker, Rajan et al. (2017)]. But the study of bird image recognition might be relatively few [Li, Zhang and Yan (2014); Marini, Turatti, Britto et al. (2015);Karmaker, Schiffner, Strydom et al. (2017)]. In practical application, the audio recognition is not a ideal choice for bird monitoring. Because the real environment is easy to be influenced by noise interference. Therefore, the image data under video surveillance will be more suitable for bird recognition. For this purpose, it become necessary and urgent to carry out research in bird recognition for image or video data.

    Image bird recognition is a kind of typical fine-grained recognition. For this kind of problem, CNN (convolutional neural network) [Han, Quan, Zhang et al. (2018)] is the most popular solution. Zhang et al. [Zhang, Donahue, Girshick et al. (2014)] propose a model for fine-grained categorization that overcomes these limitations by leveraging deep convolutional features computed on bottom-up region proposals. Lin et al. [Lin,Roychowdhury and Maji (2015)] present bilinear CNNs, an architecture that efficiently represents an image as a pooled outer product of two CNN features, that is effective at fine-grained recognition tasks. Wei et al. [Wei, Xie and Wu (2016)] propose a novel endto-end Mask-CNN model without the fully connected layers for fine-grained recognition.Although these studies have yielded some results, the limitation of CNN is undeniable.That is due to the fact that deep learning with CNN will be more appropriate for big data applications. But the rare bird recognition task is usually very difficult to have a large enough training samples for CNN modeling. Hence, for rare bird recognition with small size, we need to select new ways to ensure high robustness under natural scene.

    According to the above requirements, this paper present a new SR (sparse recognition)method for rare bird recognition. Fig. 1 shows the processing flow of this method. There are two innovation points in our work: Firstly, the local (such head as torso) and global(the whole object) image patches, based on part detection, will be fused as feature description under GIST [Oliva and Torralba (2001)] space. Secondly, by introducing regularized K-singular value decomposition, our previous work [Liu and Sun (2016)] will be improved as a new classifier in the solving performance ofl1optimization. This paper will be organized as follows: Section 2 gives a brief introduction for SR method. In Section 3 the proposed SR for rare bird fine-grained recognition is detailed. Experimental results are analyzed in Sections 4 and Section 5 concludes the paper with a discussion.

    Figure 1: System flow of the proposed SR method

    2 Sparse recognition and the related works

    In the study of SR, there are two mainstream approaches at present. One classical method is SRC (sparse representation-based classification). It is derived from the theory of compressed sensing which is presented by Candes et al. [Candes and Tao (2006)] and Donoho [Donoho (2006)]. In this method, any test samplebcan be sparsely measured through the global recognition matrix from the training sample setAnd the process will be implemented as

    From this the recognition task can be accomplished by the following judgment

    Unfortunately, the performance of SRC will rely on some preprocessing (such as alignment [Ma, Luong, Philips et al. (2012)] or registration [Mohammadi, Fatemizadeh and Mahoor (2014)]).

    Considering the limitation of SRC, another SR idea is presented. That is so-called DSR(dictionary-based sparse recognition) [Patel, Wu, Biswas et al. (2012); Zhang, Sun,Porikli et al. (2017)]. The key of DSR is based on one dictionary learning process as

    In the second part, under a fixed sparse representation, the dictionary will be replaced as

    So the recognition task in DSR will be changed from Eq. (2) as

    Patel et al. [Patel, Wu, Biswas et al. (2012)] indicates that, DSR could be more robust than SRC without any preprocessing. But, it is easy to be local optimum because of a lack of global measurement.

    In order to integrate the superiority of SRC and DSR, we propose the concept of intraclass dictionary learning (IDL) [Liu and Sun (2016)]. In this method, the global recognition matrix like SRC framework will be replaced with the IDL (not DSR) result from each class training sample set. Thus the SR under IDL can be improved from Eq. (1)

    By the experiment under some data sets, such as LFW [Huang, Ramesh, Berg et al.(2007)], Caltech101 [Li, Fergus and Perona (2007)] and ISR [Quattoni and Torralba(2001)], the proposed IDL shows the preferable recognition performance for image object in natural scene. Hence this paper will try to use it for rare bird fine-grained sparse recognition.

    3 The proposed SR method for rare bird recognition

    3.1 Challenges in rare bird image data

    The major diversity of bird image is in the size, color and texture of bird parts. Take the popular Caltech-UCSD Birds-200-2011 [Wah, Branson, Welinder et al. (2011)](CUB200-2011) as one example. In this database, each class has at least three orientations for bird head. There is no doubt that other parts will be more complicated. So the SRC for human face [Wright, Yang, Ganesh et al. (2009)] will be inadvisable.Because this model usually depends on the preprocessing. Besides, the small sample size for rare bird can easily affect the sparsity precondition in SRC framework. Thus it can beseen, SR via dictionary learning should be taken seriously.

    In the selection between DSR and IDL, we think that the latter is better. The reason is that, our previous work [Liu and Sun (2016)] shows that IDL has better robustness for object recognition under natural scene. When SR model can be determined, the new problem is how to realize feature description for dictionary learning.

    From the current research achievement for bird recognition [Lin, Roychowdhury and Maji (2015); Wei, Xie and Wu (2016)], it is not hard to see that the part detection is one mainstream critical processing. So this paper, inspired by these studies, needs to select some part localization methods to generate suitable data representation. For this, we have some representative methods [Han, Quan, Zhang et al. (2018)] to leverage. Bourdev and Malik [Bourdev (2009)] propose a two-layer classification/regression model for detecting people and localizing body components; Felzenszwalb et al. [Felzenszwalb, Girshick,Mcallester et al. (2010)] described an object detection system based on mixtures of multiscale deformable part models; Uijlings et al. [Uijlings, Sande, Gevers et al. (2013)]introduce selective search which combines the strength of both an exhaustive search and segmentation; Long et al. [Long, Shelhamer and Darrell (2017)] show that a fully convolutional network trained end-to-end, pixels-to-pixels on semantic segmentation exceeds the state-of-the-art without further machinery.

    Considering the lack of training samples for rare bird, Uijlings' selective search [Uijlings,Sande, Gevers et al. (2013)] will be very attractive. For CUB200-2011, this paper use selective search as part localization to extract the head, torso and object for each image sample. Fig. 2 shows the basic process.

    Figure 2: Selective search for bird image

    3.2 Gist feature fusion based on part detection

    When the main parts have been acquired, feature description becomes critical step. From the view of bird recognition [Zhang, Donahue, Girshick et al. (2014); Wei, Xie and Wu(2016)], HOG (histogram of oriented gradients) [Dalal and Triggs (2005)] is one common filter for feature representation. Although it might a good choice for deformable parts model (DPM) [Felzenszwalb, Girshick, Mcallester et al. (2010); Azizpour and Laptev (2012)], our experiments show that HOG can not make it work to its advantage under SR system. In contrast, gist descriptor seems more appropriate for this paper.

    About the gist feature, the original goal of Oliva et al. [Oliva and Torralba (2001)] is to build a computational model of the recognition of real world scenes that bypasses thesegmentation and the processing of individual objects or regions. The core of gist is Gabor filter. Assume one image isI(x,y), its 2D Gabor function can be as

    On this basis, self-similarity Gabor can be structured as

    From this, the gist feature can be extracted as

    When the size of image grid unit is 4×4 under four scales and eight orientations, the gist feature dimensionality will be 512 (=4×4×4×8). In this paper, our fusion strategy is to cascading all parts' gist features as one data representation. Theoretically, the gist descriptor belongs to a kind of global feature. But the feature fusion in our work is derived from various local patches. This makes our gist feature having both local and global superiority in image description. The subsequent experiment will prove this point.

    3.3 Regularized IDL for rare bird sparse recognition

    As the comparison in Section 2, IDL could be an appropriate choice for rare bird recognition.If the gist feature with all parts has been generated, the SR classier can be set as

    From Eq. (4) to Eq. (6), we can see the basic process for K-SVD. However, in each iteration, it implies that the update of dictionary and sparse representation would be not at the same time. So it might be likely to produce singular point. For solving this problem,Wei et al. [Wei, Xu and Wang (2012)] try to change the objective function as

    Although this improvement could prevent the singular point, it is a pity that its performance will decline dramatically when the size of training sample is not enough.

    The latest solution is presented by Dumitrescu et al. [Dumitrescu and Irofti (2017)]. In their so-called regularized K-SVD (RK-SVD), the signal error during sparserepresentation update will be changed as

    Then the optimal measurement will be inferred as

    Based on this RK-SVD, our IDL could be improved as Tab. 1. And we name it RIDL(regularized intraclass dictionary learning). Finally, the SR result for rare bird will be judged from the following criterion

    Table 1: Algorithm of the proposed RIDL

    4 Experiment and analysis

    In this section, the rare bird training sample set comes from the CUB200-2011. Thisdataset has 200 bird classes with about 60 images in each class. In China, rare birds under the key state protection list are 58 species, and 16 species in it are endangered.Unfortunately, there is no complete correspondence category in CUB200-2011 for these birds. For this reason, we can only use some similar family or genus in CUB200-2011 instead. Our experiment will select 11 classes (such as Parakeet Auklet, Belted Kingfisher, White Pelican, and so on) from CUB200-2011 with 30 image samples in each class randomly. About each sample, three parts (head, torso and the whole object) will be segmented by selective search. And the feature fusion strategy is cascade mode. Fig. 3 shows some samples in CUB200-2011 and some results with part detection.

    Figure 3: (a) Some samples and (b) results with part detection.

    4.1 Experiment 1

    For comparison of gist and other feature descriptors, RGB color histogram and HOG will be studied. Considering the possible way of feature fusion, five compound modes should be set including head, torso, object, head+torso, and head+torso+object. Recognition system will run 300 times with 25 training samples in each class, and recognition rate would be counted as evaluation index. Fig. 4 is the result for this experiment.

    Figure 4: Five part compound modes under different feature space

    From the Fig. 4, it can be seen that: (1) In the three representative feature descriptors, the gist fusion has better recognition rate than other two method; (2) Through thecomparison in the five fusion patterns, the head+torso+object shows the best application effect. These results means that the proposed gist feature fusion based on part detection could mix the global description from gist feature and the local segmentation from selective search.

    4.2 Experiment 2

    Because one innovation in this paper is to use the RK-SVD to improve our previous IDL as a new SR classier. For comparing the application effect of the proposed RIDL, three typical SR methods (SRC, DSR and IDL) will be tested. And another aim in this experiment is to study how the small sample size problem of rare bird influences the SR modes. So the recognition rate for these four SR modes will be contrasted under five training sample sizes (5, 10, 15, 20 and 25). Fig. 5 shows the result of above experiment.

    Figure 5: SR methods with five training sample sizes

    Fig. 5 shows two aspects of this experiment: (1) From the view of SR methods, the recognition rate of SRC is far less than other dictionary learning approaches; (2) With the change of training sample size, our IDL and RIDL will be more robust and stable than other classic methods. So it is not hard to see that the proposed RIDL could be more appropriate for rare bird recognition with small sample size.

    5 Conclusion

    For rare bird recognition, this paper proposes a new SR method based on gist feature fusion and regularized IDL. In our SR system, there are two key steps. One is that three parts (head, torso and object) of each bird image sample will be extracted through selective search before the feature fusion is implemented. Another is the proposed RIDL which can be considered as the improvement of our previous IDL via RK-SVD. The experimental results, under CUB200-2011, show the feasibility of our work for rare bird intelligence monitoring.

    Acknowledgement:This work was supported by the China National Natural Science Funds (Grant No. 61401220 and No. 61471206) and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY218066).

    在线国产一区二区在线| 国产精品亚洲av一区麻豆| 国产av一区二区精品久久| 亚洲 国产 在线| av免费在线观看网站| 手机成人av网站| 99国产精品99久久久久| 国产激情欧美一区二区| 好男人在线观看高清免费视频| www.999成人在线观看| 国产精品久久久久久精品电影| 一进一出抽搐gif免费好疼| 欧美成人午夜精品| 婷婷亚洲欧美| 一区二区三区国产精品乱码| xxx96com| 亚洲av电影不卡..在线观看| 一本一本综合久久| 国产精品久久久久久人妻精品电影| 欧美性猛交黑人性爽| 久久久久久久久久黄片| 国产男靠女视频免费网站| av天堂在线播放| 嫩草影视91久久| 2021天堂中文幕一二区在线观| 黄色成人免费大全| 啦啦啦韩国在线观看视频| 天堂影院成人在线观看| 日本一本二区三区精品| 久久伊人香网站| 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 午夜免费激情av| 国产真实乱freesex| 麻豆成人午夜福利视频| 真人一进一出gif抽搐免费| www.www免费av| 欧美在线一区亚洲| 亚洲一码二码三码区别大吗| 欧美日韩亚洲综合一区二区三区_| 麻豆国产97在线/欧美 | 每晚都被弄得嗷嗷叫到高潮| 国产精品1区2区在线观看.| 日韩中文字幕欧美一区二区| 日本黄色视频三级网站网址| 中文字幕高清在线视频| 日日摸夜夜添夜夜添小说| 久久精品亚洲精品国产色婷小说| 在线十欧美十亚洲十日本专区| 国产精品99久久99久久久不卡| 99国产精品99久久久久| 婷婷丁香在线五月| 狂野欧美激情性xxxx| 亚洲欧美激情综合另类| 欧美3d第一页| 高清在线国产一区| 淫妇啪啪啪对白视频| 熟妇人妻久久中文字幕3abv| 成人国产综合亚洲| 亚洲专区中文字幕在线| 99国产极品粉嫩在线观看| 国产一区二区在线观看日韩 | 好男人在线观看高清免费视频| 女警被强在线播放| 色av中文字幕| 日日爽夜夜爽网站| 一本综合久久免费| 日本成人三级电影网站| 午夜福利高清视频| 日韩成人在线观看一区二区三区| 国产精品一及| 黄色视频,在线免费观看| 97人妻精品一区二区三区麻豆| 特级一级黄色大片| 亚洲精品在线美女| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 美女午夜性视频免费| 久久久久久国产a免费观看| 久久天躁狠狠躁夜夜2o2o| 99国产综合亚洲精品| 操出白浆在线播放| 女人被狂操c到高潮| 怎么达到女性高潮| 亚洲电影在线观看av| 两个人的视频大全免费| 欧美黑人精品巨大| 免费搜索国产男女视频| 精品一区二区三区四区五区乱码| 伦理电影免费视频| 无限看片的www在线观看| 在线观看www视频免费| 精华霜和精华液先用哪个| 深夜精品福利| 99久久无色码亚洲精品果冻| 精品一区二区三区四区五区乱码| 日本一本二区三区精品| 欧美不卡视频在线免费观看 | a级毛片在线看网站| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 欧美日韩精品网址| 亚洲精品在线观看二区| 88av欧美| 高清毛片免费观看视频网站| 国产精品 欧美亚洲| 亚洲国产日韩欧美精品在线观看 | 久久 成人 亚洲| 丁香六月欧美| 成人高潮视频无遮挡免费网站| 老汉色∧v一级毛片| 亚洲成人精品中文字幕电影| 日韩精品免费视频一区二区三区| 久久中文看片网| 日本免费a在线| 黄片大片在线免费观看| 亚洲一区高清亚洲精品| 久久伊人香网站| 正在播放国产对白刺激| 亚洲av片天天在线观看| 中文亚洲av片在线观看爽| 婷婷精品国产亚洲av在线| 五月玫瑰六月丁香| 性色av乱码一区二区三区2| www.www免费av| 精品日产1卡2卡| 人人妻人人看人人澡| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 亚洲精品国产精品久久久不卡| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清专用| 操出白浆在线播放| 天堂影院成人在线观看| 一本大道久久a久久精品| 精品国产亚洲在线| 午夜福利18| 宅男免费午夜| 国产一区二区激情短视频| 男女视频在线观看网站免费 | 天堂av国产一区二区熟女人妻 | 亚洲中文字幕日韩| 国产成人系列免费观看| 黄频高清免费视频| 久久性视频一级片| 国产69精品久久久久777片 | 国产又黄又爽又无遮挡在线| www日本在线高清视频| 99国产极品粉嫩在线观看| 两个人免费观看高清视频| 黄频高清免费视频| av片东京热男人的天堂| 国产av麻豆久久久久久久| 全区人妻精品视频| 精品电影一区二区在线| av国产免费在线观看| 丝袜美腿诱惑在线| 香蕉国产在线看| 日本在线视频免费播放| 搞女人的毛片| 女人高潮潮喷娇喘18禁视频| АⅤ资源中文在线天堂| 欧美乱妇无乱码| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频| 亚洲中文字幕日韩| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av高清一级| 免费在线观看亚洲国产| 看片在线看免费视频| 精品少妇一区二区三区视频日本电影| 日本免费一区二区三区高清不卡| 久久这里只有精品中国| 国产亚洲精品久久久久5区| 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 亚洲色图av天堂| 国产精品1区2区在线观看.| av国产免费在线观看| 国产精品自产拍在线观看55亚洲| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 亚洲人成网站高清观看| 午夜两性在线视频| 午夜福利18| 亚洲中文av在线| 久久午夜亚洲精品久久| 日韩欧美在线二视频| 99国产精品一区二区三区| 成人av一区二区三区在线看| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 美女扒开内裤让男人捅视频| 婷婷亚洲欧美| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品av一区二区| 国产精品一区二区精品视频观看| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 正在播放国产对白刺激| 老司机靠b影院| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 成人国产综合亚洲| 国产一区在线观看成人免费| 亚洲精品中文字幕一二三四区| 老司机午夜福利在线观看视频| 嫁个100分男人电影在线观看| 午夜亚洲福利在线播放| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 久久久久久九九精品二区国产 | 久久精品国产综合久久久| 69av精品久久久久久| 亚洲精华国产精华精| 99精品久久久久人妻精品| 中文字幕最新亚洲高清| 手机成人av网站| 亚洲成人精品中文字幕电影| 亚洲性夜色夜夜综合| 日本一区二区免费在线视频| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 一区福利在线观看| 51午夜福利影视在线观看| 欧美日韩福利视频一区二区| 中文字幕最新亚洲高清| 曰老女人黄片| avwww免费| 一个人免费在线观看电影 | 69av精品久久久久久| 很黄的视频免费| 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 国产精品久久久人人做人人爽| а√天堂www在线а√下载| 国产成人一区二区三区免费视频网站| 久久国产精品人妻蜜桃| 欧美日韩精品网址| 午夜a级毛片| 少妇裸体淫交视频免费看高清 | 黄色毛片三级朝国网站| 国产精品1区2区在线观看.| av在线播放免费不卡| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 亚洲av成人一区二区三| 午夜福利高清视频| 丰满人妻一区二区三区视频av | 91九色精品人成在线观看| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 在线观看午夜福利视频| 欧美3d第一页| 99久久99久久久精品蜜桃| 亚洲成人久久性| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 免费在线观看影片大全网站| 免费电影在线观看免费观看| 欧美黑人巨大hd| 日韩欧美在线二视频| 成年版毛片免费区| 久久久国产欧美日韩av| 欧美一区二区国产精品久久精品 | 精品午夜福利视频在线观看一区| 一本大道久久a久久精品| 亚洲专区中文字幕在线| 露出奶头的视频| 香蕉国产在线看| 色av中文字幕| 午夜激情av网站| 午夜福利欧美成人| 精品免费久久久久久久清纯| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久久亚洲av鲁大| 中文字幕熟女人妻在线| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 国产午夜精品久久久久久| 好男人在线观看高清免费视频| 中文字幕久久专区| 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 精华霜和精华液先用哪个| 欧美zozozo另类| 亚洲国产中文字幕在线视频| 亚洲欧美日韩东京热| av国产免费在线观看| 亚洲精华国产精华精| 两个人看的免费小视频| 嫩草影视91久久| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 一区二区三区国产精品乱码| 不卡一级毛片| 99在线人妻在线中文字幕| 一进一出抽搐动态| 一级毛片高清免费大全| 免费看a级黄色片| 欧美日韩亚洲综合一区二区三区_| 性欧美人与动物交配| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦免费观看视频1| 色播亚洲综合网| 中文在线观看免费www的网站 | 国产三级黄色录像| 久久久久久亚洲精品国产蜜桃av| 亚洲色图av天堂| 国产精品免费一区二区三区在线| 午夜精品在线福利| 看片在线看免费视频| 久久久久久九九精品二区国产 | 久久精品国产综合久久久| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 午夜久久久久精精品| 一区二区三区激情视频| 色在线成人网| 亚洲精品国产精品久久久不卡| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 长腿黑丝高跟| x7x7x7水蜜桃| 在线十欧美十亚洲十日本专区| av欧美777| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻 | 淫秽高清视频在线观看| 中出人妻视频一区二区| 国产黄片美女视频| 亚洲精品色激情综合| x7x7x7水蜜桃| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 此物有八面人人有两片| 制服丝袜大香蕉在线| 级片在线观看| 麻豆久久精品国产亚洲av| 亚洲中文av在线| 婷婷丁香在线五月| 手机成人av网站| 国产精品一区二区三区四区久久| 日韩有码中文字幕| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 免费搜索国产男女视频| 中文字幕久久专区| 亚洲国产精品sss在线观看| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 搡老妇女老女人老熟妇| 久久伊人香网站| 男人舔奶头视频| 免费看十八禁软件| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 欧美一区二区国产精品久久精品 | 无限看片的www在线观看| 亚洲国产看品久久| 亚洲成av人片免费观看| 欧美绝顶高潮抽搐喷水| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 欧美三级亚洲精品| 舔av片在线| 国产又黄又爽又无遮挡在线| 午夜福利高清视频| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 色综合亚洲欧美另类图片| 久99久视频精品免费| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 18美女黄网站色大片免费观看| 久久久久久久久中文| 丰满的人妻完整版| 黄色片一级片一级黄色片| 亚洲国产日韩欧美精品在线观看 | 在线国产一区二区在线| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 日韩成人在线观看一区二区三区| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 久久久久九九精品影院| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 精品久久蜜臀av无| 悠悠久久av| 久久精品91无色码中文字幕| 色综合婷婷激情| 宅男免费午夜| 国产精品亚洲av一区麻豆| 全区人妻精品视频| 国产成人精品久久二区二区91| 日日爽夜夜爽网站| 国产免费av片在线观看野外av| 又爽又黄无遮挡网站| 麻豆久久精品国产亚洲av| 欧美在线一区亚洲| 99精品在免费线老司机午夜| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 全区人妻精品视频| cao死你这个sao货| 国产亚洲精品av在线| 亚洲18禁久久av| √禁漫天堂资源中文www| 男女午夜视频在线观看| 久久久国产成人免费| 天天一区二区日本电影三级| www.999成人在线观看| 美女扒开内裤让男人捅视频| 2021天堂中文幕一二区在线观| 国产精品久久视频播放| 中文资源天堂在线| 天堂动漫精品| 欧美另类亚洲清纯唯美| 亚洲真实伦在线观看| 午夜精品在线福利| 国产免费男女视频| 国产av不卡久久| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| www.www免费av| 757午夜福利合集在线观看| 欧美一区二区国产精品久久精品 | 国产乱人伦免费视频| 午夜亚洲福利在线播放| 国产探花在线观看一区二区| 午夜a级毛片| 欧美3d第一页| 好男人电影高清在线观看| www.www免费av| 亚洲一区中文字幕在线| 亚洲五月天丁香| 精品久久久久久,| 两性夫妻黄色片| 国产伦在线观看视频一区| 在线免费观看的www视频| 午夜福利成人在线免费观看| 人人妻人人澡欧美一区二区| 香蕉国产在线看| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av高清一级| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 亚洲avbb在线观看| 精品电影一区二区在线| 成人手机av| 小说图片视频综合网站| 久久精品国产亚洲av高清一级| 欧美日本视频| 国产一区二区激情短视频| 国内精品久久久久精免费| 黄片小视频在线播放| 成人三级做爰电影| 亚洲 国产 在线| 久久亚洲真实| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 久久九九热精品免费| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩一区二区三| 一进一出抽搐动态| 成人国产一区最新在线观看| 青草久久国产| 又黄又爽又免费观看的视频| 一夜夜www| 欧美乱色亚洲激情| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 亚洲精品久久成人aⅴ小说| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 亚洲一区二区三区色噜噜| 久久性视频一级片| 全区人妻精品视频| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 日本免费a在线| 男女那种视频在线观看| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 少妇的丰满在线观看| 人人妻人人澡欧美一区二区| x7x7x7水蜜桃| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 亚洲全国av大片| 一进一出抽搐动态| 好男人电影高清在线观看| 狂野欧美白嫩少妇大欣赏| 国产爱豆传媒在线观看 | 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| 在线a可以看的网站| 亚洲五月天丁香| 女同久久另类99精品国产91| 亚洲精华国产精华精| 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| 国语自产精品视频在线第100页| 欧美zozozo另类| 欧美不卡视频在线免费观看 | 又黄又爽又免费观看的视频| 舔av片在线| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 黄色女人牲交| 蜜桃久久精品国产亚洲av| av欧美777| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| www.精华液| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 午夜久久久久精精品| 日韩欧美三级三区| 黄色丝袜av网址大全| 在线免费观看的www视频| 男女那种视频在线观看| 亚洲精品美女久久av网站| 一级毛片精品| 亚洲精品国产精品久久久不卡| 一级毛片高清免费大全| 香蕉丝袜av| 亚洲av五月六月丁香网| 在线观看日韩欧美| a级毛片在线看网站| 国产精品久久久久久久电影 | 老司机靠b影院| 亚洲人与动物交配视频| 伊人久久大香线蕉亚洲五| 亚洲欧美激情综合另类| 搡老岳熟女国产| 校园春色视频在线观看| 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 精品乱码久久久久久99久播| 99热这里只有是精品50| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| 久久中文字幕人妻熟女| 亚洲18禁久久av| 亚洲 欧美一区二区三区| 亚洲中文av在线| 亚洲国产日韩欧美精品在线观看 | 亚洲国产高清在线一区二区三| 1024手机看黄色片| 国产精品一区二区精品视频观看| 青草久久国产| 欧美一区二区精品小视频在线| 国内精品久久久久久久电影| 搡老岳熟女国产| 久久伊人香网站| 亚洲熟妇中文字幕五十中出| 亚洲av成人一区二区三| 亚洲欧美一区二区三区黑人| 黑人巨大精品欧美一区二区mp4| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 国产一区在线观看成人免费| 久久伊人香网站| 亚洲18禁久久av| 真人做人爱边吃奶动态| 香蕉丝袜av| 欧美精品亚洲一区二区| 香蕉国产在线看| 男人舔女人的私密视频| 欧美色欧美亚洲另类二区| 国产一区在线观看成人免费| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久av网站| 亚洲av成人一区二区三| 69av精品久久久久久| 国产午夜福利久久久久久| bbb黄色大片| 波多野结衣高清无吗| 欧美极品一区二区三区四区|